Unveiling the Defenses: A Current and Comprehensive Review of Coleoptera Carabidae Strategies
Simple Summary
Abstract
1. Introduction
2. Behavioral and Morphological Defenses
3. Protective Group Behavior
4. Other Behavioral Strategies
5. Stridulation
6. Physical and Behavioral Characteristics
7. Chemical Defenses
8. Discussion
9. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Pizzolotto, R.; Mazzei, A.; Bonacci, T.; Scalercio, S.; Iannotta, N.; Brandmayr, P. Ground beetles in Mediterranean olive agroecosystems: Their significance and functional role as bioindicators (Coleoptera, Carabidae). PLoS ONE 2018, 13, e0194551. [Google Scholar] [CrossRef]
- Holland, J.M.; Luff, M.L. The effects of agricultural practices on Carabidae in temperate agroecosystems. Integr. Pest. Manag. Rev. 2000, 5, 109–129. [Google Scholar] [CrossRef]
- Thiele, H.U. Carabid Beetles in Their Environments. In A Study on Habitat Selection by Adaptations in Physiology and Behaviour, 1st ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1977; p. 390. [Google Scholar]
- Lövei, G.L.; Sunderland, K.D. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 1996, 41, 231–256. [Google Scholar] [CrossRef] [PubMed]
- Pasteels, M.J.; Gregoiré, J.C.; Rowell-Rahier, M. The chemical ecology of defense in arthropods. Annu. Rev. Entomol. 1983, 28, 263–289. [Google Scholar] [CrossRef]
- Edmunds, M. Defence in Animals: A Survey of Anti-Predator Defences; Longman Press: Harlow, UK, 1974; p. 357. [Google Scholar]
- Blum, M.S. Chemical Defenses of Arthropods, 1st ed.; Academic Press: New York, NY, USA, 1981; p. 562. [Google Scholar]
- Zvereva, E.L.; Kozlov, M.V. The costs and effectiveness of chemical defenses in herbivorous insects: A meta-analysis. Ecol. Monogr. 2016, 86, 107–124. [Google Scholar] [CrossRef]
- Eisner, T.; Meinwald, J. Defensive secretions of arthropods. Science 1966, 153, 1341–1350. [Google Scholar] [CrossRef]
- Pascal, L.; Braekman, J.C.; Daloze, D. Insect chemical defense. In The Chemistry of Pheromones and Other Semiochemicals II; Schulz, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 167–229. [Google Scholar]
- Nenadić, M.; Ljaljević-Grbić, M.; Stupar, M.; Vukojević, J.; Ćirić, A.; Tešević, V.; Vujisić, L.; Todosijević, M.; Vesović, N.; Živković, N.; et al. Antifungal activity of the pygidial gland secretion of Laemostenus punctatus (Coleoptera: Carabidae) against cave-dwelling micromycetes. Sci. Nat. 2017, 104, 52. [Google Scholar] [CrossRef]
- Roth, L.M.; Eisner, T. Chemical defenses of Arthropods. Annu. Rev. Entomol. 2003, 7, 107–136. [Google Scholar] [CrossRef]
- Duffey, S.S. Arthropods allomones: Chemical effronteries and antagonists. In Proceedings of the 15th Congess of Entomology, Washington, DC, USA, 19–27 August 1976. [Google Scholar]
- Blum, M.S. Semiochemical parsimony in the Arthropoda. Annu. Rev. Entomol. 1996, 41, 353–374. [Google Scholar] [CrossRef]
- Boevé, J.L.; Giot, R. Chemical composition: Hearing insect defensive volatiles. Patterns 2021, 2, 100352. [Google Scholar] [CrossRef]
- Eisner, M. Chemical defense against predation in arthropods. In Chemical Ecology; Sondheimer, E., Someone, J.B., Eds.; Academic Press: New York, NY, USA, 1970; pp. 157–217. [Google Scholar]
