Virgulinella fragilis in the North Adriatic Coastal Sediments: A New Non-Indigenous Benthic Foraminiferal Taxon?
Simple Summary
Abstract
1. Introduction
2. Virgulinella fragilis: Potentiality for Invasiveness
3. Study Area
3.1. The Northern Adriatic Sea
3.2. Sampling Stations at the LTER “Delta del Po e Costa Romagnola” Site
4. Materials and Methods
4.1. Foraminiferal Samples and Preparation
4.2. Morphological Analyses
4.3. Habitat Suitability Modeling
5. Results
5.1. Occurrence of Virgulinella fragilis at the NAS DPCR Stations
5.2. Morphology of Virgulinella fragilis from NAdFC Samples
5.3. Model Accuracy and Suitability Map
6. Discussion
6.1. Temporal and Spatial Patterns of Virgulinella fragilis Arrival in the Mediterranean and Adriatic Seas
6.2. Putative Introduction Dynamic of Virgulinella fragilis in Mediterranean and Adriatic Seas
6.2.1. Anthropic Means of Introduction
6.2.2. Natural Means of Introduction
6.3. Virgulinella fragilis External Morphology and Porosity as a Tool to Infer Sea-Bottom Oxygenation Levels and Changes
6.4. Historical and Future Ranges of Habitat Suitability for V. fragilis in the Mediterranean
7. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Type of Activity | Station | Date of Sampling | Latitude (N) | Longitude (E) | Depth (m) | Virgulinella fragilis Specimens (n) | Type of Specimens |
---|---|---|---|---|---|---|---|
LTER-ANOC16 Cruise | E1 | 28/04/2016 | 44°08.53 | 12°34.37 | 10.5 | ||
LTER-ANOC16 Cruise | S1-GB | 29/04/2016 | 44°44.32 | 12°27.10 | 22.5 | ||
LTER-ANOC16 Cruise | S2 | 29/04/2016 | 44°43.91 | 12°30.22 | 26 | ||
LTER-ANOC16 Cruise | S3 | 29/04/2016 | 44°44.18 | 12°37.84 | 31 | ||
Marine strategy-Adriatic Sea Cruise | E1 | 14/12/2016 | 44°08.65 | 12°34.37 | 10.5 | ||
Marine strategy-Adriatic Sea Cruise | S1-GB | 15/12/2016 | 44°44.16 | 12°27.36 | 22.5 | ||
ordinary maintenance | S1-GB | 21/07/2016 | 44°44.31 | 12°27.16 | 22.5 | ||
INTERNOS17 Cruise | S1-GB | 15/03/2017 | 44°44.31 | 12°27.26 | 22.5 | ||
INTERNOS17 Cruise | E1 | 19/03/2017 | 44°08.35 | 12°34.19 | 10.5 | ||
ordinary maintenance | S1-GB | 13/06/2017 | 44°44.31 | 12°27.26 | 22.5 | ||
ordinary maintenance | E1 | 14/12/2017 | 44°08.60 | 12°34.20 | 10.5 | ||
ordinary maintenance | E1 | 11/04/2018 | 44°08.60 | 12°34.2 | 10.5 | ||
ordinary maintenance | S1-GB | 17/05/2018 | 44°44.31 | 12°27.26 | 22.5 | ||
ordinary maintenance | E1 | 30/06/2018 | 44°08.60 | 12°34.20 | 10.5 | ||
ordinary maintenance | S1-GB | 19/07/2018 | 44°44.31 | 12°27.26 | 22.5 | ||
ordinary maintenance | E1 | 09/09/2018 | 44°08.60 | 12°34.20 | 10.5 | ||
ordinary maintenance | S1-GB | 24/10/2018 | 44°44.31 | 12°27.26 | 22.5 | ||
ordinary maintenance | E1 | 04/12/2018 | 44°08.60 | 12°34.20 | 10.5 | ||
INTERNOS19 Cruise | S1-GB | 21/02/2019 | 44°44.27 | 12°27.27 | 20.2 | ||
INTERNOS19 Cruise | S0 | 21/02/2019 | 44°44.00 | 12°21.929 | 12.5 | ||
INTERNOS19 Cruise | S2 | 21/02/2019 | 44°43.98 | 12°30.404 | 24.3 | ||
INTERNOS19 Cruise | S3 | 21/02/2019 | 44°44.17 | 12°37.856 | 29.6 | ||
INTERNOS19 Cruise | S3 | 26/02/2019 | 44°44.20 | 12°37.684 | 18.2 | ||
INTERNOS19 Cruise | S2 | 26/02/2019 | 44°43.94 | 12°30.392 | 29.8 | ||
INTERNOS19 Cruise | S1-GB | 26/02/2019 | 44°44.40 | 12°26.864 | 24.7 | ||
INTERNOS19 Cruise | S0 | 26/02/2019 | 44°43.90 | 12°22.034 | 20.2 | 4 * (2%) | living |
INTERNOS19 Cruise | E1 | 27/02/2019 | 44°08.54 | 12°34.809 | 13.1 | ||
ordinary maintenance | S1-GB | 25/03/2019 | 44°44.31 | 12°27.26 | 22.5 | ||
ordinary maintenance | S1-GB | 12/07/2019 | 44°44.31 | 12°27.26 | 22.5 | ||
ordinary maintenance | E1 | 02/06/2021 | 44°08.60 | 12°34.20 | 10.5 | ||
ordinary maintenance | S1-GB | 27/06/2021 | 44°44.31 | 12°27.26 | 22.5 | ||
ordinary maintenance | E1 | 19/09/2021 | 44°08.60 | 12°34.20 | 10.5 | ||
ordinary maintenance | S1-GB | 23/12/2021 | 44°44.31 | 12°27.26 | 22.5 | 1 | dead |
ordinary maintenance | S1-GB | 25/03/2022 | 44°44.31 | 12°27.26 | 22.5 | ||
ordinary maintenance | E1 | 21/05/2022 | 44°08.60 | 12°34.20 | 10.5 | ||
ordinary maintenance | S1-GB | 13/09/2022 | 44°44.31 | 12°27.26 | 22.5 | ||
ordinary maintenance | E1 | 03/07/2022 | 44°08.60 | 12°34.20 | 10.5 | ||
ordinary maintenance | S1-GB | 19/10/2022 | 44°44.31 | 12°27.26 | 22.5 | ||
ordinary maintenance | S1-GB | 19/07/2023 | 44°44.31 | 12°27.26 | 22.5 | ||
ordinary maintenance | S1-GB | 24/08/2023 | 44°44.31 | 12°27.26 | 22.5 | ||
ordinary maintenance | E1 | 12/09/2023 | 44°08.60 | 12°34.20 | 10.5 | 2 | dead |
ordinary maintenance | S1-GB | 17/10/2023 | 44°44.31 | 12°27.26 | 22.5 | ||
ordinary maintenance | S1-GB | 11/07/2024 | 44°44.31 | 12°27.26 | 22.5 | ||
ordinary maintenance | E1 | 27/07/2024 | 44°08.60 | 12°34.20 | 10.5 | ||
ordinary maintenance | S1-GB | 01/10/2024 | 44°44.31 | 12°27.26 | 22.5 | ||
ordinary maintenance | S1-GB | 13/12/2024 | 44°44.31 | 12°27.26 | 22.5 |
Sampling Localities | Sampling Station | Latitude | Longitude | Depth (m) | Environment | T * (°C) | Salinity (psu) | DO * (μmol/L) |
---|---|---|---|---|---|---|---|---|
Po River Delta, NAS (Italy) | S0 | 44°43.98 N | 12°21.90 E | 13.5 | Prodelta | 8.76 | 35.64 | 620.0 |
Po River Delta, NAS (Italy) | S1-GB | 44°44.46 N | 12°27.36 E | 22.5 | Prodelta | 12.76 | 37.77 | 435.0 |
Costa Romagnola, NAS (Italy) | E1 | 44°8.58 N | 12°34.26 E | 10.5 | Coastal | 25.27 | 36.58 | 555.0 |
References
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A. Biodiversity loss and its impact on humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Halpern, B.S.; Longo, C.; Lowndes, J.S.S.; Best, B.D.; Frazier, M.; Katona, S.K.; Kleisner, K.M.; Rosenberg, A.A.; Scarborough, C.; Selig, E.R. Patterns and emerging trends in global ocean health. PLoS ONE 2015, 10, e0117863. [Google Scholar] [CrossRef]
- Halpern, B.S.; Frazier, M.; Potapenko, J.; Casey, K.S.; Koenig, K.; Longo, C.; Lowndes, J.S.; Rockwood, R.C.; Selig, E.R.; Selkoe, K.A.; et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 2015, 6, 7615. [Google Scholar] [CrossRef] [PubMed]
- Stock, A.; Crowder, L.B.; Halpern, B.S.; Micheli, F. Uncertainty analysis and robust areas of high and low modeled human impact on the global oceans. Conserv. Biol. 2018, 32, 1368–1379. [Google Scholar] [CrossRef]
- Díaz, S.; Settele, J.; Brondízio, E.S.; Ngo, H.T.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.A.; Stuart, H.; Butchart, M.; et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 2019, 366, eaax3100. [Google Scholar] [CrossRef] [PubMed]
- Cheung, W.W.L.; Lam, V.W.Y.; Sarmiento, J.L.; Kearney, K.; Watson, R.; Pauly, D. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 2009, 10, 235–251. [Google Scholar] [CrossRef]
- Butchart, S.H.M.; Walpole, M.; Collen, B.; van Strien, A.; Scharlemann, J.P.W.; Almond, R.E.A.; Baillie, J.E.M.; Bomhard, B.; Brown, C.; Bruno, J.; et al. Global biodiversity: Indicators of recent declines. Science 2010, 328, 1164–1168. [Google Scholar] [CrossRef]
- Steffen, W.; Rockström, J.; Richardson, K.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A.; Folke, C.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef]
- Lotze, H.K.; Tittensor, D.P.; Bryndum-Buchholz, A.; Eddy, T.D.; Cheung, W.W.L.; Galbraith, E.D.; Barrier, N.; Bianchi, D.; Blanchard, J.L.; Bopp, L.; et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl. Acad. Sci. USA 2019, 116, 12907–12912. [Google Scholar] [CrossRef]
- Jouffray, J.B.; Norström, A.V.; Nyström, M.; Folke, C.; Moberg, F. Marine biodiversity loss and its cascading effects. Nat. Sustain. 2020, 3, 250–257. [Google Scholar]
- Gissi, E.; Manea, E.; Mazaris, A.D.; Fraschetti, S.; Almpanidou, V.; Bevilacqua, S.; Coll, M.; Guarnieri, G.; Lloret-Lloret, E.; Pascual, M.; et al. A review of the combined effects of climate change and other local human stressors on the marine environment. Sci. Total Environ. 2021, 755, 142564. [Google Scholar] [CrossRef] [PubMed]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Brondizio, E.S., Settele, J., Díaz, S., Ngo, H.T., Eds.; IPBES Secretariat: Bonn, Germany, 2019; 1148p. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2023: Synthesis Report; Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar] [CrossRef]
- Vitousek, P.M.; D’Antonio, C.M.; Loope, L.L.; Westbrooks, R. Biological invasions as global environmental change. Am. Sci. 1996, 84, 468–478. [Google Scholar]
- Ojaveer, H.; Galil, B.S.; Campbell, M.L.; Carlton, J.T.; Canning-Clode, J.; Cook, E.J.; Davidson, A.D.; Hewitt, C.L.; Jelmert, A.; Marchini, A.; et al. Classification of non-indigenous species based on their impacts: Considerations for application in marine management. PLoS Biol. 2015, 13, e1002130. [Google Scholar] [CrossRef]
- Ojaveer, H.; Galil, B.S.; Carlton, J.T.; Alleway, H.; Goulletquer, P.; Lehtiniemi, M.; Marchini, A.; Miller, W.; Occhipinti-Ambrogi, A.; Peharda, M.; et al. Historical baselines in marine bioinvasions: Implications for policy and management. PLoS ONE 2018, 13, e0202383. [Google Scholar] [CrossRef] [PubMed]
- Convention on Biological Diversity (CBD). Aichi Target 9: Invasive Alien Species. In EU Strategic Plan for Biodiversity 2011–2020; UNEP/CBD/COP/10/27/Add.1; European Commission: Brussels, Belgium, 2011; pp. 1–20. Available online: https://www.cbd.int/doc/meetings/cop/cop-10/official/cop-10-27-add1-en.pdf (accessed on 7 January 2025).
