High-Fat Diet and Altered Radiation Response
Simple Summary
Abstract
1. Introduction
2. Radiation Sensitivity
Mechanism of Radiosensitivity
- 1.
- DNA Damage and Repair:DNA damage, particularly double-strand breaks (DSBs), is among the most lethal and mutagenic forms of damage at the core of radiosensitivity. If DSBs are left unrepaired or are improperly repaired, they can lead to genomic instability, apoptosis, or even oncogenesis. The DNA repair system mitigates this damage through two primary pathways:
- NHEJ: An error-prone process active throughout the cell cycle.
- HR: A high-fidelity mechanism restricted to the S and G2 phases.
Mutations in DNA repair genes, including BRCA1, BRCA2, and ATM, contribute significantly to diminished repair capacity, dramatically increasing radiosensitivity. For example, some genes, such as BRCA1 and BRCA2, play key roles in homologous recombination and DNA repair; mutations in them can increase cancer risk [23]. Similarly, defects in ATM, a pivotal regulator of the DNA damage response, have a profound impact on increasing sensitivity to IR, highlighting the severity of the issue [24]. - 2.
- ROS and Oxidative Stress:IR also generates ROS, which damage cellular macromolecules, including DNA, lipids, and proteins, leading to oxidative stress. While antioxidant systems such as glutathione, superoxide dismutase, and catalase work to mitigate ROS, an imbalance favoring oxidative stress exacerbates radiosensitivity, underlining its importance in radiation biology [25].
- 3.
- Epigenetic Modifications:Epigenetics such as DNA methylation modifiers also played a vital role in determining radiosensitivity. These modifications modulate gene expression and impact critical processes such as DNA repair, apoptosis, and oxidative stress handling. Dysregulation of these epigenetic effectors can amplify radiation damage and contribute to cancer progression [19].
- 4.
- Immune System Modulation:The immune system further influences radiosensitivity. IR can modulate the immune microenvironment by recruiting immune cells, such as macrophages and T-cells, that either stimulate tumor growth or mount an anti-tumor response. Chronic IR exposure can lead to sustained inflammation, resulting in tissue damage and creating a microenvironment conducive to carcinogenesis [26].
- 5.
- Radiation Adaptation:Cells exposed to sublethal IR may develop in acquiring a condition termed radiation adaptation, which promotes resistance to a second exposure to IR. This adaptive response is achieved by upregulating DNA repair genes, antioxidant defenses, or other protective mechanisms. Understanding and leveraging this phenomenon could provide opportunities to optimize radiotherapy, minimizing damage to healthy tissues while maintaining therapeutic efficacy [27].
- 6.
- Intrinsic and Extrinsic Modulating Factors:Several intrinsic and extrinsic factors also modulate radiosensitivity. The cell cycle phase plays a critical role, with cells in the G2/M phase being the most radiosensitive due to reduced DNA repair capacity, while cells in the late S phase exhibit greater resistance. Oxygen availability is another major determinant; high oxygen levels amplify the generation of ROS, increasing DNA damage, whereas hypoxia promotes radioresistance by reducing oxidative injury. Furthermore, cell type significantly affects radiosensitivity, with rapidly proliferating cells, such as those in the gastrointestinal tract or bone marrow, being more sensitive due to their limited ability to repair DNA damage before division [28].
- 7.
- Physiological and Lifestyle Factors:Physiological and lifestyle factors can significantly impact one’s radiosensitivity, including age, diet, smoking habits, preexisting illnesses, and health status [29]. For instance, older people or people with underlying conditions such as diabetes may demonstrate increased sensitivity to radiation because of impaired DNA repair systems and decreased antioxidant systems. Diet, particularly HFDs, has also been shown to modulate radiosensitivity. HFDs are associated with increased oxidative stress, chronic inflammation, and metabolic imbalances, all of which can exacerbate radiation-induced damage. Excessive dietary fats can disrupt cellular homeostasis by enhancing ROS production and impair normal DNA repair processes, further sensitizing cells to IR. Most importantly, individual patient factors, including these lifestyle factors, are estimated to explain 81–90% of the variance in tissue damage in breast cancer patients during radiotherapy and thus provide a significant barometer of the need for personalization of treatment accounting for these variables [30].
3. Impact of HFD on Cellular Function
3.1. Effect of HFDs on Metabolic Dysregulation and Inflammation
3.2. Effect of HFDs on Oxidative Stress
3.3. The Impact HFDs on Key Metabolic Regulators
- AMPK: Master Regulator of Cellular Energy Balance and Lipid Metabolism
- 2.
- SREBP-1c: The Lipogenesis Master Regulator and its Role in HFD-Induced Lipid Accumulation
- 3.
- PPARγ: The Dual Role in Lipid Metabolism and Adipogenesis
- 4.
- Metabolic Pathway Effects of HFDs: AMPK, SREBP-1c, and PPARγ Interactions
3.4. Effect of HFDs on DDR: HFD-Induced DNA Damage and DDR Impairment
3.5. Overview of HFD-Induced Metabolic Syndrome and Its Impact on Radiation Response
4. IR and HFDs
4.1. IR-Induced Obesity and Metabolic Dysregulation
4.1.1. Overview
4.1.2. Mechanisms
4.1.3. Summary
4.2. IR-Induced Alleviation of HFD-Induced Metabolic Effects
4.2.1. Overview
4.2.2. Mechanisms
4.2.3. Summary
4.3. Enhancement of IR-Induced Detrimental Effects by HFDs
4.3.1. Overview
4.3.2. Mechanisms
4.3.3. Summary
4.4. A Maternal HFD Modulates the Radiosensitivity of Offspring
4.4.1. Overview
4.4.2. Mechanisms
4.4.3. Summary
4.5. Overall Summary and Conclusions
5. Clinical and Public Health Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reisz, J.A.; Bansal, N.; Qian, J.; Zhao, W.; Furdui, C.M. Effects of ionizing radiation on bio-logical molecules--mechanisms of damage and emerging methods of detection. Antioxid. Redox Signal 2014, 21, 260–292. [Google Scholar] [CrossRef] [PubMed]
- Szumiel, I. Ionizing radiation-induced oxidative stress, epigenetic changes and genomic instability: The pivotal role of mitochondria. Int. J. Radiat. Biol. 2015, 91, 1–12. [Google Scholar] [CrossRef] [PubMed]
- McBride, W.H.; Schaue, D. Radiation-induced tissue damage and response. J. Pathol. 2020, 250, 647–655. [Google Scholar] [CrossRef]
- Guo, J.; Huang, X.; Dou, L.; Yan, M.; Shen, T.; Tang, W.; Li, J. Aging and aging-related diseases: From molecular mechanisms to interventions and treatments. Signal Transduct. Target. Ther. 2022, 7, 391. [Google Scholar] [CrossRef]