- Gross, J.; Podsiadlowski, L.; Hilker, M. Antimicrobial activity of exocrine glandular secretion of Chrysomela larvae. J. Chem. Ecol. 2002, 28, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Guarda, C.; Lutinski, J.A. Glandular secretions of ants (Hymenoptera: Formicidae): A review on extraction, chemical characterization and antibiotic potential. Sociobiology 2020, 67, 13–25. [Google Scholar] [CrossRef]
- Vesović, N.; Nenadić, M.; Vranić, S.; Vujisić, L.; Milinčić, K.M.; Todosijević, M.; Dimkić, I.; Janakiev, T.; Ćurčić, N.B.; Stevanović, N.; et al. The chemical composition of the secretions, their antibacterial activity, and the pygidial gland morphology of selected European Carabini ground beetles (Coleoptera: Carabidae). Front. Ecol. Evol. 2023, 11, 1120006. [Google Scholar] [CrossRef]
- Dettner, K. Defensive secretions and exocrine glands in free-living staphylinid bettles–their bearing on phylogeny (Coleoptera: Staphylinidae). Biochem. Syst. Ecol. 1993, 21, 143–162. [Google Scholar] [CrossRef]
- Whitman, D.W.; Andrés, M.F.; Martínez-Díaz, R.A.; Ibáñez-Escribano, A.; Olmeda, A.S.; González-Coloma, A. Antiparasitic Properties of Cantharidin and the Blister Beetle Berberomeloe majalis (Coleoptera: Meloidae). Toxin 2019, 11, 234. [Google Scholar] [CrossRef]
- Evans, A.V.; Hogue, J.N. Introduction to California Beetles; University of California Press: Berkeley, CA, USA, 2004; p. 299. [Google Scholar]
- Will, K.W.; Gill, A.S.; Lee, H.; Attygalle, A.B. Quantification and evidence for mechanically metered release of pygidial secretions in formic acid-producing carabid beetles. J. Insect Sci. 2010, 10, 12. [Google Scholar] [CrossRef]
- Moore, B.P.; Wallbank, B.E. Chemical composition of the defensive secretion in carabid beetles and its importance as a taxonomic character. Proc. R. Entomol. Soc. Lond. Ser. B Taxon. 1968, 37, 62–72. [Google Scholar] [CrossRef]
- Erwin, T.L. The taxon pulse: A general pattern of lineage radiation and extinction among carabid beetles. In Taxonomy, Phylogeny and Zoogeography of Beetles and Ants; Ball, G.E., Ed.; The Hague Junk: Hague, The Netherlands, 1985; pp. 437–472. [Google Scholar]
- Pearson, D.L. The evolution of multi anti-predator characteristics as illustrated by Tiger Beetles (Coleoptera: Cicindelidae). Fla. Entomol. 1990, 73, 67–70. [Google Scholar] [CrossRef]
- Bradmayr, P.; Bonacci, T.; Giglio, A.; Talarico, F.; Zetto Brandmayr, T. The evolution of defence mechanisms in carabid beetles: A review. In Life and Time: The Evolution of Life and its History; Casellato, S., Burigel, P., Minelli, P.A., Eds.; Cleup: Padova, Italy, 2009; pp. 25–43. [Google Scholar]
- Bonacci, T.; Aloise, G.; Brandmayr, P.; Cagnin, M.; Zetto Brandmayr, T. Risposte comportamentali di Crocidura leucodon (Hermann, 1780) (Insectivora, Soricidae) ai meccanismi antipredatori di alcuni artropodi. Hystrix Ital. J. Mammal. 2004, 15, 73–76. [Google Scholar]
- Bonacci, T.; Aloise, G.; Brandmayr, P.; Zetto Brandmayr, T.; Capula, M. Testing the predatory behaviour of Podarcis sicula (Reptilia: Lacertidae) towards aposematic and non-aposematic preys. Amphib. Reptil. 2008, 29, 449–453. [Google Scholar] [CrossRef]