- European Parliament and Council. Regulation (EU) No 1143/2014 on the prevention and management of the introduction and spread of invasive alien species. Off. J. Eur. Union 2014, L317, 35–55. [Google Scholar]
- EU. Report from the Commission to the European Parliament and the Council. The mid-term review of the EU Biodiversity Strategy to 2020. In European Commission Report; EU: Brussels, Belgium, 2014; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52015DC0478 (accessed on 7 January 2025).
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development [UN A/RES/70/1]. Available online: https://undocs.org/A/RES/70/1 (accessed on 7 January 2025).
- European Commission. EU Biodiversity Strategy for 2030: Bringing Nature Back into Our Lives; European Commission: Brussels, Belgium, 2020; pp. 1–12. Available online: https://environment.ec.europa.eu/strategy/biodiversity-strategy-2030_en (accessed on 7 January 2025).
- European Parliament and Council. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Off. J. Eur. Union 2008, L164, 19–40. [Google Scholar]
- European Parliament and Council. Directive (EU) 2017/845 of the European Parliament and of the Council of 17 May 2017 amending Directive 2008/56/EC of the European Parliament and of the Council. Off. J. Eur. Union 2017, L125, 1–7. [Google Scholar]
- European Parliament and Council. Directive (EU) 2017/848 of the European Parliament and of the Council of 17 May 2017 on the assessment of good environmental status and the establishment of environmental targets under the Marine Strategy Framework Directive. Off. J. Eur. Union 2017, L125, 8–28. [Google Scholar]
- Technical Group 2 (TG2). Impact of Biological Pollution and Bi-Invasion on Ecosystems. In Biodiversity and Invasive Species: Global Challenges and Management Approaches; European Commission: Brussels, Belgium, 2020; Volume 2, pp. 45–67. [Google Scholar]
- EU. Commission Decision (EU) 2017/848 of 17 May 2017: Glossary. Available online: https://mcc.jrc.ec.europa.eu/main/dev.py?N=20&O=119&titre_chap=D2+Non-indigenous+species#201671114752 (accessed on 7 January 2025).
- Elton, C.S. The Ecology of Invasions by Animals and Plants; Methuen & Co.: London, UK, 1958; pp. 1–181. [Google Scholar]
- Katsanevakis, S.; Zenetos, A.; Belchior, C.; Cardoso, A.C. Invading European Seas: Assessing Pathways of Introduction of Marine Aliens. Ocean Coast. Manag. 2013, 76, 64–74. [Google Scholar] [CrossRef]
- Ojaveer, H.; Olenin, S.; Narščius, A.; Florin, A.-B.; Ezhova, E.; Gollasch, S.; Jensen, K.R.; Lehtiniemi, M.; Minchin, D.; Normant-Saremba, M.; et al. Dynamics of Biological Invasions and Pathways Over Time: A Case Study of a Temperate Coastal Sea. Biol. Invasions 2017, 19, 799–813. [Google Scholar] [CrossRef]
- Pergl, J.; Brundu, G.; Harrower, C.A.; Cardoso, A.C.; Genovesi, P.; Katsanevakis, S.; Lozano, V.; Perglová, I.; Rabitsch, W.; Richards, G.; et al. Applying the Convention on Biological Diversity Pathway Classification to alien species in Europe. NeoBiota 2020, 62, 333–363. [Google Scholar] [CrossRef]
- Zenetos, A.; Gofas, S.; Verlaque, M.; Çinar, M.E.; García Raso, J.E.; Bianchi, C.N.; Morri, C.; Azzurro, E.; Bilecenoglu, M.; Froglia, C.; et al. Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution. Medit. Mar. Sci. 2010, 11, 381–493. [Google Scholar] [CrossRef]
- Zenetos, A.; Gofas, S.; Morri, C.; Rosso, A.; Violanti, D.; Garcia Raso, J.E.; Cinar, M.E.; Almogi-Labin, A.; Ates, A.S.; Azzurro, E.; et al. Alien species in the Mediterranean Sea by 2012. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part 2. Introduction trends and pathways. Mediterr. Mar. Sci. 2012, 13, 328–352. [Google Scholar] [CrossRef]
- Rilov, G.; Galil, B. Marine bioinvasions in the Mediterranean Sea—History, distribution and ecology. In Biological Invasions in Marine Ecosystems; Rilov, G., Crooks, J.A., Eds.; Springer: Berlin, Germany, 2009; pp. 549–576. [Google Scholar]
- Galil, B.S. Loss or gain? Invasive aliens and biodiversity in the Mediterranean Sea. Mar. Pollut. Bull. 2007, 55, 314–322. [Google Scholar] [CrossRef]
- Tsirintanis, K.; Azzurro, E.; Crocetta, F.; Dimiza, M.; Froglia, C.; Gerovasileiou, V.; Langeneck, J.; Mancinelli, G.; Rosso, A.; Stern, N.; et al. Bioinvasion impacts on biodiversity, ecosystem services, and human health in the Mediterranean Sea. Aquat. Invasions 2022, 17, 308–352. [Google Scholar] [CrossRef]
- Edelist, D.; Rilov, G.; Golani, D.; Carlton, J.; Spanier, E. Restructuring the Sea: Profound shifts in the world’s most invaded marine ecosystem. Divers. Distrib. 2013, 19, 69–77. [Google Scholar] [CrossRef]
- Katsanevakis, S.; Coll, M.; Piroddi, C.; Steenbeek, J.; Ben Rais Lasram, F.; Zenetos, A.; Cardoso, A.C. Invading the Mediterranean Sea: Biodiversity patterns shaped by human activities. Front. Mar. Sci. 2014, 1, 32. [Google Scholar] [CrossRef]
- Katsanevakis, S.; Poursanidis, D.; Hoffman, R.; Rizgalla, J.; Rothman, S.B.-S.; Levitt-Barmats, Y.; Hadjioannou, L.; Trkov, D.; Garmendia, J.M.; Rizzo, M.; et al. Unpublished Mediterranean records of marine alien and cryptogenic species. BioInvasions Rec. 2020, 9, 165–182. [Google Scholar] [CrossRef]
- Katsanevakis, S.; Olenin, S.; Puntila-Dodd, R.; Rilov, G.; Stæhr, P.A.U.; Teixeira, H.; Tsirintanis, K.; Birchenough, S.N.R.; Jakobsen, H.H.; Knudsen, S.W.; et al. Marine invasive alien species in Europe: 9 years after the IAS Regulation. Front. Mar. Sci. 2023, 10, 1271755. [Google Scholar] [CrossRef]
- Olenin, S.; Alemany, F.; Cardoso, A.C.; Gollasch, S.; Goulletquer, P.; Lehtiniemi, M.; McCollin, T.; Minchin, D.; Miossec, L.; Occhipinti-Ambrogi, A.; et al. Marine Strategy Framework Directive—Task Group 2 Report. Non-indigenous species. In EUR 24342 EN; Office for Official Publications of the European Communities: Luxembourg, 2010; pp. 1–44. [Google Scholar] [CrossRef]
- UNEP/MAP. State of the Mediterranean Marine Environment; UNEP/MAP: Athens, Greece, 2016; pp. 1–50. [Google Scholar]
- UNEP/MAP. Mediterranean Pollution Reduction and Prevention Report; UNEP/MAP: Athens, Greece, 2017; pp. 1–45. [Google Scholar]
- UNEP/MAP. Assessment of Marine and Coastal Environment in the Mediterranean; UNEP/MAP: Athens, Greece, 2021; pp. 1–60. [Google Scholar]
- Katsanevakis, S.; Bogucarskis, K.; Gatto, F.; Vandekerkhove, J.; Deriu, I.; Cardoso, A.C. Building the European Alien Species Information Network (EASIN): A novel approach for the exploration of distributed alien species data. BioInvasions Rec. 2012, 1, 235–245. [Google Scholar] [CrossRef]
- Katsanevakis, S.; Deriu, I.; D’amico, F.; Nunes, A.L.; Sanchez, S.P.; Crocetta, F.; Arianoutsou, M.; Bazos, I.; Christopoulou, A.; Curto, G.; et al. European Alien Species Information Network (EASIN): Supporting European policies and scientific research. Manag. Biol. Invasion 2015, 6, 147–157. [Google Scholar] [CrossRef]
- Costello, M.J.; Dekeyzer, S.; Galil, B.; Hutchings, P.; Katsanevakis, S.; Pagad, S.; Robinson, T.; Turon, X.; Vandepitte, L.; Vanhoorne, B.; et al. Introducing the World Register of Introduced Marine Species (WRiMS). Manag. Biol. Invasions 2021, 12, 792–811. [Google Scholar] [CrossRef]
- Levin, N.; Bahar, R.; Çinar, M.E.; Daskalov, G.; Degiuseppe, L.; Folloni, J.; Goffredo, S.; Gomez, S.; Gosselin, T.; Karlsen, K.; et al. Biodiversity data requirements for systematic conservation planning in the Mediterranean Sea. Mar. Ecol. Prog. Ser. 2014, 508, 261–281. [Google Scholar] [CrossRef]
- Stulpinaite, R.; Hyams-Kaphzan, O.; Langer, M.R. Alien and cryptogenic Foraminifera in the Mediterranean Sea: A revision of taxa as part of the EU 2020 Marine Strategy Framework Directive. Mediterr. Mar. Sci. 2020, 21, 719–758. [Google Scholar] [CrossRef]
- Alve, E. Benthic foraminiferal responses to estuarine pollution; a review. J. Foraminifer. Res. 1995, 25, 190–203. [Google Scholar] [CrossRef]
- Vassallo, P.; Fabiano, M.; Vezzulli, L.; Sandulli, R.; Marques, J.; Jorgensen, S. Assessing the health of coastal marine ecosystems: A holistic approach based on sediment micro and meio-benthic measures. Ecol. Indic. 2006, 6, 525–542. [Google Scholar] [CrossRef]