- Pollard, J.M.; Gatti, R.A. Clinical radiation sensitivity with DNA repair disorders: An overview. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 1323–1331. [Google Scholar] [CrossRef]
- Rohm, T.V.; Meier, D.T.; Olefsky, J.M.; Donath, M.Y. Inflammation in obesity, diabetes, and related disorders. Immunity 2022, 55, 31–55. [Google Scholar] [CrossRef]
- Telarovic, I.; Wenger, R.H.; Pruschy, M. Interfering with Tumor Hypoxia for Radiotherapy Optimization. J. Exp. Clin. Cancer Res. 2021, 40, 197. [Google Scholar] [CrossRef]
- Czajkowski, D.; Szmyd, R.; Gee, H.E. Impact of DNA damage response defects in cancer cells on response to immunotherapy and radiotherapy. J. Med. Imaging Radiat. Oncol. 2022, 66, 546–559. [Google Scholar] [CrossRef]
- Duan, Y.; Zeng, L.; Zheng, C.; Song, B.; Li, F.; Kong, X.; Xu, K. Inflammatory links between high fat diets and diseases. Front. Immunol. 2018, 9, 2649. [Google Scholar] [CrossRef]
- Stone, T.W.; McPherson, M.; Gail Darlington, L. Obesity and Cancer: Existing and new hypotheses for a causal connection. EBioMedicine 2018, 30, 14–28. [Google Scholar] [CrossRef]
- Włodarczyk, M.; Nowicka, G. Obesity, DNA damage, and development of obesity-related diseases. Int. J. Mol. Sci. 2019, 20, 1146. [Google Scholar] [CrossRef] [PubMed]
- Clifford, B.K.; Amorim, N.M.L.; Kaakoush, N.O.; Boysen, L.; Tedla, N.; Goldstein, D.; Hardeman, E.C.; Simar, D. Irradiation-induced dysbiosis: The compounding effect of high-fat diet on metabolic and immune functions in mice. Int. J. Mol. Sci. 2023, 24, 5631. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Ren, J.; Yuan, T.; Lu, X.; Dong, Y.; Li, W.; Wang, X.; Huo, Q.; Zhang, J.; Li, D.; et al. High-fat diet alters the radiation tolerance of female mice and the modulatory effect of melatonin. Food Funct. 2023, 14, 6636–6653. [Google Scholar] [PubMed]
- Su, Y.H.; Wu, Y.Z.; Ann, D.K.; Chen, J.L.; Kuo, C.Y. Obesity promotes radioresistance through SERPINE1-mediated aggressiveness and DNA repair of triple-negative breast cancer. Cell Death Dis. 2023, 14, 53. [Google Scholar]
- Vick, L.V.; Yoon, D.; Perks, J.R.; Li, J.J.; Murphy, W.J. Tumor resistance to fractionated radiotherapy in obese mice. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, S139. [Google Scholar]
- Habash, M.; Bohorquez, L.C.; Kyriakou, E.; Kron, T.; Martin, O.A.; Blyth, B.J. Clinical and functional assays of radiosensitivity and radiation-induced second cancer. Cancers 2017, 9, 147. [Google Scholar] [CrossRef]
- McDuff, S.G.R.; Bellon, J.R.; Shannon, K.M.; Gadd, M.A.; Dunn, S.; Rosenstein, B.S.; Ho, A.Y. ATM variants in breast cancer: Implications for breast radiation therapy treatment recommendations. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 1373–1382. [Google Scholar]
- Blondeaux, E.; Arecco, L.; Punie, K.; Graffeo, R.; Toss, A.; De Angelis, C.; Trevisan, L.; Buzzatti, G.; Linn, S.C.; Dubsky, P.; et al. Germline TP53 pathogenic variants and breast cancer: A narrative review. Cancer Treat. Rev. 2023, 114, 102522. [Google Scholar]
- Antwih, D.A.; Gabbara, K.M.; Lancaster, W.D.; Ruden, D.M.; Zielske, S.P. Radiation-induced epigenetic DNA methylation modification of radiation-response pathways. Epigenetics 2013, 8, 839–848. [Google Scholar]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar]
- Wojcik, A.; Bouffler, S.; Hauptmann, M.; Rajaraman, P. Considerations on the use of the terms radiosensitivity and radiosusceptibility. J. Radiol. Prot. 2018, 38, N25–N29. [Google Scholar] [CrossRef]
- El-Nachef, L.; Al-Choboq, J.; Restier-Verlet, J.; Granzotto, A.; Berthel, E.; Sonzogni, L.; Ferlazzo, M.L.; Bouchet, A.; Leblond, P.; Combemale, P.; et al. Human radiosensitivity and radiosusceptibility: What are the differences? Int. J. Mol. Sci. 2021, 22, 7158. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; West, S.C. Distinct functions of BRCA1 and BRCA2 in double-strand break repair. Breast Cancer Res. 2002, 4, 9–13. [Google Scholar] [CrossRef]
- Shrivastav, M.; De Haro, L.P.; Nickoloff, J.A. Regulation of DNA double-strand break repair pathway choice. Cell Res. 2008, 18, 134–147. [Google Scholar] [CrossRef]
- Srinivas, U.S.; Tan, B.W.Q.; Vellayappan, B.A.; Jeyasekharan, A.D. ROS and the DNA damage response in cancer. Redox Biol. 2019, 25, 101084. [Google Scholar] [CrossRef]
- Carlos-Reyes, A.; Muñiz-Lino, M.A.; Romero-Garcia, S.; López-Camarillo, C.; Hernández-de la Cruz, O.N. Biological adaptations of tumor cells to radiation therapy. Front. Oncol. 2021, 11, 718636. [Google Scholar] [CrossRef]
- Ahmed, K.M.; Li, J.J. NF-kappa B-mediated adaptive resistance to ionizing radiation. Free Radic. Biol. Med. 2008, 44, 1–13. [Google Scholar] [CrossRef]
- Rosen, E.M.; Fan, S.; Rockwell, S.; Goldberg, I.D. The molecular and cellular basis of radiosensitivity: Implications for understanding how normal tissues and tumors respond to therapeutic radiation. Cancer Investig. 1999, 17, 56–72. [Google Scholar] [CrossRef]
- Kišonas, J.; Venius, J.; Sevriukova, O.; Grybauskas, M.; Dabkevičienė, D.; Burneckis, A.; Rotomskis, R. Individual radiosensitivity as a risk factor for the radiation-induced acute radiodermatitis. Life 2021, 12, 20. [Google Scholar] [CrossRef]
- Safwat, A.; Bentzen, S.M.; Turesson, I.; Hendry, J.H. Deterministic rather than stochastic factors explain most of the variation in the expression of skin telangiectasia after radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2002, 52, 198–204. [Google Scholar] [CrossRef]
- Wali, J.A.; Jarzebska, N.; Raubenheimer, D.; Simpson, S.J.; Rodionov, R.N.; O'Sullivan, J.F. Cardio-metabolic effects of high-fat diets and their underlying mechanisms-A narrative review. Nutrients 2020, 12, 1505. [Google Scholar] [CrossRef] [PubMed]
- Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G.A.; Beguinot, F.; Miele, C. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int. J. Mol. Sci. 2019, 20, 2358. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Qiu, T.; Li, L.; Yu, R.; Chen, X.; Li, C.; Proud, C.G.; Jiang, T. Pathophysiology of obesity and its associated diseases. Acta Pharm. Sin. B 2023, 13, 2403–2424. [Google Scholar] [PubMed]
- Ahmed, B.; Sultana, R.; Greene, M.W. Adipose tissue and insulin resistance in obese. Biomed. Pharmacother. 2021, 137, 111315. [Google Scholar] [CrossRef]
- Zatterale, F.; Longo, M.; Naderi, J.; Raciti, G.A.; Desiderio, A.; Miele, C.; Beguinot, F. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front. Physiol. 2020, 10, 1607. [Google Scholar]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef]
- Griffin, C.; Eter, L.; Lanzetta, N.; Abrishami, S.; Varghese, M.; McKernan, K.; Muir, L.; Lane, J.; Lumeng, C.N.; Singer, K. TLR4, TRIF, and MyD88 are essential for myelopoiesis and CD11c+ adipose tissue macrophage production in obese mice. J. Biol. Chem. 2018, 293, 8775–8786. [Google Scholar]