- Larochelle, A. The American toad as champion carabid beetle collector. Pan-Pac. Entomol. 1974, 50, 203–204. [Google Scholar]
- Lavigne, R.J. Cicindelids as prey of robber flies (Dipt., Asilidae). Cicindela 1972, 4, 1–7. [Google Scholar]
- Bonacci, T.; Massolo, A.; Brandmayr, P.; Zetto Brandmayr, T. Predatory behaviour on ground beetles (Coleoptera: Carabidae) by Ocypus olens (Müller) (Coleoptera: Staphylinidae) under laboratory conditions. Entomol. News 2006, 117, 545–551. [Google Scholar] [CrossRef]
- Haynes, K.F. Chemical Mimicry. In Chemical Ecology; Hardgede, J.D., Ed.; Encyclopedia of Life Support Systems, EOLSS: Paris, France, 2002; Volume 1, p. 540. [Google Scholar]
- Geneviève Bagnères, A.; Lorenzi, M.C. Chemical deception/mimicry using cuticular hydrocarbons. In Insect Hydrocarbons Biology, Biochemistry, and Chemical Ecology; Cambridge University Press: Cambridge, UK, 2010; pp. 282–323. [Google Scholar]
- Wickler, W. Mimicry in Plants and Animals; George Weidenfeld and Nicholson Ltd.: London, UK; McGraw-Hill: New York, NY, USA, 1968; p. 253. [Google Scholar]
- Dinter, K.; Paarmann, W.; Peschke, K.; Arndt, E. Ecological, behavioural and chemical adaptations to ant predation in species of Thermophilum and Graphipterus (Coleoptera: Carabidae) in the Sahara Desert. J. Arid. Environ. 2002, 50, 267–286. [Google Scholar] [CrossRef]
- Talarico, F.; Bonacci, T.; Brandmayr, P.; Dalpozzo, R.; De Nino, A.; Giglio, A.; Tagarelli, A.; Zetto Brandmayr, T. Avoiding ant detection in Siagona europaea Dejean, 1826 (Coleoptera, Carabidae): An evolutionary step towards true myrmecophily. Ethol. Ecol. Evol. 2009, 21, 45–61. [Google Scholar] [CrossRef]
- Cammaerts, R.; Detrain, C.; Cammaerts, M.C. Host trail following by the myrmecophilous beetle Edaphopaussus favieri (Fairmaire) (Carabidae Paussinae). Insectes Sociaux 1990, 37, 200–211. [Google Scholar] [CrossRef]
- Cammaerts, R.; Cammaerts, M.C. Response of the myrmecophilous beetle Edaphopaussus favieri (Carabidae, Paussinae) to 3-ethyl-2,5-dimethylpyrazine, the only known component of its host trail pheromone. In Biology and Evolution of Social Insects; Billen, J., Ed.; Leuven University Press: Leuven, Belgium, 1992; pp. 211–216. [Google Scholar]
- Moore, W.; Scarparo, G.; Di Giulio, A. Foe to frenemy: Predacious ant nest beetles use multiple strategies to fully integrate into ant nests. Curr. Opin. Insect Sci. 2022, 52, 100921. [Google Scholar] [CrossRef]
- Schmidt, J.O. Defensive Behavior, Crypsis. In Encyclopedia of Insects, 2nd ed.; Resh, V.H., Cardé, R.T., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2009; pp. 252–257. [Google Scholar]
- Schultz, M. Mimicry in Insects: An Illustrated Study in Mimicry and Cryptic Coloration in Insects. Master’s Thesis, University of Nebraska-Lincoln, Lincoln, NE, USA, 2018; p. 39. [Google Scholar]
- Endler, J.A. Disruptive and cryptic coloration. Proc. Biol. Sci. 2006, 273, 2425–2426. [Google Scholar] [CrossRef]
- Joron, M. Mimicry. In Encyclopedia of Insects; Vincent H., R., Ring T., C., Eds.; Academic Press: New York, NY, USA, 2003; pp. 39–45. [Google Scholar]
- Cott, H.B. Adaptive Coloration in Animals. Methuen and Co., Ltd.: London, UK, 1940; p. 600. [Google Scholar]