- Schönfeld, J.; Alve, E.; Geslin, E.; Jorissen, F.; Korsun, S.; Spezzaferri, S. The FOBIMO (FOraminiferal BIo-MOnitoring) initiative—Towards a standardised protocol for soft-bottom benthic foraminiferal monitoring studies. Mar. Micropaleontol. 2012, 94–95, 1–13. [Google Scholar] [CrossRef]
- Jorissen, F.; Nardelli, M.P.; Almogi-Labin, A.; Barras, C.; Bergamin, L.; Bicchi, E.; El Kateb, A.; Ferraro, L.; McGann, M.; Morigi, C.; et al. Developing Foram-AMBI for biomonitoring in the Mediterranean: Species assignments to ecological categories. Mar. Micropaleontol. 2018, 140, 33–45. [Google Scholar] [CrossRef]
- Bouchet, V.M.; Frontalini, F.; Francescangeli, F.; Sauriau, P.-G.; Geslin, E.; Martins, M.V.A.; Almogi-Labin, A.; Avnaim-Katav, S.; Di Bella, L.; Cearreta, A.; et al. Indicative value of benthic foraminifera for biomonitoring: Assignment to ecological groups of sensitivity to total organic carbon of species from European intertidal areas and transitional waters. Mar. Pollut. Bull. 2021, 164, 112071. [Google Scholar] [CrossRef]
- Parent, B.; Barras, C.; Bicchi, E.; Charrieau, L.M.; Choquel, C.; Bénéteau, É.; Maillet, G.M.; Jorissen, F.J. Comparison of Four Foraminiferal Biotic Indices Assessing the Environmental Quality of Coastal Mediterranean Soft Bottoms. Water 2021, 13, 3193. [Google Scholar] [CrossRef]
- O’Brien, P.A.; Polovodova-Asteman, I.; Bouchet, V.M. Benthic foraminiferal indices and environmental quality assessment of transitional waters: A review of current challenges and future research perspectives. Water 2021, 13, 1898. [Google Scholar] [CrossRef]
- Schmiedl, G. Use of foraminifera in climate science. In Oxford Research Encyclopedia of Climate Science; Oxford University Press: Oxford, UK, 2019. [Google Scholar] [CrossRef]
- Chaabane, S.; de Garidel-Thoron, T.; Meilland, J.; Sulpis, O.; Chalk, T.B.; Brummer, G.-J.A.; Mortyn, P.G.; Giraud, X.; Howa, H.; Casajus, N.; et al. Migrating is not enough for modern planktonic foraminifera in a changing ocean. Nature 2024, 636, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Ying, R.; Monteiro, F.M.; Wilson, J.D.; Ödalen, M.; Schmidt, D.N. Past foraminiferal acclimatization capacity is limited during future warming. Nature 2024, 636, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Balsamo, M.; Semprucci, F.; Frontalini, F.; Coccioni, R. Meiofauna as a Tool for Marine Ecosystem Biomonitoring. In Marine Ecosystems; Cruzado, A., Ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Tietjen, J.H. Abundance and biomass of metazoan meiobenthos in the deep sea. In Deep-Sea Food Chains and the Global Carbon Cycle, Rowe, G.T., Pariente, V., Eds.; NATO ASI Series; Springer: Dordrecht, The Netherlands, 1992; Volume 360, pp. 45–62. [Google Scholar]
- Nomaki, H.; Ogawa, N.O.; Ohkouchi, N.; Suga, H.; Toyofuku, T.; Shimanaga, M.; Kitazato, H. Benthic foraminifera as trophic links between phytodetritus and benthic metazoans: Carbon and nitrogen isotopic evidence. Mar. Ecol. Prog. Ser. 2008, 357, 153–164. [Google Scholar] [CrossRef]
- Enge, A.J.; Nomaki, H.; Ogawa, N.O.; Witte, U.; Moeseneder, M.M.; Lavik, G.; Heinz, P. Response of the benthic foraminiferal community to a simulated short-term phytodetritus pulse in the abyssal North Pacific. Mar. Ecol. Prog. Ser. 2011, 438, 129–142. [Google Scholar] [CrossRef]
- Haynert, K.; Gluderer, F.; Pollierer, M.M.; Scheu, S.; Wehrmann, A. Food spectrum and habitat-specific diets of benthic Foraminifera from the Wadden Sea–A fatty acid biomarker approach. Front. Mar. Sci. 2020, 7, 510288. [Google Scholar] [CrossRef]
- Altenbach, A.; Sarnthein, M. Productivity Record in Benthic Foraminifera. In Productivity of the Ocean: Present and Past; Berger, W.H., Smetacek, V.S., Wefer, G., Eds.; John Wiley & Sons, S. Bernhard, Dahlem Konferenzen: Berlin, Germany, 1989; Volume 8, pp. 255–269. [Google Scholar]
- Gooday, A.J.; Levin, L.A.; Linke, P.; Heeger, T. The Role of Benthic Foraminifera in Deep-Sea Food Webs and Carbon Cycling. In Deep-Sea Food Chains and the Global Carbon Cycle, Rowe, G.T., Pariente, V., Eds.; NATO ASI Series; Springer: Dordrecht, The Netherlands, 1992; Volume 360, pp. 63–91. [Google Scholar] [CrossRef]
- Gooday, A.J.; Nomaki, H.; Kitazato, H. Modern deep-sea benthic foraminifera: A brief review of their morphology-based biodiversity and trophic diversity. Geol. Soc. Lond. Spec. Publ. 2008, 303, 97–119. [Google Scholar] [CrossRef]
- van Lith, Y.; Langezaal, A.M.; de Nooijer, L.J.; van der Zwaan, G.J. Benthic foraminiferal effect on nitrogen and carbon cycling. J. Foraminifer. Res. 2009, 39, 97–111. [Google Scholar] [CrossRef]
- Glock, N.; Schönfeld, J.; Eisenhauer, A.; Hensen, C.; Mallon, J.; Sommer, S. The role of benthic foraminifera in the benthic nitrogen cycle of the Peruvian oxygen minimum zone. Biogeosciences 2013, 10, 4767–4783. [Google Scholar] [CrossRef]
- Giovos, I.; Kleitou, P.; Poursanidis, D.; Poursanidis, D.; Batjakas, I.; Bernardi, G.; Crocetta, F.; Doumpas, N.; Kalogirou, S.; Kampouris, T.E.; et al. Citizen-science for monitoring marine invasions and stimulating public engagement: A case project from the eastern Mediterranean. Biol. Invasions 2019, 21, 3707–3721. [Google Scholar] [CrossRef]
- Azzurro, E.; Sbragagli, V.; Cerri, J.; Bariche, M.; Bolognini, L.; Ben Souissi, J.; Berraho, A.; Bianchi, C.N.; Castriota, L.; Cioffi, M.; et al. Climate Change, Biological Invasions, and the Shifting Distribution of Mediterranean Fishes: A Large-Scale Census Based on Local Ecological Knowledge. Glob. Change Biol. 2019, 25, 2779–2792. [Google Scholar] [CrossRef]
- Langer, M.R.; Weinmann, A.E.; Lötters, S.; Rödder, D. “Strangers” in paradise: Modelling the biogeographic range expansion of the foraminifera Amphistegina in the Mediterranean Sea. J. Foraminifer. Res. 2012, 42, 234–244. [Google Scholar] [CrossRef]
- Guastella, R.; Marchini, A.; Caruso, A.; Cosentino, C.; Evans, J.; Weinmann, A.; Langer, M.; Mancin, N. Hidden invaders conquer the Sicily Channel and knock on the door of the Western Mediterranean Sea. Estuar. Coast. Shelf Sci. 2019, 225, 106234. [Google Scholar] [CrossRef]
- Perzia, P.; Cillari, T.; Crociata, G.; Deidun, A.; Falautano, M.; Franzitta, G.; Galdies, J.; Maggio, T.; Vivona, P.; Castriota, L. Using Local Ecological Knowledge to Search for Non-Native Species in Natura 2000 Sites in the Central Mediterranean Sea: An Approach to Identify New Arrivals and Hotspot Areas. Biology 2023, 12, 1158. [Google Scholar] [CrossRef]
- Larsen, A.R. Studies of Recent Amphistegina, Taxonomy and Some Ecological Aspects. Israel J. Earth Sci. 1976, 25, 1–26. [Google Scholar]
- Uchio, T. Influence of the River Shinano on Foraminifera and Sediment Grain Size Distribution. Publ. Seto Mar. Biol. Lab. 1962, 10, 363–392. Available online: https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/175306/1/fia0102_363.pdf (accessed on 12 January 2025). [CrossRef]
- Caruso, A.; Cosentino, C. The First Colonization of the Genus Amphistegina and Other Exotic Benthic Foraminifera of the Pelagian Islands and South-Eastern Sicily (Central Mediterranean Sea). Mar. Micropaleontol. 2014, 111, 38–52. [Google Scholar] [CrossRef]
- Mouanga, G.H.; Langer, M.R. At the Front of Expanding Ranges: Shifting Community Structures at Amphisteginid Species Range Margins in the Mediterranean Sea. Neues Jahrb. Geol. Paläontol. Abh. 2014, 271, 141–150. [Google Scholar] [CrossRef]
- Bouchet, V.M.P.; Pavard, J.-C.; Holzmann, M.; McGann, M.; Armynot du Châtelet, E.; Courleux, A.; Pezy, J.-P.; Dauvin, J.-C.; Seuront, L. The Invasive Asian Benthic Foraminifera Trochammina hadai Uchio, 1962: Identification of a New Local in Normandy (France) and a Discussion on Its Putative Introduction Pathways. Aquat. Invasions 2023, 18, 23–38. [Google Scholar] [CrossRef]
- Guastella, R.; Evans, J.; Mancin, N.; Caruso, A.; Marchini, A. Assessing the Effect of Amphistegina lobifera Invasion on Infralittoral Benthic Foraminiferal Assemblages in the Sicily Channel (Central Mediterranean). Mar. Environ. Res. 2023, 192, 106247. [Google Scholar] [CrossRef]
- Weinmann, A.E.; Koukousioura, O.; Triantaphyllou, M.V.; Langer, M.R. Invasive Shallow-Water Foraminifera Impacts Local Biodiversity Mostly at Densities Above 20%: The Case of Corfu Island. Web Ecol. 2023, 23, 71–86. [Google Scholar] [CrossRef]