- Li, B.; Leung, J.C.K.; Chan, L.Y.Y.; Yiu, W.H.; Tang, S.C.W. A global perspective on the crosstalk between saturated fatty acids and Toll-like receptor 4 in the etiology of inflammation and insulin resistance. Prog. Lipid Res. 2020, 77, 101020. [Google Scholar]
- Murano, I.; Barbatelli, G.; Parisani, V.; Latini, C.; Muzzonigro, G.; Castellucci, M.; Cinti, S. Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J. Lipid Res. 2008, 49, 1562–1568. [Google Scholar]
- Röder, P.V.; Wu, B.; Liu, Y.; Han, W. Pancreatic regulation of glucose homeostasis. Exp. Mol. Med. 2016, 48, e219. [Google Scholar]
- Abdelsalam, S.S.; Korashy, H.M.; Zeidan, A.; Agouni, A. The role of protein tyrosine phosphatase (PTP)-1B in cardiovascular disease and its interplay with insulin resistance. Biomolecules 2019, 9, 286. [Google Scholar] [CrossRef] [PubMed]
- Wunderlich, C.M.; Hövelmeyer, N.; Wunderlich, F.T. Mechanisms of chronic JAK-STAT3-SOCS3 signaling in obesity. JAKSTAT 2013, 2, e23878. [Google Scholar] [PubMed]
- Jager, J.; Grémeaux, T.; Cormont, M.; Le Marchand-Brustel, Y.; Tanti, J.F. Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology 2007, 148, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Sansbury, B.E.; Hill, B.G. Regulation of obesity and insulin resistance by nitric oxide. Free Radic. Biol. Med. 2014, 73, 383–399. [Google Scholar]
- Dludla, P.V.; Mabhida, S.E.; Ziqubu, K.; Nkambule, B.B.; Mazibuko-Mbeje, S.E.; Hanser, S.; Basson, A.K.; Pheiffer, C.; Kengne, A.P. Pancreatic β-cell dysfunction in type 2 diabetes: Implications of inflammation and oxidative stress. World J. Diabetes 2023, 14, 130–146. [Google Scholar] [CrossRef]
- Strati, M.; Moustaki, M.; Psaltopoulou, T.; Vryonidou, A.; Paschou, S.A. Early onset type 2 diabetes mellitus: An update. Endocrine 2024, 85, 965–978. [Google Scholar] [CrossRef]
- Patel, V.; Edison, P. Cardiometabolic risk factors and neurodegeneration: A review of the mechanisms underlying diabetes, obesity and hypertension in Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 2024, 95, 581–589. [Google Scholar]
- Ipsen, D.H.; Lykkesfeldt, J.; Tveden-Nyborg, P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol. Life Sci. 2018, 75, 3313–3327. [Google Scholar]
- Berger, J.M.; Moon, Y.A. Increased hepatic lipogenesis elevates liver cholesterol content. Mol. Cells 2021, 44, 116–125. [Google Scholar]
- Arroyave-Ospina, J.C.; Wu, Z.; Geng, Y.; Moshage, H. Role of oxidative stress in the pathogenesis of non-alcoholic fatty liver disease: Implications for prevention and therapy. Antioxidants 2021, 10, 174. [Google Scholar] [CrossRef]
- Arguello, G.; Balboa, E.; Arrese, M.; Zanlungo, S. Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochim. Biophys. Acta 2015, 1852, 1765–1778. [Google Scholar] [PubMed]
- Adedeji, T.G.; Jeje, S.O.; Omayone, T.P.; Agbonifo, W.O. Oxidative stress and inflammatory response to high dietary fat and carbonated soda intake in male and female Wistar rats. Nutrition 2022, 103–104, 111800. [Google Scholar]
- Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 2004, 114, 1752–1761. [Google Scholar] [PubMed]
- Yang, R.L.; Shi, Y.H.; Hao, G.; Li, W.; Le, G.W. Increasing oxidative stress with progressive hyperlipidemia in human: Relation between malondialdehyde and atherogenic index. J. Clin. Biochem. Nutr. 2008, 43, 154–158. [Google Scholar]
- Pritsa, A.; Tsamesidis, I.; Samara, D.; Papadopoulou, K.S.; Parpori, M.; Gkinoudis, A.; Lymperaki, E. Relationship between dietary fats and serum antioxidants with atheromatic index in regular blood donors. Clin. Nutr. ESPEN 2020, 39, 114–118. [Google Scholar]
- Peña-Orihuela, P.; Camargo, A.; Rangel-Zuñiga, O.A.; Perez-Martinez, P.; Cruz-Teno, C.; Delgado-Lista, J.; Yubero-Serrano, E.M.; Paniagua, J.A.; Tinahones, F.J.; Malagon, M.M.; et al. Antioxidant system response is modified by dietary fat in adipose tissue of metabolic syndrome patients. J. Nutr. Biochem. 2013, 24, 1717–1723. [Google Scholar]
- Hong, Y.; Boiti, A.; Vallone, D.; Foulkes, N.S. Reactive oxygen species signaling and oxidative stress: Transcriptional regulation and evolution. Antioxidants 2024, 13, 312. [Google Scholar] [CrossRef]
- Ikwegbue, P.C.; Masamba, P.; Oyinloye, B.E.; Kappo, A.P. Roles of heat shock proteins in apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals 2017, 11, 2. [Google Scholar] [CrossRef]
- Sun, Y.; Ge, X.; Li, X.; He, J.; Wei, X.; Du, J.; Sun, J.; Li, X.; Xun, Z.; Liu, W.; et al. High-fat diet promotes renal injury by inducing oxidative stress and mitochondrial dysfunction. Cell Death Dis. 2020, 11, 914. [Google Scholar]
- Casanova, A.; Wevers, A.; Navarro-Ledesma, S.; Pruimboom, L. Mitochondria: It is all about energy. Front. Physiol. 2023, 14, 1114231. [Google Scholar]
- Bournat, J.C.; Brown, C.W. Mitochondrial dysfunction in obesity. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 446–452. [Google Scholar] [PubMed]
- Dai, W.; Jiang, L. Dysregulated mitochondrial dynamics and metabolism in obesity, diabetes, and cancer. Front. Endocrinol. 2019, 10, 570. [Google Scholar]
- Serra, D.; Mera, P.; Malandrino, M.I.; Mir, J.F.; Herrero, L. Mitochondrial fatty acid oxidation in obesity. Antioxid. Redox Signal 2013, 19, 269–284. [Google Scholar] [PubMed]
- Mancini, G.; Pirruccio, K.; Yang, X.; Blüher, M.; Rodeheffer, M.; Horvath, T.L. Mitofusin 2 in mature adipocytes controls adiposity and body weight. Cell Rep. 2019, 27, 648. [Google Scholar]
- Tumova, J.; Andel, M.; Trnka, J. Excess of free fatty acids as a cause of metabolic dysfunction in skeletal muscle. Physiol. Res. 2016, 65, 193–207. [Google Scholar]
- Zheng, Y.; Wang, S.; Wu, J.; Wang, Y. Mitochondrial metabolic dysfunction and non-alcoholic fatty liver disease: New insights from pathogenic mechanisms to clinically targeted therapy. J. Transl. Med. 2023, 21, 510. [Google Scholar]
- Savini, I.; Catani, M.V.; Evangelista, D.; Gasperi, V.; Avigliano, L. Obesity-associated oxidative stress: Strategies finalized to improve redox state. Int. J. Mol. Sci. 2013, 14, 10497–10538. [Google Scholar] [CrossRef]
- Ortiz, M.; Soto-Alarcón, S.A.; Orellana, P.; Espinosa, A.; Campos, C.; López-Arana, S.; Rincón, M.A.; Illesca, P.; Valenzuela, R.; Videla, L.A. Suppression of high-fat diet-induced obesity-associated liver mitochondrial dysfunction by docosahexaenoic acid and hydroxytyrosol co-administration. Dig. Liver Dis. 2020, 52, 895–904. [Google Scholar]
- Rieusset, J.; Fauconnier, J.; Paillard, M.; Belaidi, E.; Tubbs, E.; Chauvin, M.A.; Durand, A.; Bravard, A.; Teixeira, G.; Bartosch, B.; et al. Disruption of calcium transfer from ER to mitochondria links alterations of mitochondria-associated ER membrane integrity to hepatic insulin resistance. Diabetologia 2016, 59, 614–623. [Google Scholar]