- Guilford, T. Go-slow’ signaling and the problem of automimicry. J. Theor. Biol. 1994, 170, 311–316. [Google Scholar] [CrossRef]
- Coppinger, R.P. The effect of experience and novelty on avian feeding behaviour with reference to the evolution of warning coloration in butterflies. I. Reaction of wild-caught adult blue jays to novel insects. Behavior 1969, 35, 4–60. [Google Scholar] [CrossRef]
- Coppinger, R.P. The effect of experience and novelty on avian feeding behaviour with reference to the evolution of warning coloration in butterflies. II. Reactions of naive birds to novel insects. Am. Nat. 1970, 104, 323–335. [Google Scholar] [CrossRef]
- Roper, T.J.; Cook, S.E. Responses of chicks to brightly colored insect prey. Behaviour 1989, 110, 276–293. [Google Scholar] [CrossRef]
- Sillén-Tullberg, B. Higher survival of an aposematic than of a cryptic form of distasteful bug. Oecologia 1985, 67, 411–415. [Google Scholar] [CrossRef]
- Lindroth, C.H. Disappearance as a protective factor: A supposed case of Batesian mimicry among beetles (Coleoptera: Carabidae and Chrysomelidae). Entomol. Scand. 1971, 2, 41–48. [Google Scholar] [CrossRef]
- Bonacci, T.; Brandmayr, P.; Dalpozzo, R.; De Nino, A.; Massolo, A.; Tagarelli, A.; Zetto Brandmayr, T. Odour and colour similarity in two species of gregarious carabid beetles (Coleoptera) from the Crati valley, Southern Italy: A case of Müllerian mimicry? Entomol. News 2008, 119, 325–337. [Google Scholar] [CrossRef]
- Munõz-Ramírez, C.P.; Bitton, P.P.; Doucet, S.M.; Knowles, L.L. Mimics here and there, but not everywhere: Müllerian mimicry in Ceroglossus ground beetles? Biol. Lett. 2016, 12, 20160429. [Google Scholar] [CrossRef]
- Erwin, T.L.; Erwin, L.J.M. Relationships of predaceous beetles to tropical forest wood decay. Part II. The natural history of neotropical Eurycoleus macularis Chevrolat (Carabidae: Lebiini) and its implications in the evolution of ectoparasitoidism. Biotropica 1976, 8, 215–224. [Google Scholar] [CrossRef]
- Bonacci, T.; Brandmayr, P.; Zetto, T.; Perrotta, I.D.; Guarino, S.; Peri, E.; Colazza, S. Volatile compounds released by disturbed and undisturbed adults of Anchomenus dorsalis (Coleoptera, Carabidae, Platynini) and structure of the pygidial gland. ZooKeys 2011, 81, 13–25. [Google Scholar] [CrossRef]
- Bonacci, T. Chlaenius velutinus (Coleoptera: Carabidae): The Conspicuous “Polecat” among European Carabid Beetles. J. Insect Behav. 2012, 26, 223–227. [Google Scholar] [CrossRef]
- Poulton, E.B. The Colours of Animals: Their Meaning and Use, Especially Considered in the Case of Insects; Hard Press Publishing: New York, NY, USA, 1890; p. 360. [Google Scholar]
- Gamberale, G.; Tullberg, B.S. Aposematic and gregariousness: The combined effect of group size and coloration on signal repellence. Proc. R. Soc. Lond. B 1998, 265, 889–894. [Google Scholar] [CrossRef]
- Greenslade, P.J.M. Further notes on aggregation in Carabidae (Coleoptera), with especial reference to Nebria brevicollis (F.). Entomol. Mon. Mag. 1963, 99, 109–114. [Google Scholar]
- Zaballos, P. Paralelismo fenológico en Brachinus variventris Schaufuss, 1862 y Anchomenus dorsalis (Pontoppidan, 1963). (Coleoptera Carabidae). Bol. Soc. Port. Entomol. 1985, 1, 85–92. [Google Scholar]