- Cosentino, C.; Guastella, R.; Mancin, N.; Caruso, A. Spatial and Vertical Distribution of the Genus Amphistegina and Its Relationship with the Indigenous Benthic Foraminiferal Assemblages in the Pelagian Archipelago (Central Mediterranean Sea). Mar. Micropaleontol. 2024, 188, 102344. [Google Scholar] [CrossRef]
- Rocha, L.A.; Aleixo, A.; Allen, G.; Almeda, F.; Baldwin, C.C.; Barclay, M.V.; Bates, J.M.; Bauer, A.M.; Benzoni, F.; Berns, C.M.; et al. Specimen Collection: An Essential Tool. Science 2014, 344, 814–815. [Google Scholar] [CrossRef] [PubMed]
- Encarnação, J.; Teodósio, M.A.; Morais, P. Citizen Science and Biological Invasions: A Review. Front. Environ. Sci. 2021, 8, 602980. [Google Scholar] [CrossRef]
- Grindell, D.S.; Collen, J.D. Virgulinella fragilis n. sp. (Foraminiferida) from Wellington Harbour, New Zealand. Rev. Esp. Micropaleontol. 1976, 8, 273–278. [Google Scholar] [CrossRef]
- Capotondi, L.; Mancin, N.; Cesari, V.; Dinelli, E.; Ravaioli, M.; Riminucci, F. Recent Agglutinated Foraminifera from the North Adriatic Sea: What the Agglutinated Tests Can Tell. Mar. Micropaleontol. 2019, 147, 25–42. [Google Scholar] [CrossRef]
- Pugnetti, A.; Bastianini, M.; Cataletto, B.; Grilli, F.; Ravaioli, M.; Bernardi Aubry, F.; Acri, F.; Camatti, E.; Pansera, M.; Finotto, S.; et al. IT12-M Alto Adriatico. In La Rete Italiana per la Ricerca Ecologica di Lungo Termine. Lo Studio della Biodiversità e dei Cambiamenti; Capotondi, L., Ravaioli, M., Acosta, A., Chiarini, F., Lami, A., Stanisci, A., Tarozzi, L., Mazzocchi, M.G., Eds.; Zenodo: Geneve, Switzerland, 2021; pp. 399–438. [Google Scholar] [CrossRef]
- Tesi, T.; Miserocchi, S.; Goñi, M.A.; Turchetto, M.; Langone, L.; De Lazzari, A.; Albertazzi, S.; Correggiari, A. Influence of Distributary Channels on Sediment and Organic Matter Supply in Event-Dominated Coastal Margins: The Po Prodelta as a Study Case. Biogeosciences 2011, 8, 365–385. [Google Scholar] [CrossRef]
- Riminucci, F.; Funari, V.; Ravaioli, M.; Capotondi, L. Trace Metals Accumulation on Modern Sediments from Po River Prodelta, North Adriatic Sea. Mar. Pollut. Bull. 2022, 175, 113399. [Google Scholar] [CrossRef]
- Bernhard, J.M. Potential Symbionts in Bathyal Foraminifera. Mar. Micropaleontol. 2003, 49, 861. [Google Scholar] [CrossRef]
- Takata, H.; Seto, K.; Sakai, S.; Tanaka, S.; Takayasu, K. Correlation of Virgulinella fragilis Grindell & Collen (Benthic Foraminiferid) with Near-Anoxia in Aso-kai Lagoon, Central Japan. J. Micropalaeontol. 2005, 24, 159–167. [Google Scholar] [CrossRef]
- Erbacher, J.; Nelskamp, S. Comparison of Benthic Foraminifera Inside and Outside a Sulphur-Oxidizing Bacterial Mat from the Present Oxygen-Minimum Zone off Pakistan (NE Arabian Sea). Geophys. Res. Abst. 2006, 8, 03964. [Google Scholar] [CrossRef]
- Glock, N. Benthic Foraminifera and Gromiids from Oxygen-Depleted Environments–Survival Strategies, Biogeochemistry, and Trophic Interactions. Biogeosciences 2023, 20, 3423–3447. [Google Scholar] [CrossRef]
- Tsuchiya, M.; Toyofuku, T.; Uematsu, K.; Brüchert, V.; Collen, J.; Yamamoto, H.; Kitazato, H. Cytologic and Genetic Characteristics of Endobiotic Bacteria and Kleptoplasts of Virgulinella fragilis (Foraminifera). J. Eukaryot. Microbiol. 2015, 62, 454–469. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, M.; Grimm, G.W.; Heinz, P.; Stögerer, K.; Ertan, K.T.; Collen, J.; Brüchert, V.; Hemleben, C.; Hemleben, V.; Kitazato, H. Ribosomal DNA Shows Extremely Low Genetic Divergence in a World-Wide Distributed, but Disjunct and Highly Adapted Marine Protozoan (Virgulinella fragilis, Foraminiferida). Mar. Micropaleontol. 2009, 70, 8–19. [Google Scholar] [CrossRef]
- Artegiani, A.; Paschini, E.; Russo, A.; Bregant, D.; Raicich, F.; Pinardi, N. The Adriatic Sea General Circulation. Part I: Air–Sea Interactions and Water Mass Structure. J. Phys. Oceanogr. 1997, 27, 1492–1514. [Google Scholar] [CrossRef]
- Poulain, P.M.; Kourafalou, V.H.; Cushman-Roisin, B. Northern Adriatic Sea. In Physical Oceanography of the Adriatic Sea; Cushman-Roisin, B., Gačić, M., Poulain, P.M., Artegiani, A., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 143–165. [Google Scholar] [CrossRef]
- Grilli, F.; Accoroni, S.; Acri, F.; Bernardi Aubry, F.; Bergami, C.; Cabrini, M.; Campanelli, A.; Giani, M.; Guicciardi, S.; Marini, M.; et al. Seasonal and Interannual Trends of Oceanographic Parameters over 40 Years in the Northern Adriatic Sea in Relation to Nutrient Loadings Using the EMODnet Chemistry Data Portal. Water 2020, 12, 2280. [Google Scholar] [CrossRef]
- Trincardi, F.; Cattaneo, A.; Asioli, A.; Correggiari, A.; Langone, L. Stratigraphy of the Late-Quaternary Deposits in the Central Adriatic Basin and the Record of Short-Term Climatic Events. Mem.-Ist. Ital. Di Idrobiologia 1996, 55, 39–70. [Google Scholar]
- Cattaneo, A.; Correggiari, A.; Langone, L.; Trincardi, F. The Late-Holocene Gargano Subaqueous Delta, Adriatic Shelf: Sediment Pathways and Supply Fluctuations. Mar. Geol. 2003, 193, 61–91. [Google Scholar] [CrossRef]
- Storms, J.E.A.; Weltje, J.; Terra, G.J.; Cattaneo, A.; Trincardi, F. Coastal Dynamics under Conditions of Rapid Sea-Level Rise: Late Pleistocene to Early Holocene Evolution of Barrier–Lagoon Systems on the Northern Adriatic Shelf (Italy). Quat. Sci. Rev. 2008, 27, 1107–1123. [Google Scholar] [CrossRef]
- Lipizer, M.; Partescano, E.; Rabitti, A.; Giorgetti, A.; Crise, A. Qualified Temperature, Salinity and Dissolved Oxygen Climatologies in a Changing Adriatic Sea. Ocean Sci. 2014, 10, 771–797. [Google Scholar] [CrossRef]
- Wang, X.H.; Pinardi, N. Modeling the Dynamics of Sediment Transport and Resuspension in the Northern Adriatic Sea. J. Geophys. Res. Space Phys. 2002, 107, 3225. [Google Scholar] [CrossRef]
- Davolio, S.; Stocchi, P.; Benetazzo, A.; Böhm, E.; Riminucci, F.; Ravaioli, M.; Li, X.-M.; Carniel, S. Exceptional Bora Outbreak in Winter 2012: Validation and Analysis of High-Resolution Atmospheric Model Simulations in the Northern Adriatic Area. Dyn. Atmos. Ocean. 2015, 71, 1–20. [Google Scholar] [CrossRef]
- Vilibić, I.; Zemunik, P.; Šepić, J.; Dunić, N.; Marzouk, O.; Mihanović, H.; Denamiel, C.; Precali, R.; Djakovac, T. Present Climate Trends and Variability in Thermohaline Properties of the Northern Adriatic Shelf. Ocean Sci. 2019, 15, 1351–1362. [Google Scholar] [CrossRef]
- Kourafalou, V.H. Process Studies on the Po River Plume, North Adriatic Sea. J. Geophys. Res. 1999, 104, 29963–29985. [Google Scholar] [CrossRef]
- Struglia, M.V.; Mariotti, A.; Filograsso, A. River Discharge into the Mediterranean Sea: Climatology and Aspects of the Observed Variability. J. Clim. 2004, 17, 4740–4751. [Google Scholar] [CrossRef]
- Ludwig, W.; Dumont, E.; Meybeck, M.; Heussner, S. River Discharges of Water and Nutrients to the Mediterranean and Black Sea: Major Drivers for Ecosystem Changes During Past and Future Decades? Prog. Oceanogr. 2009, 80, 199–217. [Google Scholar] [CrossRef]
- Danovaro, R.; Boero, F. Italian Seas. In World Seas: An Environmental Evaluation, 2nd ed.; Sheppard, C., Ed.; Academic Press: London, UK, 2019; Volume 1, pp. 125–160. [Google Scholar]
- Aragão, L.; Mentaschi, L.; Pinardi, N.; Verri, G.; Senatore, A.; Di Sabatino, S. The Freshwater Discharge into the Adriatic Sea Revisited. Front. Clim. 2024, 6, 1368456. [Google Scholar] [CrossRef]
- Cozzi, S.; Giani, M. River water and nutrient discharges in the Northern Adriatic Sea: Current importance and long term changes. Cont. Shelf Res. 2011, 31, 1881–1893. [Google Scholar] [CrossRef]
- Montanari, A. Hydrology of the Po River: Looking for Changing Patterns in River Discharge. Hydrol. Earth Syst. Sci. 2012, 16, 3739–3747. [Google Scholar] [CrossRef]
- Marini, M.; Grilli, F. The Role of Nitrogen and Phosphorus in Eutrophication of the Northern Adriatic Sea: History and Future Scenarios. Appl. Sci. 2023, 13, 9267. [Google Scholar] [CrossRef]
- Coppola, E.; Verdecchia, M.; Giorgi, F.; Colaiuda, V.; Tomassetti, B.; Lombardi, A. Changing Hydrological Conditions in the Po Basin under Global Warming. Sci. Total Environ. 2014, 493, 1183–1196. [Google Scholar] [CrossRef] [PubMed]