- Szrok-Jurga, S.; Czumaj, A.; Turyn, J.; Hebanowska, A.; Swierczynski, J.; Sledzinski, T.; Stelmanska, E. The physiological and pathological role of acyl-CoA oxidation. Int. J. Mol. Sci. 2023, 24, 14857. [Google Scholar] [CrossRef]
- Martínez-Reyes, I.; Chandel, N.S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 2020, 11, 102. [Google Scholar] [PubMed]
- Lasker, S.; Rahman, M.M.; Parvez, F.; Zamila, M.; Miah, P.; Nahar, K.; Kabir, F.; Sharmin, S.B.; Subhan, N.; Ahsan, G.U.; et al. High-fat diet-induced metabolic syndrome and oxidative stress in obese rats are ameliorated by yogurt supplementation. Sci. Rep. 2019, 9, 20026. [Google Scholar]
- Shen, F.C.; Weng, S.W.; Tsao, C.F.; Lin, H.Y.; Chang, C.S.; Lin, C.Y.; Lian, W.S.; Chuang, J.H.; Lin, T.K.; Liou, C.W.; et al. Early intervention of N-acetylcysteine better improves insulin resistance in diet-induced obesity mice. Free Radic. Res. 2018, 52, 1296–1310. [Google Scholar]
- Wan, G.; Kato, N.; Watanabe, H. High fat diet elevates the activity of inducible nitric oxide synthase and 1,2-dimethylhydrazine-induced aberrant crypt foci in colon of rats. Oncol. Rep. 2000, 7, 391–395. [Google Scholar]
- Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ. Res. 2018, 122, 877–902. [Google Scholar]
- Hardie, D.G.; Ross, F.A.; Hawley, S.A. AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 2012, 13, 251–262. [Google Scholar]
- Steinberg, G.R.; Carling, D. AMP-activated protein kinase: The current landscape for drug development. Nat. Rev. Drug Discov. 2019, 18, 527–551. [Google Scholar]
- Zhang, X.; Liu, S.; Zhang, C.; Zhang, S.; Yue, Y.; Zhang, Y.; Chen, L.; Yao, Z.; Niu, W. The role of AMPKα2 in the HFD-induced nonalcoholic steatohepatitis. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165854. [Google Scholar]
- Foretz, M.; Even, P.C.; Viollet, B. AMPK activation reduces hepatic lipid content by increasing fat oxidation in vivo. Int. J. Mol. Sci. 2018, 19, 2826. [Google Scholar] [CrossRef]
- Li, N.; Li, X.; Ding, Y.; Liu, X.; Diggle, K.; Kisseleva, T.; Brenner, D.A. SREBP regulation of lipid metabolism in liver disease, and therapeutic strategies. Biomedicines 2023, 11, 3280. [Google Scholar] [CrossRef]
- Li, Y.; Xu, S.; Mihaylova, M.M.; Zheng, B.; Hou, X.; Jiang, B.; Park, O.; Luo, Z.; Lefai, E.; Shyy, J.Y.; et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 2011, 13, 376–388. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.A.; Liang, G.; Xie, X.; Frank-Kamenetsky, M.; Fitzgerald, K.; Koteliansky, V.; Brown, M.S.; Goldstein, J.L.; Horton, J.D. The Scap/SREBP pathway is essential for developing diabetic fatty liver and carbohydrate-induced hypertriglyceridemia in animals. Cell Metab. 2012, 15, 240–246. [Google Scholar] [CrossRef]
- Ahmadian, M.; Suh, J.M.; Hah, N.; Liddle, C.; Atkins, A.R.; Downes, M.; Evans, R.M. PPARγ signaling and metabolism: The good, the bad and the future. Nat. Med. 2013, 19, 557–566. [Google Scholar] [CrossRef]
- Jones, J.R.; Barrick, C.; Kim, K.A.; Lindner, J.; Blondeau, B.; Fujimoto, Y.; Shiota, M.; Kesterson, R.A.; Kahn, B.B.; Magnuson, M.A. Deletion of PPARγ in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proc. Natl. Acad. Sci. USA 2005, 102, 6207–6212. [Google Scholar] [CrossRef]
- Baumann, A.; Burger, K.; Brandt, A.; Staltner, R.; Jung, F.; Rajcic, D.; Lorenzo Pisarello, M.J.; Bergheim, I. GW9662, a peroxisome proliferator-activated receptor gamma antagonist, attenuates the development of non-alcoholic fatty liver disease. Metabolism 2022, 133, 155233. [Google Scholar] [CrossRef]
- Shimizu, I.; Yoshida, Y.; Katsuno, T.; Tateno, K.; Okada, S.; Moriya, J.; Yokoyama, M.; Nojima, A.; Ito, T.; Zechner, R.; et al. p53-induced adipose tissue inflammation is critically involved in the development of insulin resistance in heart failure. Cell Metab. 2012, 15, 51–64. [Google Scholar] [CrossRef]
- Scarpato, R.; Verola, C.; Fabiani, B.; Bianchi, V.; Saggese, G.; Federico, G. Nuclear damage in peripheral lymphocytes of obese and overweight Italian children as evaluated by the gamma-H2AX focus assay and micronucleus test. FASEB J. 2011, 25, 685–693. [Google Scholar] [CrossRef]
- Karaman, A.; Aydın, H.; Geçkinli, B.; Çetinkaya, A.; Karaman, S. DNA damage is increased in lymphocytes of patients with metabolic syndrome. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2015, 782, 30–35. [Google Scholar] [CrossRef]
- Gaber, M.; Quentel, A.; Holmes, J.; Lepetit, C.; Triki, H.; Wilson, A.; Payne, V.; Tenvooren, I.; Dehours, C.; Peoples, A.; et al. Obesity increases DNA damage in the breast epithelium. Breast Cancer Res. 2025, 27, 11. [Google Scholar] [CrossRef]
- Lombard, D.B.; Chua, K.F.; Mostoslavsky, R.; Franco, S.; Gostissa, M.; Alt, F.W. DNA repair, genome stability, and aging. Cell 2005, 120, 497–512. [Google Scholar] [CrossRef]
- Ju, Y.J.; Lee, K.H.; Park, J.E.; Yi, Y.S.; Yun, M.Y.; Ham, Y.H.; Kim, T.J.; Choi, H.M.; Han, G.J.; Lee, J.H.; et al. Decreased expression of DNA repair proteins Ku70 and Mre11 is associated with aging and may contribute to the cellular senescence. Exp. Mol. Med. 2006, 38, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Maynard, S.; Fang, E.F.; Scheibye-Knudsen, M.; Croteau, D.L.; Bohr, V.A. DNA damage, DNA repair, aging, and neurodegeneration. Cold Spring Harb. Perspect. Med. 2015, 5, a025130. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.C. The non-canonical NF-κB pathway in immunity and inflammation. Nat. Rev. Immunol. 2017, 17, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.S.; Ghosh, S. Regulation of NF-κB by TNF family cytokines. Semin. Immunol. 2014, 26, 253–266. [Google Scholar] [CrossRef]
- Perkins, N.D.; Gilmore, T.D. Good cop, bad cop: The different faces of NF-kappa B. Cell Death Differ. 2006, 13, 759–772. [Google Scholar] [CrossRef]
- Habraken, Y.; Piette, J. NF-kappaB activation by double-strand breaks. Biochem. Pharmacol. 2006, 72, 1132–1141. [Google Scholar] [CrossRef]
- Ahmed, K.M.; Li, J.J. ATM-NF-kappaB connection as a target for tumor radiosensitization. Curr. Cancer Drug Targets 2007, 7, 335–342. [Google Scholar] [CrossRef]
- Morgan, M.J.; Liu, Z.G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011, 21, 103–115. [Google Scholar] [CrossRef]
- Lingappan, K. NF-κB in Oxidative Stress. Curr. Opin. Toxicol. 2018, 7, 81–86. [Google Scholar] [CrossRef]
- Speed, N.; Blair, I.A. Cyclooxygenase- and lipoxygenase-mediated DNA damage. Cancer Metastasis Rev. 2011, 30, 437–447. [Google Scholar] [CrossRef]
- Zamora, R.; Vodovotz, Y.; Billiar, T.R. Inducible nitric oxide synthase and inflammatory diseases. Mol. Med. 2000, 6, 347–373. [Google Scholar] [PubMed]