- Adis, J.; Amorim, M.A.; Erwin, T.L.; Bauer, T. On ecology, life history and survival strategies of a wing-dimorphic ground beetle (Col., Carabidae: Odacanthini: Colliuris) inhabiting Central Amazonian inundation forests. Stud. Neotrop. Fauna Environ. 1997, 32, 174–192. [Google Scholar] [CrossRef]
- Lindroth, C.H. Die Fennoskandischen Carabidae I-II; The Royal College of Gothenburg Science and Vitality Society: Guteborg, Sweden, 1949; p. 709. [Google Scholar]
- Mazzei, A.; Bonacci, T.; Zetto Brandmayr, T.; Brandmayr, P. Capacità di aggregazione di Coleotteri Geoadefagi, in ambiente ipolitico di suoli argillosi del bioclima mediterraneo arido. In Proceedings of the 15th Meeting of the Italian Society of the Ecology, Torino, Italy, 1 April 2005. [Google Scholar]
- Zetto Brandmayr, T.; Bonacci, T.; Massolo, A.; Brandmayr, P. What is going on between aposematic carabid beetles? The case of Anchomenus dorsalis (Pontoppidan 1763) and Brachinus sclopeta (Fabricius 1792) (Coleoptera Carabidae). Ethol. Ecol. Evol. 2006, 18, 335–348. [Google Scholar] [CrossRef]
- Eisner, T.; Aneshansley, D.J.; Eisner, M.; Attygalle, A.B.; Alsop, D.W.; Meinwald, J. Spray mechanism of the most primitive bombardier beetle (Metrius contractus). J. Exp. Biol. 2000, 203, 1265–1275. [Google Scholar] [CrossRef]
- Uniyal, V.P.; Sivakumar, K. Ecological Study of Tiger Beetles (Cicindelidae) as Indicators for Biodiversity Monitoring in Shivaliks Landscape; Wildlife Institute of India: Dehradun, India, 2007; p. 98. [Google Scholar]
- Skelhorn, J.; Rowe, C. Tasting the defence: Do multiple defence chemicals interact in Müllerian mimicry? Proc. R. Soc. Lond. B 2005, 272, 339–345. [Google Scholar] [CrossRef]
- Halpin, C.G.; Rowe, C. Aposematism as a defence against predation. In Encyclopedia of Animal Behavior, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 182–190. [Google Scholar]
- Paarmann, W. Vergleichende Undersuchungen uber die Bindung zweier Carabidenarten (Pterostichus angustatus Dft. und Pterostichus oblongopunctatus F.) an ihre verschiedenen Lebensräume. Z. Wiss Zool. 1966, 174, 83–176. [Google Scholar]
- Zetto Brandmayr, T. Nutrizione e allevamento di carabidi esclusivamente fitofagi: Spermofagia larvale di Ophonus ardosiacus Lutsh. Redia 1976, 59, 197–206. [Google Scholar]
- Brunsting, A.M.H.; Heessen, H.J.L. Cannibalism, laboratory artefact or natural phenomenon. In Ecology of Carabids: The Synthesis of Field Study and Laboratory Experiment, 4th Meeting of European carabidologists; Brandmayr, P., Den Boer, P.J., Weber, F., Eds.; Druk Pudoc: Wageningen, The Netherlands, 1983; pp. 135–139. [Google Scholar]
- Nelemans, N.M.A. On the life-history of the carabid beetles Nebria brevicollis. Egg production and larval growth under experimental conditions. Neth. J. Zool. 1987, 37, 26–42. [Google Scholar] [CrossRef]
- Currie, R.C.; Digweed, S.C. Effect of substrate depth on predation of larval Pterostichus adstrictus Eschscholtz by adult of P. melanarius (Illiger) (Coleoptera: Carabidae). Coleopt. Bull. 1996, 50, 291–296. [Google Scholar]
- Frank, S.F.; Shrewsbury, P.M.; Denno, R.F. Effects of alternative food on cannibalism and herbivore suppression by carabid larvae. Ecol. Entomol. 2010, 35, 61–68. [Google Scholar] [CrossRef]