- Vezzoli, R.; Mercogliano, P.; Pecora, S.; Zollo, A.; Cacciamani, C. Hydrological Simulation of Po River (North Italy) Discharge under Climate Change Scenarios Using the RCM COSMO-CLM. Sci. Total Environ. 2015, 521–522, 346–358. [Google Scholar] [CrossRef]
- Nelson, C.A. Hydrography, Sediment Dispersal, and Recent Historical Development of the Po River Delta, Italy. In Deltaic Sedimentation, Modern and Ancient; Morgan, J.P., Ed.; Society of Economic Paleontologists and Mineralogists Special Publication 15; SEPM: Tulsa, OK, USA, 1970; pp. 52–184. [Google Scholar] [CrossRef]
- Frignani, M.; Langone, L.; Ravaioli, M.; Sorgente, D.; Alvisi, F.; Albertazzi, S. Fine Sediment Mass Balance in the Western Adriatic Continental Shelf over a Century Time Scale. Mar. Geol. 2005, 222–223, 113–133. [Google Scholar] [CrossRef]
- Brambati, A.; Ciabatti, M.; Fanzutti, G.P.; Marabini, F.; Marocco, R. A New Sedimentological Textural Map of the Northern and Central Adriatic Sea. Boll. Oceanogr. Teor. Appl. 1983, I, 267–271. [Google Scholar]
- Pellegrini, C.; Tesi, T.; Schieber, J.; Bohacs, K.M.; Rovere, M.; Asioli, A.; Nogarotto, A.; Trincardi, F. Fate of terrigenous organic carbon in muddy clinothems on continental shelves revealed by stratal geometries: Insight from the Adriatic sedimentary archive. Glob. Planet. Change 2021, 203, 103539. [Google Scholar] [CrossRef]
- Boldrin, A.; Langone, L.; Miserocchi, S.; Turchetto, M.; Acri, F. Po River plume on the Adriatic continental shelf: Dispersion and sedimentation of dissolved and suspended matter during different river discharge rates. Mar. Geol. 2005, 222, 135e158. [Google Scholar] [CrossRef]
- Van der Zwaan, G.J.; Jorissen, F.J. Biofacial Patterns in River-Induced Shelf Anoxia. In Modern and Ancient Continental Shelf Anoxia; Tyson, R.V., Pearson, T.H., Eds.; Geological Society Special Publication 58; Geological Society: London, UK, 1991; pp. 65–82. [Google Scholar] [CrossRef]
- Alvisi, F.; Giani, M.; Ravaioli, M.; Giordano, P. Role of sedimentary environment in the development of hypoxia and anoxia in the NW Adriatic shelf (Italy). Estuar. Coast. Shelf Sci. 2013, 128, 9–21. [Google Scholar] [CrossRef]
- Albertazzi, S.; Bopp, R.F.; Frignani, M.; Merlin, O.H.; Vitturi, L.M.; Ravaioli, M.; Simpson, H.J.; Tassi Pelati, L.; Triulzi, C. Cs-137 as a Tracer for Processes of Marine Sedimentation in the Vicinity of the Po River Delta (Northern Adriatic Sea). Mem. Soc. Geol. Italy 1984, 27, 447–459. [Google Scholar]
- Amorosi, A.; Sammartino, I.; Dinelli, E.; Campo, B.; Guercia, T.; Trincardi, F.; Pellegrini, C. Provenance and sediment dispersal in the Po-Adriatic source-to-sink system unraveled by bulk-sediment geochemistry and its linkage to catchment geology. Earth-Sci. Rev. 2022, 234, 104202. [Google Scholar] [CrossRef]
- Tesi, T.; Langone, L.; Giani, M.; Ravaioli, M.; Miserocchi, S. Source, Diagenesis, and Fluxes of Particulate Organic Carbon along the Western Adriatic Sea (Mediterranean Sea). Mar. Geol. 2013, 337, 156–170. [Google Scholar] [CrossRef]
- Barra, E.; Riminucci, F.; Dinelli, E.; Albertazzi, S.; Giordano, P.; Ravaioli, M.; Capotondi, L. Natural Versus Anthropic Influence on the North Adriatic Coast Detected by Geochemical Analyses. Appl. Sci. 2020, 10, 6595. [Google Scholar] [CrossRef]
- Furlan, E.; Torresan, S.; Critto, A.; Lovato, T.; Solidoro, C.; Lazzari, P.; Marcomini, A. Cumulative Impact Index for the Adriatic Sea: Accounting for interactions among climate and anthropogenic pressures. Sci. Total Environ. 2019, 670, 379–397. [Google Scholar] [CrossRef] [PubMed]
- Barbanti, A.; Sarretta, A.; Venier, C.; Depellegrin, D.; Bellacicco, S.; Farella, G.; Menegon, S.; Lorito, S.; Ghezzo, M.; Grati, F.; et al. Fra la Terra e il Mare: Analisi e Proposte per la Pianificazione dello Spazio Marittimo in Emilia-Romagna; Barbanti, A., Perini, L., Eds.; Zenodo: Geneve, Switzerland, 2018; ISBN 978-88-941335-0-9. [Google Scholar] [CrossRef]
- Giani, M.; Djakovac, T.; Degobbis, D.; Cozzi, S.; Solidoro, C.; Umani, S.F. Recent changes in the marine ecosystems of the northern Adriatic Sea. Estuar. Coast. Shelf Sci. 2012, 115, 1–13. [Google Scholar] [CrossRef]
- Gallina, V.; Torresan, S.; Zabeo, A.; Critto, A.; Glade, T.; Marcomini, A. A Multi-Risk Methodology for the Assessment of Climate Change Impacts in Coastal Zones. Sustainability 2020, 12, 3697. [Google Scholar] [CrossRef]
- Marchini, A.; Ferrario, J.; Sfriso, A.; Occhipinti-Ambrogi, A. Current status and trends of biological invasions in the Lagoon of Venice, a hotspot of marine NIS introductions in the Mediterranean Sea. Biol. Invasions 2015, 17, 2943–2962. [Google Scholar] [CrossRef]
- Slišković, M.; Piria, M.; Nerlović, V.; Ivelja, K.P.; Gavrilović, A.; Mrčelić, G.J. Non-indigenous species likely introduced by shipping into the Adriatic Sea. Mar. Policy 2021, 129, 104516. [Google Scholar] [CrossRef]
- Russo, E.; Monti, M.A.; Mangano, M.C.; Raffaetà, A.; Sarà, G.; Silvestri, C.; Pranovi, F. Temporal and spatial patterns of trawl fishing activities in the Adriatic Sea (Central Mediterranean Sea, GSA17). Ocean. Coast. Manag. 2020, 192, 105231. [Google Scholar] [CrossRef]
- Petranich, E.; Covelli, S.; Acquavita, A.; De Vittor, C.; Faganeli, J.; Contin, M. Benthic nutrient cycling at the sediment-water interface in a lagoon fish farming system (northern Adriatic Sea, Italy). Sci. Total Environ. 2018, 644, 137–149. [Google Scholar] [CrossRef]
- Giani, M.; Boldrin, A.; Matteucci, G.; Frascari, F.; Gismondi, M.; Rabitti, S. Downward Fluxes of Particulate Carbon, Nitrogen, and Phosphorus in the North-Western Adriatic Sea. Sci. Total Environ. 2001, 266, 125–134. [Google Scholar] [CrossRef]
- Frascari, F.; Spagnoli, F.; Marcaccio, M.; Giordano, P. Anomalous Po River Flood Event Effects on Sediments and the Water Column of the Northwestern Adriatic Sea. Clim. Res. 2006, 31, 151–165. [Google Scholar] [CrossRef]
- Guarnieri, A.; Pinardi, N.; Oddo, P.; Bortoluzzi, G.; Ravaioli, M. Impact of Tides in a Baroclinic Circulation Model of the Adriatic Sea. J. Geophys. Res. Ocean. 2013, 118, 166–183. [Google Scholar] [CrossRef]
- Braga, F.; Zaggia, L.; Bellafiore, D.; Bresciani, M.; Giardino, C.; Lorenzetti, G.; Maicu, F.; Manzo, C.; Riminucci, F.; Ravaioli, M.; et al. Mapping Turbidity Patterns in the Po River Prodelta Using Multi-Temporal Landsat 8 Imagery. Estuar. Coast. Shelf Sci. 2017, 198, 555–567. [Google Scholar] [CrossRef]
- Frascari, F.; Frignani, M.; Giordani, P.; Guerzoni, S.; Ravaioli, M. Sedimentological and Geochemical Behavior of Heavy Metals in the Area Near the Po River Delta. Mem. Soc. Geol. Italy 1984, 27, 469–481. [Google Scholar]
- Frignani, M.; Langone, L. Accumulation Rates and 137Cs Distribution in Sediments off the Po River Delta and the Emilia-Romagna Coast (Northwestern Adriatic Sea, Italy). Cont. Shelf Res. 1991, 11, 525–542. [Google Scholar] [CrossRef]
- Matteucci, G.; Frascari, F. Fluxes of Suspended Materials in the North Adriatic Sea (Po Prodelta Area). Water Air Soil Pollut. 1997, 99, 557–572. [Google Scholar] [CrossRef]
- Ianni, C.; Magi, E.; Rivaro, P.; Ruggieri, N. Trace Metals in Adriatic Coastal Sediments: Distribution and Speciation Pattern. Toxic. Environ. Chem. 2000, 78, 73–92. [Google Scholar] [CrossRef]
- Alvisi, F. A Simplified Approach to Evaluate Sedimentary Organic Matter Fluxes and Accumulation on the NW Adriatic Shelf (Italy). Chem. Ecol. 2009, 25, 119–134. [Google Scholar] [CrossRef]
- Spagnoli, F.; Dinelli, E.; Giordano, P.; Marcaccio, M.; Zaffagnini, F.; Frascari, F. Sedimentological, Biogeochemical and Mineralogical Facies of Northern and Central Western Adriatic Sea. J. Mar. Syst. 2014, 139, 183–203. [Google Scholar] [CrossRef]
- Alvisi, F.; Cibic, T.; Fazi, S.; Bongiorni, L.; Relitti, F.; Del Negro, P. Role of Depositional Dynamics and Riverine Input in Shaping Microbial Benthic Community Structure of Po Prodelta System (NW Adriatic, Italy). Estuar. Coast. Shelf Sci. 2019, 227, 106305. [Google Scholar] [CrossRef]
- D’Onofrio, R.; Capotondi, L. North Adriatic Foraminifera Collection (NAdFC). Version 1.2. Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine di Venezia. Occurrence Dataset. Available online: https://cloud.gbif.org/eca/resource?r=nadfc_foraminifera&v=1.2 (accessed on 7 January 2025).