- Rastogi, S.; Boylan, M.; Wright, E.G.; Coates, P.J. Interactions of apoptotic cells with macrophages in radiation-induced bystander signaling. Radiat. Res. 2013, 179, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Manning, B.D.; Toker, A. AKT/PKB Signaling: Navigating the Network. Cell 2017, 169, 381–405. [Google Scholar] [PubMed]
- Accili, D.; Arden, K.C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 2004, 117, 421–426. [Google Scholar]
- Bigarella, C.L.; Li, J.; Rimmelé, P.; Liang, R.; Sobol, R.W.; Ghaffari, S. FOXO3 transcription factor is essential for protecting hematopoietic stem and progenitor cells from oxidative DNA damage. J. Biol. Chem. 2017, 292, 3005–3015. [Google Scholar] [CrossRef]
- Kim, J.; Guan, K.L. mTOR as a central hub of nutrient signaling and cell growth. Nat. Cell Biol. 2019, 21, 63–71. [Google Scholar] [CrossRef]
- Feng, Z.; Zhang, H.; Levine, A.J.; Jin, S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl. Acad. Sci. USA 2005, 102, 8204–8209. [Google Scholar]
- Shiloh, Y.; Ziv, Y. The ATM protein kinase: Regulating the cellular response to genotoxic stress. Nat. Rev. Mol. Cell Biol. 2013, 14, 197–210. [Google Scholar]
- Calle, E.E.; Kaaks, R. Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 2004, 4, 579–591. [Google Scholar]
- Renehan, A.G.; Tyson, M.; Egger, M.; Heller, R.F.; Zwahlen, M. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet 2008, 371, 569–578. [Google Scholar]
- Shimizu, I.; Yoshida, Y.; Suda, M.; Minamino, T. DNA damage response and metabolic disease. Cell Metab. 2014, 20, 967–977. [Google Scholar] [PubMed]
- Feroz, W.; Sheikh, A.M.A. Exploring the multiple roles of guardian of the genome: P53. Egypt. J. Med. Hum. Genet. 2020, 21, 49. [Google Scholar]
- Tornovsky-Babeay, S.; Dadon, D.; Ziv, O.; Tzipilevich, E.; Kadosh, T.; Schyr-Ben Haroush, R.; Hija, A.; Stolovich-Rain, M.; Furth-Lavi, J.; Granot, Z.; et al. Type 2 diabetes and congenital hyperinsulinism cause DNA double-strand breaks and p53 activity in β cells. Cell Metab. 2014, 19, 109–121. [Google Scholar] [CrossRef]
- Minamino, T.; Orimo, M.; Shimizu, I.; Kunieda, T.; Yokoyama, M.; Ito, T.; Nojima, A.; Nabetani, A.; Oike, Y.; Matsubara, H.; et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat. Med. 2009, 15, 1082–1087. [Google Scholar] [PubMed]
- Derdak, Z.; Villegas, K.A.; Harb, R.; Wu, A.M.; Sousa, A.; Wands, J.R. Inhibition of p53 attenuates steatosis and liver injury in a mouse model of non-alcoholic fatty liver disease. J. Hepatol. 2013, 58, 785–791. [Google Scholar] [PubMed]
- Liu, S.; Kim, T.H.; Franklin, D.A.; Zhang, Y. Protection against high-fat-diet-induced obesity in MDM2C305F mice due to reduced p53 activity and enhanced energy expenditure. Cell Rep. 2017, 18, 1005–1018. [Google Scholar]
- Ziolkowska, S.; Binienda, A.; Jabłkowski, M.; Szemraj, J.; Czarny, P. The interplay between insulin resistance, inflammation, oxidative stress, base excision repair and metabolic syndrome in nonalcoholic fatty liver disease. Int. J. Mol. Sci. 2021, 22, 11128. [Google Scholar] [CrossRef]
- Tyson, J.; Caple, F.; Spiers, A.; Burtle, B.; Daly, A.K.; Williams, E.A.; Hesketh, J.E.; Mathers, J.C. Inter-individual variation in nucleotide excision repair in young adults: Effects of age, adiposity, micronutrient supplementation and genotype. Br. J. Nutr. 2009, 101, 1316–1323. [Google Scholar] [CrossRef]
- Azzarà, A.; Pirillo, C.; Giovannini, C.; Federico, G.; Scarpato, R. Different repair kinetic of DSBs induced by mitomycin C in peripheral lymphocytes of obese and normal weight adolescents. Mutat. Res. 2016, 789, 9–14. [Google Scholar]
- D'Amico, A.M.; Vasquez, K.M. The multifaceted roles of DNA repair and replication proteins in aging and obesity. DNA Repair. 2021, 99, 103049. [Google Scholar]
- Chowdhury, S.G.; Misra, S.; Karmakar, P. Understanding the impact of obesity on ageing in the radiance of DNA metabolism. J. Nutr. Health Aging 2023, 27, 314–328. [Google Scholar] [PubMed]
- Nikodemova, M.; Yee, J.; Carney, P.R.; Bradfield, C.A.; Malecki, K.M. Transcriptional differences between smokers and non-smokers and variance by obesity as a risk factor for human sensitivity to environmental exposures. Environ. Int. 2018, 113, 249–258. [Google Scholar] [PubMed]
- Zwamborn, R.A.; Slieker, R.C.; Mulder, P.C.; Zoetemelk, I.; Verschuren, L.; Suchiman, H.E.; Toet, K.H.; Droog, S.; Slagboom, P.E.; Kooistra, T.; et al. Prolonged high-fat diet induces gradual and fat depot-specific DNA methylation changes in adult mice. Sci. Rep. 2017, 7, 43261. [Google Scholar]
- Remely, M.; Ferk, F.; Sterneder, S.; Setayesh, T.; Roth, S.; Kepcija, T.; Noorizadeh, R.; Rebhan, I.; Greunz, M.; Beckmann, J.; et al. EGCG prevents high fat diet-induced changes in gut microbiota, decreases of DNA strand breaks, and changes in expression and DNA methylation of Dnmt1 and MLH1 in C57BL/6J male mice. Oxid. Med. Cell Longev. 2017, 2017, 3079148. [Google Scholar]
- Remely, M.; Ferk, F.; Sterneder, S.; Setayesh, T.; Kepcija, T.; Roth, S.; Noorizadeh, R.; Greunz, M.; Rebhan, I.; Wagner, K.H.; et al. Vitamin E modifies high-fat diet-induced increase of DNA strand breaks, and changes in expression and DNA methylation of Dnmt1 and MLH1 in C57BL/6J male mice. Nutrients 2017, 9, 607. [Google Scholar] [CrossRef]
- Fieres, J.; Fischer, M.; Sauter, C.; Moreno-Villanueva, M.; Bürkle, A.; Wirtz, P.H. The burden of overweight: Higher body mass index, but not vital exhaustion, is associated with higher DNA damage and lower DNA repair capacity. DNA Repair. 2022, 114, 103323. [Google Scholar]
- Keleher, M.R.; Zaidi, R.; Hicks, L.; Shah, S.; Xing, X.; Li, D.; Wang, T.; Cheverud, J.M. A high-fat diet alters genome-wide DNA methylation and gene expression in SM/J mice. BMC Genomics 2018, 19, 888. [Google Scholar]
- Ubago-Guisado, E.; Rodríguez-Barranco, M.; Ching-López, A.; Petrova, D.; Molina-Montes, E.; Amiano, P.; Barricarte-Gurrea, A.; Chirlaque, M.D.; Agudo, A.; Sánchez, M.J. Evidence update on the relationship between diet and the most common cancers from the European Prospective Investigation into Cancer and Nutrition (EPIC) Study: A Systematic Review. Nutrients 2021, 13, 3582. [Google Scholar] [CrossRef]
- Song, M.; Willett, W.C.; Hu, F.B.; Spiegelman, D.; Must, A.; Wu, K.; Chan, A.T.; Giovannucci, E.L. Trajectory of body shape across the lifespan and cancer risk. Int. J. Cancer 2016, 138, 2383–2395. [Google Scholar]
- Petrelli, F.; Cortellini, A.; Indini, A.; Tomasello, G.; Ghidini, M.; Nigro, O.; Salati, M.; Dottorini, L.; Iaculli, A.; Varricchio, A.; et al. Association of obesity with survival outcomes in patients with cancer: A Systematic Review and Meta-analysis. JAMA Netw. Open 2021, 4, e213520. [Google Scholar]
- Zhang, A.M.Y.; Wellberg, E.A.; Kopp, J.L.; Johnson, J.D. Hyperinsulinemia in obesity, Inflammation, and cancer. Diabetes Metab. J. 2021, 45, 285–311. [Google Scholar] [PubMed]