- Currie, C.R.; Spence, J.R. Competition, cannibalism and intraguild predation among ground beetles (Coleoptera: Carabidae): A laboratory study. Coleopt. Bull. 1996, 50, 135–148. [Google Scholar]
- Zetto Brandmayr, T.; Bonacci, T.; Massolo, A.; Brandmayr, P. Peace in ground beetle larvae: Non-aggressive outcome in Chlaenius spp. larvae interactions. Ethol. Ecol. Evol. 2004, 16, 351–361. [Google Scholar] [CrossRef]
- Zetto Brandmayr, T.; Bonacci, T.; Dalpozzo, R.; De Nino, A.; Tagarelli, A.; Talarico, F.; Brandmayr, P. Cuticular hydrocarbon profiles of some ground beetle species (Coleoptera, Carabidae) and their possible role in predatory and antipredatory adaptation. In Proceedings of the 11th European Carabidologists’ Meeting, Århus, Denmark, 21–24 July 2003. [Google Scholar]
- Di Giulio, A.; Vigna Taglianti, A. Biological observations on Pachyteles larvae (Coleoptera Carabidae Paussinae). Trop. Zool. 2001, 14, 157–173. [Google Scholar] [CrossRef]
- Holliday, A.E.; Mattingly, T.M.; Holliday, N.J. Defensive secretions of larvae of a carabid beetle. Physiol. Entomol. 2015, 40, 131–137. [Google Scholar] [CrossRef]
- Masters, W.M. Insect Disturbance Stridulation: Its Defensive Role. Behav. Ecol. Sociobiol. 1978, 5, 187–200. [Google Scholar] [CrossRef]
- Low, M.L.; Naranjo, N.; Yack, J. Survival Sounds in Insects: Diversity, Function, and Evolution. Front. Ecol. Evol. 2021, 9, 641740. [Google Scholar] [CrossRef]
- Freitag, R.; Lee, S.K. Sound producing structures in adult Cicindela tranquebarica (Coleoptera, Cicindelidae) including a list of tiger beetles and ground beetles with flight wing files. Can. Entomol. 1972, 104, 851–875. [Google Scholar] [CrossRef]
- Spangler, H.G. Hearing in tiger beetles (Cicindelidae). Physiol. Entomol. 1988, 13, 447–452. [Google Scholar] [CrossRef]
- Serrano, A.R.; Diogo, A.C.; Viçoso, E.; Fonseca, J.P. New Stridulatory Structures in a Tiger Beetle (Coleoptera: Carabidae: Cicindelinae): Morphology and Sound Characterization. Coleopt. Bull. 2003, 57, 161–166. [Google Scholar] [CrossRef]
- Bauer, T. Zur Stridulation von Laufkäfern der Gattung Elaphrus Fabr. (Carabidae). Forma Functio 1973, 6, 177–190. [Google Scholar]
- Bauer, T. Stridulation bei Carabus irregularis Fabr. (Coleoptera, Carabidae). Zool. Anz. 1975, 194, 1–5. [Google Scholar]
- Bauer, T. Experimente zur Frage der biologischen Bedeutung des Stridulations-verhaltens von Käfern. Z. Tierpsychol. 1976, 42, 57–65. [Google Scholar] [CrossRef]
- Claridge, M.F. Stridulation and defensive behaviour in the ground beetle, Cychrus caraboides (L.). J. Entomol. 1974, 49, 7–15. [Google Scholar] [CrossRef]
- Greven, H.; Heuwinkel, H. Zur Stridulation des Schaufellaufers Cychrus caraboides (L.) (Carabidae, Coleoptera). Entomol. Heute 2005, 17, 101–109. [Google Scholar]
- Forsythe, T.G. Feeding mechanisms of certain ground beetles (Coleoptera: Carabidae). Col. Bul. 1982, 36, 26–73. [Google Scholar]
- Di Giulio, A.; Fattorini, S.; Moore, W.; Robertson, J.; Maurizi, M. Form, function and evolutionary significance of stridulatory organs in ant nest beetles (Coleoptera: Carabidae: Paussini). Eur. J. Entomol. 2014, 111, 692–702. [Google Scholar] [CrossRef]