- Böhm, E.; Riminucci, F.; Bortoluzzi, G.; Colella, S.; Acri, F.; Santoleri, R.; Ravaioli, M. Operational Use of Continuous Surface Fluorescence Measurements Offshore Rimini to Validate Satellite-Derived Chlorophyll Observations. J. Oper. Oceanogr. 2016, 9 (Suppl. 1), S167–S175. [Google Scholar] [CrossRef]
- Ravaioli, M.; Bergami, C.; Riminucci, F.; Langone, L.; Cardin, V.; Di Sarra, A.; Aracri, A.; Bastianini, M.; Bensi, M.; Bergamasco, A.; et al. The RITMARE Italian Fixed-Point Observatory Network (IFON) for Marine Environmental Monitoring: A Case Study. J. Oper. Oceanogr. 2016, 9 (Suppl. 1), S202–S214. [Google Scholar] [CrossRef]
- Sherwood, C.R.; Carniel, S.; Cavaleri, L.; Chiggiato, J.; Himangshu, D.; Doyle, J.; Harris, C.; Niedoroda, A.; Pullen, J.; Reed, C.; et al. Sediment Dynamics in the Adriatic Sea Investigated with Coupled Models. Oceanography 2004, 1, 46–57. [Google Scholar] [CrossRef]
- Harris, C.K.; Sherwood, C.R.; Signell, R.P.; Bever, A.J.; Warner, J.C. Sediment Dispersal in the Northwestern Adriatic Sea. J. Geophys. Res. Oceans 2008, 113, C11S03. [Google Scholar] [CrossRef]
- Boldrin, A.; Carniel, S.; Giani, M.; Marini, M.; Bernardi Aubry, F.; Campanelli, A.; Grilli, F.; Russo, A. Effects of Bora Wind on Physical and Biogeochemical Properties of Stratified Waters in the Northern Adriatic. J. Geophys. Res. Atmos. 2009, 114, C08S92. [Google Scholar] [CrossRef]
- Foglini, F.; Bosman, A.; Correggiari, A.; Remia, A.; Madricardo, F.; Prampolini, M.; Fontolan, G.; Biscotti, E.; Ferrero, S.; Pizzeghello, N.; et al. Carta Batimorfologica dell’Adriatico Settentrionale; Zenodo: Geneve, Switzerland, 2020. [Google Scholar] [CrossRef]
- Bastianini, M.; Riminucci, F.; Capondi, L.; Barra, E.; Pasqual, S.; Casotti, R.; Trano, A.C.; Van Dijk, M.; Mauro, C.; Fabbro, C. Rapporto sulle attività oceanografiche, biologiche, geologiche e di manutenzione della stazione meda S1-GB svolte durante la campagna oceanografica LTER-ANOC16 (26-30 aprile 2016) con N/O Dallaporta nel Mare Adriatico settentrionale. Rapporto Tecnico CNR-ISMAR Bologna 2017, 145, 1–27. [Google Scholar] [CrossRef]
- Bastianini, M.; Riminucci, F.; Pansera, M.; Coluccelli, A.; Casotti, R.; Dal Passo, E.; Dametto, L.; Van Dijk, M.; Russo, E.; Titocci, J.; et al. Rapporto sulle attività biologiche, oceanografiche, geologiche e di manutenzione della stazione Boa E1 svolte durante la campagna INTERNOS17 (14-21 marzo 2017) con N/O Minerva Uno nel Mare Adriatico centro-settentrionale. Rapporto Tecnico CNR-ISMAR Bologna 2017, 146, 1–37. [Google Scholar] [CrossRef]
- Bastianini, M.; Riminucci, F.; Bernardi Aubry, F.; Casotti, R.; Coluccelli, A.; Trano, A.C.; Epinoux, A.; Donnarumma, V. Rapporto sulle attività biologiche, oceanografiche, geologiche svolte durante la campagna INTERNOS19 (20-28 Febbraio 2019) con N/O Dallaporta nel mare Adriatico centro-settentrionale. Rapporto Tecnico CNR-ISMAR 2019, 2, 1–35. Available online: http://www.ismar.cnr.it/prodotti/rapporti-tecnici (accessed on 7 January 2025).
- Schröder, C.J.; Scott, D.B.; Medioli, F.S.; Bernstein, B.B.; Hessler, R.R. Larger Agglutinated Foraminifera: Comparison of Assemblages from Central North Pacific and Western North Atlantic (Nares Abyssal Plain). J. Foraminifer. Res. 1988, 18, 25–41. [Google Scholar] [CrossRef]
- Duchemin, G.; Fontanier, C.; Jorissen, F.J.; Barras, C.; Griveaud, C. Living Small-Sized (63–150 μm) Foraminifera from Mid-Shelf to Mid-Slope Environments in the Bay of Biscay. J. Foraminifer. Res. 2007, 37, 12–32. [Google Scholar] [CrossRef]
- Loeblich, A.J.R.; Tappan, H. Foraminiferal Genera and Their Classification, 1–2; Van Nostrand Reinhold Company: New York, NY, USA, 1987; 1182p. [Google Scholar]
- Barmawidjaja, D.M.; Jorissen, F.J.; Puskaric, S.; Van der Zwaan, G.J. Microhabitat Selection by Benthic Foraminifera in the Northern Adriatic Sea. J. Foraminifer. Res. 1992, 22, 297–317. [Google Scholar] [CrossRef]
- Cimerman, F.; Langer, M.R. Mediterranean Foraminifera; Slovenska Akademija Znanosti in Umetnosti: Ljubljana, Slovenia, 1991; Volume 33. [Google Scholar]
- Jorissen, F.J. The Distribution of Benthic Foraminifera in the Adriatic Sea. Mar. Micropaleontol. 1987, 12, 21–48. [Google Scholar] [CrossRef]
- Jorissen, F.J. Benthic Foraminifera from the Adriatic Sea: Principles of Phenotypic Variation; Utrecht Micropaleontology Bulletin 37; University Publisher: Utrecht, The Netherlands, 1988; 174p. [Google Scholar]
- Hayward, B.W.; Cedhagen, T.; Kaminski, M.; Gross, O. World Modern Foraminifera Database. 2011. Available online: http://www.marinespecies.org/foraminifera/index.php (accessed on 7 January 2025).
- Phillips, S.J.; Dudík, M. Modeling of Species Distributions with Maxent: New Extensions and a Comprehensive Evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A Statistical Explanation of MaxEnt for Ecologists. Divers. Distrib. 2010, 17, 43–57. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A. A Practical Guide to MaxEnt for Modeling Species’ Distributions: What It Does, and Why Inputs and Settings Matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Delliou, A.V.; Antoniadou, C.; Chintiroglou, C.C. Diversity of Benthic Foraminifera from Sublittoral Sediments in Thermaikos Gulf (North Aegean Sea) with New Mediterranean Records. In Proceedings of the 43rd CIESM Congress, Palermo, Italy, 14–18 October 2024. [Google Scholar]
- Jorissen, F.; Fouet, M.; Armynot du Châtelet, É.; Barras, C.; Bouchet, V.; Daviray, M.; Francescangeli, F.; Geslin, E.; Le Moigne, D.; Licari, L.; et al. Foraminifères Estuariens de la Façade Atlantique Française: Guide de Détermination; Zenodo: Geneve, Switzerland, 2023. [Google Scholar] [CrossRef]
- Hayward, B.W.; Grenfell, H.R.; Reid, C.M.; Hayward, K.A. Recent New Zealand Shallow-Water Benthic Foraminifera: Taxonomy, Ecologic Distribution, Biogeography, and Use in Paleoenvironmental Assessments; Institute of Geological & Nuclear Sciences Monograph; Institute of Geological & Nuclear Sciences Limited: Lower Hutt, New Zealand, 1999; Volume 21, 264p. [Google Scholar]
- Apthorpe, M. Foraminiferal distribution in the estuarine Gippsland Lakes System, Victoria. Proc. Royal. Soc. Victoria 1980, 91, 207–232. [Google Scholar]
- McCulloch, I. Qualitative Observations on Recent Foraminiferal Tests with Emphasis on the Eastern Pacific; University of Southern California: Los Angeles, CA, USA, 1977. [Google Scholar]
- Cardich, J.; Gutiérrez, D.; Romero, D.; Pérez, A.; Quipúzcoa, L.; Marquina, R.; Rathburn, A. Calcareous benthic foraminifera from the upper central Peruvian margin: Control of the assemblage by pore water redox and sedimentary organic matter. Mar. Ecol. Prog. Ser. 2015, 535, 63–87. [Google Scholar] [CrossRef]
- Altenbach, A.V.; Struck, U.; Graml, M.; Emeis, K. The genus Virgulinella in oxygen deficient, oligotrophic, or polluted sediments. In Proceedings of the Forams 2002 International Symposium on Foraminifera, Perth, Australia, 4–8 February 2002; p. 20. [Google Scholar]
- Ertan, K.T.; Hemleben, V.; Hemleben, C. Molecular evolution of some selected benthic foraminifera as inferred from sequences of the small subunit ribosomal DNA. Mar. Micropaleontol. 2004, 53, 367–388. [Google Scholar] [CrossRef]
- Leiter, C.; Altenbach, A.V. Benthic foraminifera from the diatomaceous mud belt off Namibia: Characteristic species for severe anoxia. Palaeontol. Electron. 2010, 13, 1–19. Available online: http://palaeo-electronica.org/2010_2/188/index.html (accessed on 12 January 2025).
- Bermudez, P.G.; Seiglie, G.A. Estudio sistematico de los foraminiferos del Gulfo Cariaco. Bol. Inst. Oceanogr. Univ. Oriente 1963, 2, 3–194. [Google Scholar]
- Sellier de Civrieux, J.M. Foraminiferos indicadores de comunidades bentonicas recientes en Venezuela. Parte II. Ecologia y distribucion de los foraminiferos mas frecuentes de la plataforma continental en el Parque Nacional Mochima. Bol. Inst. Oceanogr. Univ. Oriente 1977, 8, 1–54. [Google Scholar]
- Bhatia, S.B.; Kumar, S. Recent benthonic foraminifera from the inner shelf area around Anjidiv Island, off Binge, west coast of India. Ecolo. Biol. Marit. Sediments Spec. Publ. 1976, 1, 239–249. [Google Scholar]
- Saravanan, P.; Gupta, A.K.; Zheng, H.; Panigrahi, M.K.; Tiwari, S.K.; Rai, S.K.; Prakasam, M. Response of shallow-sea benthic foraminifera to environmental changes off the coast of Goa, eastern Arabian Sea, during the last ~6100 cal yr BP. Geol. Mag. 2020, 157, 497–505. [Google Scholar] [CrossRef]
- Culver, S.J.; Buzas, M.A. Distribution of recent benthic foraminifera in the Gulf of Mexico. Smithson. Contrib. Mar. Sci. 1981, 1, 1–30. [Google Scholar] [CrossRef]
- Revets, S.A. The nature of Virgulinella Cushman, 1932, and the implications for its classification. J. Foraminifer. Res. 1991, 21, 293–298. [Google Scholar] [CrossRef]
- Salonen, I.S.; Chronopoulou, P.M.; Bird, C.; Reichart, G.J.; Koho, K.A. Enrichment of intracellular sulphur cycle–associated bacteria in intertidal benthic foraminifera revealed by 16S and aprA gene analysis. Sci. Rep. 2019, 9, 11692. [Google Scholar] [CrossRef]
- Dukan, N.; Cornelis, I.; Brosens, D.; Derycke, S. Vertical and Horizontal Environmental DNA (eDNA) Patterns of Fish in a Shallow and Well-Mixed North Sea Area. Version 1.7. Flanders Research Institute for Agriculture, Fisheries and Food (ILVO). Occurrence Dataset. Available online: https://ipt.inbo.be/resource?r=ilvo-metabarcoding-1&v=1.7 (accessed on 2 March 2025).