- Yu, H.; Pardoll, D.; Jove, R. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat. Rev. Cancer 2009, 9, 798–809. [Google Scholar] [PubMed]
- Baenke, F.; Peck, B.; Miess, H.; Schulze, A. Hooked on fat: The role of lipid synthesis in cancer metabolism and tumour development. Dis. Model. Mech. 2013, 6, 1353–1363. [Google Scholar]
- Gall Trošelj, K.; Tomljanović, M.; Jaganjac, M.; Matijević Glavan, T.; Čipak Gašparović, A.; Milković, L.; Borović Šunjić, S.; Buttari, B.; Profumo, E.; Saha, S.; et al. Oxidative stress and cancer heterogeneity orchestrate NRF2 roles relevant for therapy response. Molecules 2022, 27, 1468. [Google Scholar] [CrossRef]
- Mollinedo, F.; Gajate, C. Lipid rafts as signaling hubs in cancer cell survival/death and invasion: Implications in tumor progression and therapy: Thematic Review Series: Biology of Lipid Rafts. J. Lipid Res. 2020, 61, 611–635. [Google Scholar]
- Fu, Y.; Zou, T.; Shen, X.; Nelson, P.J.; Li, J.; Wu, C.; Yang, J.; Zheng, Y.; Bruns, C.; Zhao, Y.; et al. Lipid metabolism in cancer progression and therapeutic strategies. Med. Comm. 2020, 2, 27–59. [Google Scholar]
- Li, L.; Tian, Y. The role of metabolic reprogramming of tumor-associated macrophages in shaping the immunosuppressive tumor microenvironment. Biomed. Pharmacother. 2023, 161, 114504. [Google Scholar]
- Nieman, K.M.; Kenny, H.A.; Penicka, C.V.; Ladanyi, A.; Buell-Gutbrod, R.; Zillhardt, M.R.; Romero, I.L.; Carey, M.S.; Mills, G.B.; Hotamisligil, G.S.; et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 2011, 17, 1498–1503. [Google Scholar]
- Dominguez, L.J.; Veronese, N.; Di Bella, G.; Cusumano, C.; Parisi, A.; Tagliaferri, F.; Ciriminna, S.; Barbagallo, M. Mediterranean diet in the management and prevention of obesity. Exp. Gerontol. 2023, 174, 112121. [Google Scholar]
- Kalam, F.; James, D.L.; Li, Y.R.; Coleman, M.F.; Kiesel, V.A.; Cespedes Feliciano, E.M.; Hursting, S.D.; Sears, D.D.; Kleckner, A.S. Intermittent fasting interventions to leverage metabolic and circadian mechanisms for cancer treatment and supportive care outcomes. J. Natl. Cancer Inst. Monogr. 2023, 2023, 84–103. [Google Scholar]
- Malley, C.O.; Pidgeon, G.P. The mTOR pathway in obesity driven gastrointestinal cancers: Potential targets and clinical trials. BBA Clin. 2015, 5, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Maiese, K.; Chong, Z.Z.; Shang, Y.C.; Hou, J. Clever cancer strategies with FoxO transcription factors. Cell Cycle 2008, 7, 3829–3839. [Google Scholar] [PubMed]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism(s) of action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar]
- Kamiya, K.; Ozasa, K.; Akiba, S.; Niwa, O.; Kodama, K.; Takamura, N.; Zaharieva, E.K.; Kimura, Y.; Wakeford, R. Long-term effects of radiation exposure on health. Lancet 2015, 386, 469–478. [Google Scholar]
- Talapko, J.; Talapko, D.; Katalinić, D.; Kotris, I.; Erić, I.; Belić, D.; Vasilj Mihaljević, M.; Vasilj, A.; Erić, S.; Flam, J.; et al. Health effects of ionizing radiation on the human body. Medicina 2024, 60, 653. [Google Scholar] [CrossRef]
- Akahoshi, M.; Amasaki, Y.; Soda, M.; Hida, A.; Imaizumi, M.; Nakashima, E.; Maeda, R.; Seto, S.; Yano, K. Effects of radiation on fatty liver and metabolic coronary risk factors among atomic bomb survivors in Nagasaki. Hypertens. Res. 2003, 26, 965–970. [Google Scholar]
- Tapio, S.; Little, M.P.; Kaiser, J.C.; Impens, N.; Hamada, N.; Georgakilas, A.G.; Simar, D.; Salomaa, S. Ionizing radiation-induced circulatory and metabolic diseases. Environ. Int. 2021, 146, 106235. [Google Scholar]
- Bacarella, N.; Ruggiero, A.; Davis, A.T.; Uberseder, B.; Davis, M.A.; Bracy, D.P.; Wasserman, D.H.; Cline, J.M.; Sherrill, C.; Kavanagh, K. Whole body irradiation induces diabetes and adipose insulin resistance in nonhuman primates. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 878–886. [Google Scholar]
- Tanaka, I.B., 3rd; Tanaka, S.; Ichinohe, K.; Matsushita, S.; Matsumoto, T.; Otsu, H.; Oghiso, Y.; Sato, F. Cause of death and neoplasia in mice continuously exposed to very low dose rates of gamma rays. Radiat. Res. 2007, 167, 417–437. [Google Scholar]
- Nakamura, S.; Tanaka, I.B., 3rd; Tanaka, S.; Nakaya, K.; Sakata, N.; Oghiso, Y. Adiposity in female B6C3F1 mice continuously irradiated with low-dose-rate gamma rays. Radiat. Res. 2010, 173, 333–341. [Google Scholar]
- Zhang, S.B.; Yang, S.; Zhang, Z.; Zhang, A.; Zhang, M.; Yin, L.; Casey-Sawicki, K.; Swarts, S.; Vidyasagar, S.; Zhang, L.; et al. Thoracic gamma irradiation-induced obesity in C57BL/6 female mice. Int. J. Radiat. Biol. 2017, 93, 1334–1342. [Google Scholar] [CrossRef] [PubMed]
- Hritzo, B.; Aghdam, S.Y.; Legesse, B.; Kaur, A.; Cao, M.; Boerma, M.; Chakraborty, N.; Dimitrov, G.; Gautam, A.; Hammamieh, R.; et al. Late health effects of partial body irradiation injury in a minipig model are associated with changes in systemic and cardiac IGF-1 signaling. Int. J. Mol. Sci. 2021, 22, 3286. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.; Felton, L.; Byers, S. The antiatherogenic effect of Iridium-192 upon the cholesterol-fed rabbit. J. Clin. Investig. 1964, 43, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.; Byers, S.O. Effect of Iridium 192 radiation on thromboatherosclerotic plaque in the rabbit aorta. Arch. Pathol. 1965, 80, 285–290. [Google Scholar]
- Zhang, C.; Tan, Y.; Guo, W.; Li, C.; Ji, S.; Li, X.; Cai, L. Attenuation of diabetes-induced renal dysfunction by multiple exposures to low-dose radiation is associated with the suppression of systemic and renal inflammation. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E1366–E1377. [Google Scholar] [CrossRef]
- Cheng, J.; Li, F.; Cui, J.; Guo, W.; Li, C.; Li, W.; Wang, G.; Xing, X.; Gao, Y.; Ge, Y.; et al. Optimal conditions of LDR to protect the kidney from diabetes: Exposure to 12.5 mGy X-rays for 8 weeks efficiently protects the kidney from diabetes. Life Sci. 2014, 103, 49–58. [Google Scholar] [CrossRef]
- Shao, M.; Lu, X.; Cong, W.; Xing, X.; Tan, Y.; Li, Y.; Li, X.; Jin, L.; Wang, X.; Dong, J.; et al. Multiple low-dose radiation prevents type 2 diabetes-induced renal damage through attenuation of dyslipidemia and insulin resistance and subsequent renal inflammation and oxidative stress. PLoS ONE 2014, 9, e92574. [Google Scholar] [CrossRef]
- Shao, M.; Yu, L.; Zhang, F.; Lu, X.; Li, X.; Cheng, P.; Lin, X.; He, L.; Jin, S.; Tan, Y.; et al. Additive protection by LDR and FGF21 treatment against diabetic nephropathy in type 2 diabetes model. Am. J. Physiol. Endocrinol. Metab. 2015, 309, E45–E54. [Google Scholar]
- Khalil, A.; Omran, H.; Alsheikh, F. Balance of pro- and anti-inflammatory cytokines in livers of high fat diet rats exposed to fractionated gamma irradiation. BMC Res. Notes 2018, 11, 741. [Google Scholar] [CrossRef]