- De Heij, S.E.; Ali, K.A.; Prager, S.M.; Willenborg, C.J. Feeding behavior and mobility of carabid beetles in response to perceived risk of predation. Eur. J. Entomol. 2023, 120, 81–92. [Google Scholar] [CrossRef]
- Blubaugh, C.K.; Widick, I.V.; Kaplan, I. Does fear beget fear? Risk-mediated habitat selection triggers predator avoidance at lower trophic levels. Oecologia 2017, 185, 1–11. [Google Scholar] [CrossRef]
- Charalabidis, A.; Dechaume-Moncharmont, F.X.; Petit, S.; Bohan, D.A. Risk of predation makes foragersless choosy about their food. PLoS ONE 2017, 12, e0187167. [Google Scholar] [CrossRef]
- Charalabidis, A.; Dechaume-Moncharmont, F.X.; Carbonne, B.; Bohan, D.A.; Petit, S. Diversity of foraging strategies and responses to predator interference in seed-eating carabid beetles. Basic. Appl. Ecol. 2019, 36, 13–24. [Google Scholar] [CrossRef]
- Dettner, K. Chemosystematics and evolution of beetle chemical defenses. Annu. Rev. Entomol. 1987, 32, 17–48. [Google Scholar] [CrossRef]
- Eisner, T.; Hurst, J.J.; Meinwald, J. Defense mechanisms of Arthropods. XI. The structure, function, and phenolic secretions of the glands of a chordeumoid millipede and a carabid beetle. Psyche 1963, 70, 94–116. [Google Scholar] [CrossRef]
- Schildknecht, H.; Maschwitz, U.; Winkler, H. Zur Evolution der Carabiden-Wehrdrüsensekrete. Über Arthropoden-Abwehrstoffe XXXII. Naturwissenshaften 1968, 55, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, K.; Murase, K. Comparative study of the pygidial defensive systems of carabid beetles. Appl. Entomol. Zool. 1977, 12, 225–235. [Google Scholar] [CrossRef]
- Eisner, T.; Aneshansley, D. Spray aiming in the bombardier beetle: Photographic evidence. Proc. Natl. Acad. Sci. USA 1999, 96, 9705–9709. [Google Scholar] [CrossRef]
- Muzzi, M.; Moore, W.; Di Giulio, A. Morpho-functional analysis of the explosive defensive system of basal bombardier beetles (Carabidae: Paussinae: Metriini) Micron 2019, 119, 24–38. 119.
- Di Giulio, A.; Muzzi, M.; Romani, R. Functional anatomy of the explosive defensive system of bombardier beetles (Coleoptera, Carabidae, Brachininae). Arthropod Struct. Dev. 2015, 44, 468–490. [Google Scholar] [CrossRef]
- Eisner, T.; Aneshansley, D.J.; Yack, J.; Attygalle, A.B.; Eisner, M. Spray mechanism of crepidogastrine bombardier beetles (Carabidae; Crepidogastrini). Chemoecology 2001, 11, 209–219. [Google Scholar] [CrossRef]
- Forsyth, D.J. The structure of the defence glands of the Cicindelidae, Amphizoidae, and Hygrobiidae (Insecta: Coleoptera). J. Zool. 1970, 160, 51–69. [Google Scholar] [CrossRef]
- Forsyth, D.J. The structure of pygidial defence glands of Carabidae (Coleoptera). Trans. Zool. Soc. London 1972, 32, 249–309. [Google Scholar] [CrossRef]
- Aneshansley, D.; Eisner, T.; Widom, J.; Widom, B. Biochemistry at 100 °C: Explosive secretory discharge of bombardier beetles (Brachinus). Science 1969, 165, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Schildknecht, H.; Winkler, H.; Maschwitz, U. Vergleichend chemische Untersuchungen der Inhaltsstoffe der Pygidialwehrblasen von Carabiden. Z. Naturforsch. B 1968, 23, 637–644. [Google Scholar] [CrossRef]