- Pavard Richirt, J.; Bouchet, V.M.P.; Holzmann, M.; Mcgann, M.; Du Châtelet, E.A.; Pezy, J.P.; Dauvin, J.C.; Seuront, L. Unexpected high records of non-indigenous foraminiferal species in the eastern English Channel. In Proceedings of the FORAMS 2023, Perugia, Italy, 26–30 June 2023. [Google Scholar]
- Fontanier, C.; Dissard, D.; Ruffine, L.; Mamo, B.; Ponzevera, E.; Pelleter, E.; Savignac, F. Living (stained) deep-sea foraminifera from the Sea of Marmara: A preliminary study. Deep Sea Res. Part II Topical Stud. Oceanogr. 2018, 153, 61–78. [Google Scholar] [CrossRef]
- Albano, P.G.; Sabbatini, A.; Lattanzio, J.; Päßler, J.F.; Steger, J.; Hua, Q.; Kaufman, D.S.; Szidat, S.; Zuschin, M.; Negri, A. Alleged Lessepsian foraminifera prove native and suggest Pleistocene range expansions into the Mediterranean Sea. Mar. Ecol. Prog. Ser. 2022, 700, 65–78. [Google Scholar] [CrossRef]
- Reuss, A.E. Beiträge zur Kenntniss der tertiären Foraminiferen-Fauna. I. Die Foraminiferen des Crag’s von Antwerpen. II. Die Foraminiferen von Dingden in Westphalen. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Math.-Naturwissenschaftliche Cl. 1861, 42, 355–370. Available online: https://www.biodiversitylibrary.org/part/231231#/summary (accessed on 15 March 2025).
- Todd, R.; Brönnimann, P. Recent foraminifera and thecamoebina from the eastern Gulf of Paria. Cushman Found. Foraminifer. Res. (Spec. Publ.) 1957, 3, 1–43. [Google Scholar]
- Loeblich, A.R., Jr.; Tappan, H. Sarcodina (chiefly “Thecamoebians” and Foraminiferida). In Treatise on Invertebrate Paleontology-(c) Protista 2 (2); Moore, R.C., Ed.; Geological Society of America and University Press of Kansas: Lawrence, KS, USA, 1964. [Google Scholar]
- Haman, D. Comments on the genus Virgulinella Cushman, 1932 (Foraminiferida). Tulane Stud. Geol. Paleontol. 1977, 13, 140–142. [Google Scholar]
- Stolyarov, A.S. Upper Oligocene Virgulinella Bed of the Ciscaucasus, Volga–Don, and Mangyshlak Regions (Central Part of the Eastern Paratethys). Lithol. Miner. Resour. 2001, 36, 141–155. [Google Scholar] [CrossRef]
- Amorosi, A.; Barbieri, G.; Bruno, L.; Campo, B.; Drexler, T.M.; Hong, W.; Rossi, V.; Sammartino, I.; Scarponi, D.; Vaiani, S.C.; et al. Three-fold nature of coastal progradation during the Holocene eustatic highstand, Po Plain, Italy–close correspondence of stratal character with distribution patterns. Sedimentology 2019, 66, 3029–3052. [Google Scholar] [CrossRef]
- Langer, M.R.; Hottinger, L. Biogeography of selected “larger” foraminifera. Micropaleontology 2000, 46, 105–126. Available online: https://www.jstor.org/stable/1486184 (accessed on 12 January 2025).
- Pawlowski, J.; Lejzerowicz, F.; Esling, P. Next-generation environmental diversity surveys of foraminifera: Preparing the future. Biol. Bull. 2014, 227, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Holzmann, M.; Nguyen, N.L.; Angeles, I.B.; Pawlowski, J. BFR2: A curated ribosomal reference dataset for benthic foraminifera. Sci. Data 2024, 11, 1292. [Google Scholar] [CrossRef]
- Alve, E.; Goldstein, S.T. Propagule transport as a key method of dispersal in benthic foraminifera (Protista). Limnol. Oceanogr. 2003, 48, 2163–2170. [Google Scholar] [CrossRef]
- Alve, E. Colonization of new habitats by benthic foraminifera: A review. Earth Sci. Rev. 1999, 46, 167–185. [Google Scholar] [CrossRef]
- Alve, E.; Goldstein, S.T. Resting stage in benthic foraminiferal propagules: A key feature for dispersal? Evidence from two shallow-water species. J. Micropal. 2002, 21, 95–96. [Google Scholar] [CrossRef]
- Moodley, L.; van der Zwaan, G.J.; Herman, P.M.J.; Kempers, L.; Breugel, P. van. Differential response of benthic meiofauna to anoxia with special reference to Foraminifera (Protista: Sarcodina). Mar. Ecol. Prog. Ser. 1997, 158, 151–163. [Google Scholar] [CrossRef]
- Guy-Haim, T.; Hyams-Kaphzan, O.; Yeruham, E.; Almogi-Labin, A.; Carlton, J.T. A novel marine bioinvasion vector: Ichthyochory, live passage through fish. Limnol. Oceanogr. Lett. 2017, 2, 81–90. [Google Scholar] [CrossRef]
- Servello, G.; Andaloro, F.; Azzurro, E.; Castriota, L.; Catra, M.; Chiarore, A.; Crocetta, F.; D’alessandro, M.; Denitto, F.; Froglia, C.; et al. Marine alien species in Italy: A contribution to the implementation of descriptor D2 of the marine strategy framework directive. Mediterr. Mar. Sci. 2019, 20, 1–48. [Google Scholar] [CrossRef]
- Molnar, J.L.; Gamboa, R.L.; Revenga, C.; Spalding, M.D. Assessing the global threat of invasive species to marine biodiversity. Front. Ecol. Environ. 2008, 6, 485–492. [Google Scholar] [CrossRef]
- Cerrano, C.; Cebrian, D.; Requena Moreno, S.; Bakran-Petricioli, T.; Bastari, A.; Fraschetti, S.; Huete-Stauffer, C.; Ferretti, F.; Micheli, F.; Ponti, M.; et al. Description of the ecology and identification of the areas that may deserve to be protected. United Nations Environment Programme/Mediterranean Action Plan (UNEP/MAP) Regional Activity Centre for Specially Protected Areas (RAC/SPA). 2015. Available online: https://www.unep.org/ (accessed on 12 January 2025).
- Novikov, M.; Pakhomova, S.; Berezina, A.; Yakushev, E. Model-Based Analysis of the Oxygen Budget in the Black Sea Water Column. Water 2024, 16, 2380. [Google Scholar] [CrossRef]
- Capet, A.; Stanev, E.V.; Beckers, J.-M.; Murray, J.W.; Grégoire, M. Decline of the Black Sea oxygen inventory. Biogeosciences 2016, 13, 1287–1306. [Google Scholar] [CrossRef]
- Goulletquer, P.; Bachelet, G.; Sauriau, P.-G.; Noël, P. Open Atlantic coast of Europe—A century of introduced species into French waters. In Invasive Aquatic Species of Europe. Distribution, Impacts and Management; Leppäkoski, E., Gollasch, S., Olenin, S., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2002; pp. 276–290. [Google Scholar] [CrossRef]
- Occhipinti-Ambrogi, A.; Marchini, A.; Cantone, G.; Castelli, A.; Chimenz, C.; Cormaci, M.; Froglia, C.; Furnari, G.; Gambi, M.C.; Giaccone, G.; et al. Alien species along the Italian coasts: An overview. Biol. Invasions 2011, 13, 215–237. [Google Scholar] [CrossRef]
- Zenetos, A.; Çinar, M.E.; Crocetta, F.; Golani, D.; Rosso, A.; Servello, G.; Shenkar, N.; Turon, X.; Verlaque, M. Uncertainties and validation of alien species catalogues: The Mediterranean as an example. Estuar. Coast. Shelf Sci. 2017, 191, 171–187. [Google Scholar] [CrossRef]
- Mosbahi, N.; Pezy, J.-P.; Neifar, L.; Dauvin, J.-C. Ecological status assessment and non-indigenous species in industrial and fishing harbours of the Gulf of Gabès (central Mediterranean Sea). Environ. Sci. Pollut. Res. 2021, 28, 65278–65299. [Google Scholar] [CrossRef]
- UNCTAD/RMT/2019/Corr.1 United Nations Conference on Trade and Development Sales No. E.19.II.D.20 January 2020. Available online: https://unctad.org/system/files/official-document/rmt2019_en.pdf (accessed on 15 March 2025).
- UNCTAD/RMT/2024/Corr.1 United Nations Conference on Trade and Development Sales No. E.24.II.D.24 October 2024. Available online: https://unctad.org/system/files/official-document/rmt2024_en.pdf (accessed on 15 March 2025).
- UNEP/MAP. State of the Mediterranean Marine and Coastal Environment; UNEP/MAP—Barcelona Convention 2012. Available online: www.unepmap.org/unepmap/what-we-do/monitoring-and-assessments (accessed on 7 January 2025).
- Di Blasio, L.; Chiesa, S.; Arcangeli, G.; Donadelli, V.; Marino, G. Alien Species Associated with New Introductions and Translocations of Commercial Bivalves in Italian Marine Waters. Sustainability 2023, 15, 3536. [Google Scholar] [CrossRef]
- Robert, R.; Sánchez, J.L.; Pérez-Parallé, L.; Ponis, E.; Kamermans, P.; O’mahoney, M. A glimpse on the mollusc industry in Europe. Aquac. Eur. 2013, 38, 5–11. [Google Scholar]
- Martínez, J.; García-Ladona, E.; Ballabrera-Poy, J.; Isern-Fontanet, J.; González-Motos, S.; Allegue, J.M.; González-Haro, C. Atlas of surface currents in the Mediterranean and Canary–Iberian–Biscay waters. J. Oper. Oceanogr. 2024, 17, 40–62. [Google Scholar] [CrossRef]
- Rožič, P.Ž.; Vidović, J.; Ćosović, V.; Hlebec, A.; Rožič, B.; Dolenec, M. Multiparametric Approach to Unravelling the Geoenvironmental Conditions in Sediments of Bay of Koper (NE Adriatic Sea): Indicators of Benthic Foraminifera and Geochemistry. Front. Mar. Sci. 2022, 9, 812622. [Google Scholar] [CrossRef]
- Ćosović, V.; Gajski, N.; Ptčiek, A.; Vidović, J.; Kružić, P. The distribution of benthic foraminifera in Cladocora caespitosa coral banks of the Veliko Jezero sediments (Mljet National Park, eastern Adriatic Sea). Neues Jahrb. Geol. Paläontologie-Abh. 2016, 279, 323–340. [Google Scholar] [CrossRef]
- Franzo, A.; Caffau, M.; Nasi, F.; Marrocchino, E.; Paletta, M.G.; Bazzaro, M.; Cibic, T. Benthic foraminifera for the ecological status assessment of tourist marinas. Ecol. Indic. 2023, 147, 110006. [Google Scholar] [CrossRef]
- Rostami, M.A.; Frontalini, F.; Armynot du Châtelet, E.; Francescangeli, F.; Alves Martins, M.V.; De Marco, R.; Dinelli, E.; Tramontana, M.; Dyer, L.A.; Abraham, R.; et al. Understanding the Distributions of Benthic Foraminifera in the Adriatic Sea with Gradient Forest and Structural Equation Models. Appl. Sci. 2023, 13, 794. [Google Scholar] [CrossRef]
- Resig, S.M. Recent foraminifera from a landlocked Hawaiian lake. J. Foraminifer. Res. 1974, 4, 69–76. [Google Scholar] [CrossRef]
- Androulidakis, Y.; Makris, C.; Kombiadou, K.; Krestenitis, Y.; Stefanidou, N.; Antoniadou, C.; Krasakopoulou, E.; Kalatzi, M.-I.; Baltikas, V.; Moustaka-Gouni, M.; et al. Oceanographic Research in the Thermaikos Gulf: A Review over Five Decades. J. Mar. Sci. Eng. 2024, 12, 795. [Google Scholar] [CrossRef]
- Gaglio, M.; Lanzoni, M.; Muresan, A.N.; Schirpke, U.; Castaldelli, G. Quantifying intangible values of wetlands as instrument for conservation in the Po delta park (Italy). J. Environ. Manag. 2024, 360, 121227. [Google Scholar] [CrossRef]
- Brown, C.J.; Mendelsohn, J.M.; Thomson, N.; Boorman, M. Checklist and analysis of the birds of Namibia as at 31 January 2016. Biodivers. Obs. 2017, 8, 1–153. [Google Scholar]
- Davis, F.; Szopa-Comley, A.; Rouse, S.; Caromel, A.; Arnell, A.; Basrur, S.; Bhola, N.; Brooks, H.; Costa-Domingo, G.; Cunningham, C.; et al. State of the World’s Migratory Species; UNEP-WCMC: Cambridge, UK, 2024; Available online: https://www.cms.int/sites/default/files/publication/State%20of%20the%20Worlds%20Migratory%20Species%20report_E.pdf (accessed on 7 January 2025).