- Khalil, A.; Omran, H. The role of gut in type 2 diabetes mellitus during whole body gamma irradiation in high-fat diet Wistar rats. Int. J. Radiat. Biol. 2018, 94, 137–149. [Google Scholar]
- Khalil, A.; Al-Daoude, A. Fractionated whole body gamma irradiation modulates the hepatic response in type II diabetes of high fat diet model rats. Mol. Biol. Rep. 2019, 46, 2273–2283. [Google Scholar] [PubMed]
- Xiao, Y.; Mo, W.; Jia, H.; Yu, D.; Qiu, Y.; Jiao, Y.; Zhu, W.; Koide, H.; Cao, J.; Zhang, S. Ionizing radiation induces cutaneous lipid remolding and skin adipocytes confer protection against radiation-induced skin injury. J. Dermatol. Sci. 2020, 97, 152–160. [Google Scholar] [PubMed]
- Qu, S.; Qiu, X.; Liu, J.; Feng, R.; Wang, Y.; Dong, X.; Jin, Y.; Liu, X. Reparative effects after low-dose radiation exposure: Inhibition of atherosclerosis by reducing NETs release. Sci. Total Environ. 2024, 947, 174540. [Google Scholar] [PubMed]
- Ershoff, B.H. Deleterious effects of high fat diets on survival time of X-irradiated mice. Proc. Soc. Exp. Biol. Med. 1961, 106, 306–309. [Google Scholar]
- Gold, H. Production of arteriosclerosis in the rat. Effect of X-ray and a high-fat diet. Arch. Pathol. 1961, 71, 268–273. [Google Scholar]
- Vesselinovitch, D.; Doull, J.; Wissler, R.W.; Meskauskas, J. Influence of exposure to low levels of gamma and fast neutron irradiation on the life span of animals. I. Effect of atherogenic diets on the response of rats to chronic x-irradiation. Q. Prog. Rep. U. S. Air Force Radiat. Lab. Univ. Chic. 1962, 43, 42–58. [Google Scholar]
- Gold, H. Atherosclerosis in the Rat. Effect of X-ray and a high fat diet. Proc. Soc. Exp. Biol. Med. 1962, 111, 593–595. [Google Scholar]
- Sandberg, A.J.; Doull, J. The influence of exposure to low levels of gamma and fast neutron irradiation on the life span of animals. I. Summary of the chronic gamma and low-level fast neutron irradiation program. Q. Prog. Rep. U. S. Air Force Radiat. Lab. Univ. Chic. 1964, 53, 116–131. [Google Scholar]
- Amromin, G.D.; Gildenhorn, H.L.; Solomon, R.D.; Nadkarni, B.B. The synergism of X-irradiation and cholesterol-fat feeding on the development of coronary lesions. J. Atheroscler. Res. 1964, 4, 325–334. [Google Scholar]
- Vesselinovitch, D.; Doull, J.; Wissler, R.W.; Cowan, J. Influence of exposure to low levels of gamma and fast neutron irradiation on the life span of animals. III. Effect of atherogenic diets on the survival of mice exposed to single and fractionated doses of whole-body x-irradiation. Q. Prog. Rep. US. Air Force Radiat. Lab. Univ. Chic. 1962, 42, 106–123. [Google Scholar]
- Vares, G.; Wang, B.; Ishii-Ohba, H.; Nenoi, M.; Nakajima, T. Diet-induced obesity modulates epigenetic responses to ionizing radiation in mice. PLoS ONE 2014, 9, e106277. [Google Scholar]
- Wang, B.; Tanaka, K.; Katsube, T.; Maruyama, K.; Ninomiya, Y.; Nenoi, M. Dietary modification of mouse responses to total-body-irradiation. In Evolution of Ionizing Radiation Research; Nenoi, M., Ed.; Intech-Open Access Publisher: Rijeka, Croatia, 2015; pp. 63–87. [Google Scholar]
- Nylander, V.; Ingerslev, L.R.; Andersen, E.; Fabre, O.; Garde, C.; Rasmussen, M.; Citirikkaya, K.; Bæk, J.; Christensen, G.L.; Aznar, M.; et al. Ionizing radiation potentiates high-fat diet-induced insulin resistance and reprograms skeletal muscle and adipose progenitor cells. Diabetes 2016, 65, 3573–3584. [Google Scholar] [PubMed]
- Nakajima, T.; Ninomiya, Y.; Nenoi, M. Radiation-induced reactions in the liver—Modulation of radiation effects by lifestyle-related factors. Int. J. Mol. Sci. 2018, 19, 3855. [Google Scholar] [CrossRef] [PubMed]
- Emmons, R.; Ngu, M.; Xu, G.; Hernández-Saavedra, D.; Chen, H.; DE Lisio, M. Effects of obesity and exercise on bone marrow progenitor cells after radiation. Med. Sci. Sports Exerc. 2019, 51, 1126–1136. [Google Scholar]
- Ju, Z.; Guo, P.; Xiang, J.; Lei, R.; Ren, G.; Zhou, M.; Yang, X.; Zhou, P.; Huang, R. Low-dose radiation exaggerates HFD-induced metabolic dysfunction by gut microbiota through PA-PYCR1 axis. Commun. Biol. 2022, 5, 945. [Google Scholar]
- Ren, J.; Yuan, T.; Li, H.; Wu, X.; Zhang, J.; Li, D.; Lu, L.; Fan, S. Sex differences of radiation damage in high-fat-diet-fed mice and the regulatory effect of melatonin. Nutrients 2022, 15, 64. [Google Scholar] [CrossRef]
- Liu, X.; Huang, X.; Luo, J.; Gao, S.N.; Bai, C.; Xie, D.; Gao, S.S.; Guan, H.; Huang, R.; Zhou, P.K. Low-dose radiation promotes high-fat diet-induced atherosclerosis by activating cGAS signal pathway. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 167443. [Google Scholar]
- Tiamson, E.; Fritz, K.E.; Campana, H.; Anzola, E.; Zgoda, A.; Daoud, A.S. Studies in rabbits of cellular mechanisms accounting for enhancement of diet-induced atherosclerosis by x-irradiation. Exp. Mol. Pathol. 1970, 12, 175–184. [Google Scholar]
- Bianchini, F.; Kaaks, R.; Vainio, H. Overweight, obesity, and cancer risk. Lancet Oncol. 2002, 3, 565–574. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Prevalence of overweight and obesity among adults with diagnosed diabetes—United States, 1988–1994 and 1999–2002. MMWR Morb. Mortal. Wkly. Rep. 2004, 53, 1066–1068.144. [Google Scholar]
- Marchesini, G.; Moscatiello, S.; Di Domizio, S.; Forlani, G. Obesity-associated liver disease. J. Clin. Endocrinol. Metab. 2008, 93, S74–S80. [Google Scholar] [CrossRef] [PubMed]
- Könner, A.C.; Brüning, J.C. Selective insulin and leptin resistance in metabolic disorders. Cell Metab. 2012, 16, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, K.M.; Reynolds, R.M.; Prescott, S.L.; Nyirenda, M.; Jaddoe, V.W.; Eriksson, J.G.; Broekman, B.F. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol. 2017, 5, 53–64. [Google Scholar] [PubMed]
- Voerman, E.; Santos, S.; Patro Golab, B.; Amiano, P.; Ballester, F.; Barros, H.; Bergström, A.; Charles, M.A.; Chatzi, L.; Chevrier, C.; et al. Maternal body mass index, gestational weight gain, and the risk of overweight and obesity across childhood: An individual participant data meta-analysis. PLoS Med. 2019, 16, e1002744. [Google Scholar]
- Hoffman, D.J.; Powell, T.L.; Barrett, E.S.; Hardy, D.B. Developmental origins of metabolic diseases. Physiol. Rev. 2021, 101, 739–795. [Google Scholar] [CrossRef]
- Kamimae-Lanning, A.N.; Krasnow, S.M.; Goloviznina, N.A.; Zhu, X.; Roth-Carter, Q.R.; Levasseur, P.R.; Jeng, S.; McWeeney, S.K.; Kurre, P.; Marks, D.L. Maternal high-fat diet and obesity compromise fetal hematopoiesis. Mol. Metab. 2015, 4, 25–38. [Google Scholar] [CrossRef]