- Balestrazzi, E.; Dazzini, M.L.V.; De Bernardi, M.; Vidari, G.; Vita-Finzi, P.; Mellerio, G. Morphological and chemical studies on the pygidial defence glands of some carabidae (Coleoptera). Naturwissenschaften 1985, 72, 482–484. [Google Scholar] [CrossRef]
- Vogel, H.; Rugen, N.; Wielsch, N.; Twyman, R.M.; Tonk-Rugen, M.; Vilcinskas, A. Molecular basis of the explosive defence response in the bombardier beetle Brachinus crepitans. Soc. Open Sci. 2025, 12, 241823. [Google Scholar] [CrossRef]
- Vranic, S.; Vujisic, L.; Vesovic, N.; Todosijevic, M.; Pantelic, D.; Pavlovic, D.; Ivanovic, S.; Vasovic, M.; Curcic, S. The morphology of the pygidial glands and the chemical composition of their secretions of four sphodrine ground beetle species (Carabidae: Platyninae). J. Insect Physiol. 2024, 158, 104685. [Google Scholar] [CrossRef]
- Armitage, M.H.; Mullisen, L. Preliminary observations of the pygidial gland of the Bombardier Beetle, Brachinus sp. J. Creat. 2003, 17, 95–102. [Google Scholar]
- Vesović, N.; Nenadić, M.; Soković, M.; Ćirić, A.; Vujisić, L.; Todosijević, M.; Stevanović, N.; Perić-Mataruga, V.; Ilijin, L.; Ćurčić, S. Pygidial glands of the blue ground beetle Carabus intricatus: Chemical composition of the secretion and its antimicrobial activity. Sci. Nat. 2022, 109, 19. [Google Scholar] [CrossRef]
- Dimkić, I.; Stanković, S.; Kabić, J.; Stupar, M.; Nenadić, M.; Ljaljević-Grbić, M.; Žikić, V.; Vujisić, L.; Tešević, V.; Vesović, N.; et al. Bat guano-dwelling microbes and antimicrobial properties of the pygidial gland secretion of a troglophilic ground beetle against them. Appl. Microbiol. Biotechnol. 2020, 104, 4109–4126. [Google Scholar] [CrossRef]
- Moore, B.P.; Brown, W.V. Chemical composition of the defensive secretion in Dyschiurius Bonelli (Coleoptera: Carabidae: Scaritinae) and its taxonomic significance. J. Aust. Ent Soc. 1979, 18, 123–125. [Google Scholar] [CrossRef]
- Wheeler, J.W.; Chung, R.H.; Oh, S.K.; Benfield, E.F.; Neff, S.E. Defensive secretions of Cychrine beetles (Coleoptera: Carabidae). Ann. Entomol. Soc. Am. 1970, 63, 469–471. [Google Scholar] [CrossRef]
- Attygalle, A.B.; Meinwald, J.; Eisner, T. Biosynthesis of methacrylic acid and isobutyricacids in a carabid beetle, Scarites subterraneus. Tetrahedron Lett. 1991, 32, 4849–4852. [Google Scholar] [CrossRef]
- Holliday, A.E.; Holliday, N.J.; Mattingly, T.M.; Naccarato, K.M. Defensive secretions of the carabid beetle Chlaenius cordicollis: Chemical components and their geographic patterns of variation. J. Chem. Ecol. 2012, 38, 278–286. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonacci, T. Unveiling the Defenses: A Current and Comprehensive Review of Coleoptera Carabidae Strategies. Biology 2025, 14, 709. https://doi.org/10.3390/biology14060709
Bonacci T. Unveiling the Defenses: A Current and Comprehensive Review of Coleoptera Carabidae Strategies. Biology. 2025; 14(6):709. https://doi.org/10.3390/biology14060709
Chicago/Turabian StyleBonacci, Teresa. 2025. "Unveiling the Defenses: A Current and Comprehensive Review of Coleoptera Carabidae Strategies" Biology 14, no. 6: 709. https://doi.org/10.3390/biology14060709
APA StyleBonacci, T. (2025). Unveiling the Defenses: A Current and Comprehensive Review of Coleoptera Carabidae Strategies. Biology, 14(6), 709. https://doi.org/10.3390/biology14060709