- Wearne, K.; Underhill, L.G. Walvis Bay, Namibia: A key wetland for waders and other coastal birds in southern Africa. Wader Study Group Bull. 2005, 107, 24. [Google Scholar]
- Bernhard, J.M. Characteristic assemblages and morphologies of benthic foraminifera from anoxic, organic-rich deposits; Jurassic through Holocene. J. Foraminifer. Res. 1986, 16, 207–215. [Google Scholar] [CrossRef]
- Bernhard, J.M.; Sen Gupta, B.K. Foraminifera of oxygen-depleted environments. In Mod. Foraminifera; Springer: Dordrecht, The Netherlands, 1999; pp. 201–216. [Google Scholar] [CrossRef]
- Bernhard, J.M.; Sen Gupta, B.K.; Borne, P.F. Benthic foraminiferal proxy to estimate dysoxic bottomwater oxygen concentrations; Santa Barbara Basin, U.S. Pacific continental margin. J. Foraminifer. Res. 1997, 27, 301–310. [Google Scholar] [CrossRef]
- Kaiho, K. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology 1994, 22, 719–722. [Google Scholar] [CrossRef]
- Berthold, W.U. Ultrastructure and function of wall perforations in Patellina corrugata, Williamson, foraminifera. J. Foraminifer. Res. 1976, 6, 22–29. [Google Scholar] [CrossRef]
- Glock, N.; Eisenhauer, A.; Milker, Y.; Liebetrau, V.; Schonfeld, J.; Mallon, J.; Sommer, S.; Hensen, C. Environmental influences on the pore density of Bolivina spissa (Cushman). J. Foraminifer. Res. 2011, 41, 22–32. [Google Scholar] [CrossRef]
- Leutenegger, S.; Hansen, H.J. Ultrastructural and radiotracer studies of pore function in foraminifera. Mar. Biol. 1979, 54, 11. [Google Scholar] [CrossRef]
- Pérez-Cruz, L.; Machain Castillo, M.L. Benthic foraminifera of the oxygen minimum zone, continental shelf of the Gulf of Tehuantepec, Mexico. J. Foraminifer. Res. 1990, 20, 312–325. [Google Scholar] [CrossRef]
- Wang, F.; Yang, S.; Zhai, B.; Gong, S.; Wang, J.; Fu, X.; Ning, Z. Pore density of the benthic foraminiferal test responded to the hypoxia off the Changjiang estuary in the East China Sea. Front. Mar. Sci. 2023, 10, 1159614. [Google Scholar] [CrossRef]
- Moodley, L.; Hess, C. Tolerance of infaunal benthic foraminifera for low and high oxygen concentrations. Biol. Bull. 1992, 183, 94–98. [Google Scholar] [CrossRef]
- Johannesson, K.J.; Martin, R.E. The bacteriological survey of Wellington Harbour—II. NZ J. Sci. Technol. B 1955, 37, 224–242. [Google Scholar]
- Johannesson, K.J.; Martin, R.E. The bacteriological survey of Wellington Harbour—III. NZ J. Sci. Technol. B 1955, 37, 445–454. [Google Scholar]
- Murray, J.W. Ecology and Palaeoecology of Benthic Foraminifera; Longman Scientific & Technical: New York, NY, USA, 1991; p. 397. [Google Scholar]
- Alvisi, F.; Cozzi, S. Seasonal dynamics and long-term trend of hypoxia in the coastal zone of Emilia Romagna (NW Adriatic Sea, Italy). Sci. Total Environ. 2016, 541, 1448–1462. [Google Scholar] [CrossRef]
- Giani, M.; Berto, D.; Rampazzo, F.; Savelli, F.; Alvisi, F.; Giordano, P.; Ravaioli, M.; Frascari, F. Origin of sedimentary organic matter in the north-western Adriatic Sea. Estuar. Coast. Shelf Sci. 2009, 84, 573–583. [Google Scholar] [CrossRef]
- Gross, O. Influence of temperature, oxygen and food availability on the migrational activity of bathyal benthic foraminifera: Evidence by microcosm experiments. Hydrobiologia 2000, 426, 123–137. [Google Scholar] [CrossRef]
- Ernst, S.; Duijnstee, I.; Fontanier, C.; Jorissen, F.; van der Zwaan, B. A comparison of foraminiferal infaunal distributions in field and experimental samples from 550-m depth in the Bay of Biscay, Deep Sea Res. Oceanogr. Res. Pap. 2008, 55, 498–518. [Google Scholar] [CrossRef]
- Wollenburg, J.E.; Zittier, Z.M.C.; Bijma, J. Insights into deep-sea life—Cibicidoides pachyderma substrate and pH-dependent behaviour following disturbance. Deep Sea Res. Oceanogr. Res. Pap. 2018, 138, 34–45. [Google Scholar] [CrossRef]
- Jorissen, F.J.; de Stigter, H.C.; Widmark, J.G.V. A conceptual model explaining benthic foraminiferal microhabitats. Mar. Micropaleontol. 1995, 26, 3–15. [Google Scholar] [CrossRef]
- Gooday, A.J.; Rathburn, A.E. Temporal variability in living deep-sea benthic foraminifera: A review. Earth Sci. Rev. 1999, 46, 187–212. [Google Scholar] [CrossRef]
- Fontanier, C.; Jorissen, F.J.; Licari, L.; Alexandre, A.; Anschutz, P.; Carbonel, P. Live benthic foraminiferal faunas from the Bay of Biscay: Faunal density, composition, and microhabitats. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2002, 49, 751–785. [Google Scholar] [CrossRef]
- Hoogakker, B.A.A.; Davis, C.; Wang, Y.; Kusch, S.; Nilsson-Kerr, K.; Hardisty, D.S.; Jacobel, A.; Reyes Macaya, D.; Glock, N.; Ni, S.; et al. Reviews and syntheses: Review of proxies for low-oxygen paleoceanographic reconstructions. Biogeosciences 2025, 22, 863–957. [Google Scholar] [CrossRef]
- Widdel, F. New types of acetate-oxidizing, sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov. Arch. Microbiol. 1987, 148, 286–291. [Google Scholar] [CrossRef]
- Woehle, C.; Roy, A.S.; Glock, N.; Michels, J.; Wein, T.; Weissenbach, J.; Dagan, T. Denitrification in foraminifera has an ancient origin and is complemented by associated bacteria. Proc. Natl. Acad. Sci. USA 2022, 119, e2200198119. [Google Scholar] [CrossRef] [PubMed]
- Malagó, A.; Bouraoui, F.; Grizzetti, B.; De Roo, A. Modelling nutrient fluxes into the Mediterranean Sea. J. Hydrol. Reg. 2019, 22, 100592. [Google Scholar] [CrossRef] [PubMed]
- Goineau, A.; Fontanier, C.; Jorissen, F.J.; Lansard, B.; Buscail, R.; Mouret, A.; Rabouille, C. Live (stained) benthic foraminifera from the Rhône prodelta (Gulf of Lion, NW Mediterranean): Environmental controls on a river-dominated shelf. J. Sea Res. 2011, 65, 58–75. [Google Scholar] [CrossRef]
- Badr-ElDin, A.M.; Charle, C.M.; El-Sabrouti, M.A. Response of benthic foraminifera to coastal protection of the western coast of Alexandria, Egypt. Egypt. J. Aquat. Res. 2019, 45, 1–9. [Google Scholar] [CrossRef]
- Takata, H.; Tanaka, S.; Seto, K.; Sakai, S.; Takayasu, K.; Khim, B.K. Biotic response of benthic foraminifera in Aso-kai lagoon, central Japan, to changes in terrestrial climate and ocean conditions (~AD 700–1600). J. Paleolimnol. 2014, 51, 421–435. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Onofrio, R.; Vitelletti, M.L.; Riminucci, F.; Rossi, V.; Capotondi, L. Virgulinella fragilis in the North Adriatic Coastal Sediments: A New Non-Indigenous Benthic Foraminiferal Taxon? Biology 2025, 14, 421. https://doi.org/10.3390/biology14040421
D’Onofrio R, Vitelletti ML, Riminucci F, Rossi V, Capotondi L. Virgulinella fragilis in the North Adriatic Coastal Sediments: A New Non-Indigenous Benthic Foraminiferal Taxon? Biology. 2025; 14(4):421. https://doi.org/10.3390/biology14040421
Chicago/Turabian StyleD’Onofrio, Roberta, Maria Letizia Vitelletti, Francesco Riminucci, Veronica Rossi, and Lucilla Capotondi. 2025. "Virgulinella fragilis in the North Adriatic Coastal Sediments: A New Non-Indigenous Benthic Foraminiferal Taxon?" Biology 14, no. 4: 421. https://doi.org/10.3390/biology14040421
APA StyleD’Onofrio, R., Vitelletti, M. L., Riminucci, F., Rossi, V., & Capotondi, L. (2025). Virgulinella fragilis in the North Adriatic Coastal Sediments: A New Non-Indigenous Benthic Foraminiferal Taxon? Biology, 14(4), 421. https://doi.org/10.3390/biology14040421