- Sureshchandra, S.; Chan, C.N.; Robino, J.J.; Parmelee, L.K.; Nash, M.J.; Wesolowski, S.R.; Pietras, E.M.; Friedman, J.E.; Takahashi, D.; Shen, W.; et al. Maternal Western-style diet remodels the transcriptional landscape of fetal hematopoietic stem and progenitor cells in rhesus macaques. Stem Cell Rep. 2022, 17, 2595–2609. [Google Scholar] [CrossRef]
- Smith, A.G.; Sheridan, P.A.; Harp, J.B.; Beck, M.A. Diet-induced obese mice have increased mortality and altered immune responses when infected with influenza virus. J. Nutr. 2007, 137, 1236–1243. [Google Scholar] [CrossRef]
- Adler, B.J.; Green, D.E.; Pagnotti, G.M.; Chan, M.E.; Rubin, C.T. High fat diet rapidly suppresses B lymphopoiesis by disrupting the supportive capacity of the bone marrow niche. PLoS ONE 2014, 9, e90639. [Google Scholar]
- Singer, K.; DelProposto, J.; Morris, D.L.; Zamarron, B.; Mergian, T.; Maley, N.; Cho, K.W.; Geletka, L.; Subbaiah, P.; Muir, L.; et al. Diet-induced obesity promotes myelopoiesis in hematopoietic stem cells. Mol. Metab. 2014, 3, 664–675. [Google Scholar]
- van den Berg, S.M.; Seijkens, T.T.; Kusters, P.J.; Beckers, L.; den Toom, M.; Smeets, E.; Levels, J.; de Winther, M.P.; Lutgens, E. Diet-induced obesity in mice diminishes hematopoietic stem and progenitor cells in the bone marrow. FASEB J. 2016, 30, 1779–1788. [Google Scholar] [CrossRef] [PubMed]
- Samuelsson, A.M.; Matthews, P.A.; Argenton, M.; Christie, M.R.; McConnell, J.M.; Jansen, E.H.; Piersma, A.H.; Ozanne, S.E.; Twinn, D.F.; Remacle, C.; et al. Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: A novel murine model of developmental programming. Hypertension 2008, 51, 383–392. [Google Scholar] [PubMed]
- McCurdy, C.E.; Bishop, J.M.; Williams, S.M.; Grayson, B.E.; Smith, M.S.; Friedman, J.E.; Grove, K.L. Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J. Clin. Investig. 2009, 119, 323–335. [Google Scholar] [PubMed]
- Murabayashi, N.; Sugiyama, T.; Zhang, L.; Kamimoto, Y.; Umekawa, T.; Ma, N.; Sagawa, N. Maternal high-fat diets cause insulin resistance through inflammatory changes in fetal adipose tissue. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 169, 39–44. [Google Scholar] [CrossRef]
- Vogt, M.C.; Paeger, L.; Hess, S.; Steculorum, S.M.; Awazawa, M.; Hampel, B.; Neupert, S.; Nicholls, H.T.; Mauer, J.; Hausen, A.C.; et al. Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding. Cell 2014, 156, 495–509. [Google Scholar] [CrossRef]
- Hafner, H.; Chang, E.; Carlson, Z.; Zhu, A.; Varghese, M.; Clemente, J.; Abrishami, S.; Bagchi, D.P.; MacDougald, O.A.; Singer, K.; et al. Lactational high-fat diet exposure programs metabolic inflammation and bone marrow adiposity in male offspring. Nutrients 2019, 11, 1393. [Google Scholar] [CrossRef]
- Hirakawa, H.; Gao, L.; Tavakol, D.N.; Vunjak-Novakovic, G.; Ding, L. Cellular plasticity of the bone marrow niche promotes hematopoietic stem cell regeneration. Nat. Genet. 2023, 55, 1941–1952. [Google Scholar] [CrossRef]
- Labella, R.; Vujačić, M.; Trivanović, D. Bone marrow adipose tissue: Regulation of osteoblastic niche, hematopoiesis and hematological malignancies. Stem Cell Rev. Rep. 2023, 19, 1135–1151. [Google Scholar]
- Graf, D.; Di Cagno, R.; Fåk, F.; Flint, H.J.; Nyman, M.; Saarela, M.; Watzl, B. Contribution of diet to the composition of the human gut microbiota. Microb. Ecol. Health Dis. 2015, 26, 26164. [Google Scholar]
- Gomez de Agüero, M.; Ganal-Vonarburg, S.C.; Fuhrer, T.; Rupp, S.; Uchimura, Y.; Li, H.; Steinert, A.; Heikenwalder, M.; Hapfelmeier, S.; Sauer, U.; et al. The maternal microbiota drives early postnatal innate immune development. Science 2016, 351, 1296–1302. [Google Scholar] [CrossRef]
- Macpherson, A.J.; de Agüero, M.G.; Ganal-Vonarburg, S.C. How nutrition and the maternal microbiota shape the neonatal immune system. Nat. Rev. Immunol. 2017, 17, 508–517. [Google Scholar] [PubMed]
- Hansen, C.H.; Andersen, L.S.; Krych, L.; Metzdorff, S.B.; Hasselby, J.P.; Skov, S.; Nielsen, D.S.; Buschard, K.; Hansen, L.H.; Hansen, A.K. Mode of delivery shapes gut colonization pattern and modulates regulatory immunity in mice. J. Immunol. 2014, 193, 1213–1222. [Google Scholar] [PubMed]
- Ferretti, P.; Pasolli, E.; Tett, A.; Asnicar, F.; Gorfer, V.; Fedi, S.; Armanini, F.; Truong, D.T.; Manara, S.; Zolfo, M.; et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 2018, 24, 133–145.e135. [Google Scholar]
- Ma, J.; Prince, A.L.; Bader, D.; Hu, M.; Ganu, R.; Baquero, K.; Blundell, P.; Alan Harris, R.; Frias, A.E.; Grove, K.L.; et al. High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat. Commun. 2014, 5, 3889. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, G.L.; Hannemann, N.; Ipseiz, N.; Krönke, G.; Bäuerle, T.; Munos, L.; Wirtz, S.; Schett, G.; Bozec, A. Microbiota from obese mice regulate hematopoietic stem cell differentiation by altering the bone niche. Cell Metab. 2015, 22, 886–894. [Google Scholar]
- Yan, H.; Baldridge, M.T.; King, K.Y. Hematopoiesis and the bacterial microbiome. Blood 2018, 132, 559–564. [Google Scholar]
- Mao, A.; Sun, C.; Katsube, T.; Wang, B. A Minireview on gastrointestinal microbiota and radiosusceptibility. Dose Response 2020, 18, 1559325820963859. [Google Scholar]
- Limesand, S.W.; Goyal, R. Epigenetic responses and the developmental origins of health and disease. J. Endocrinol. 2019, 242, T105–T119. [Google Scholar]
- Bansal, A.; Simmons, R.A. Epigenetics and developmental origins of diabetes: Correlation or causation? Am. J. Physiol. Endocrinol. Metab. 2018, 315, E15–E28. [Google Scholar]
- Ge, Z.J.; Luo, S.M.; Lin, F.; Liang, Q.X.; Huang, L.; Wei, Y.C.; Hou, Y.; Han, Z.M.; Schatten, H.; Sun, Q.Y. DNA methylation in oocytes and liver of female mice and their offspring: Effects of high-fat-diet-induced obesity. Environ. Health Perspect. 2014, 122, 159–164. [Google Scholar]
- Han, L.; Ren, C.; Li, L.; Li, X.; Ge, J.; Wang, H.; Miao, Y.L.; Guo, X.; Moley, K.H.; Shu, W.; et al. Embryonic defects induced by maternal obesity in mice derive from Stella insufficiency in oocytes. Nat. Genet. 2018, 50, 432–442. [Google Scholar] [PubMed]
- Gallou-Kabani, C.; Gabory, A.; Tost, J.; Karimi, M.; Mayeur, S.; Lesage, J.; Boudadi, E.; Gross, M.S.; Taurelle, J.; Vigé, A.; et al. Sex- and diet-specific changes of imprinted gene expression and DNA methylation in mouse placenta under a high-fat diet. PLoS ONE 2010, 5, e14398. [Google Scholar]
- Masuyama, H.; Hiramatsu, Y. Effects of a high-fat diet exposure in utero on the metabolic syndrome-like phenomenon in mouse offspring through epigenetic changes in adipocytokine gene expression. Endocrinology 2012, 153, 2823–2830. [Google Scholar]
- Borengasser, S.J.; Zhong, Y.; Kang, P.; Lindsey, F.; Ronis, M.J.; Badger, T.M.; Gomez-Acevedo, H.; Shankar, K. Maternal obesity enhances white adipose tissue differentiation and alters genome-scale DNA methylation in male rat offspring. Endocrinology 2013, 154, 4113–4125. [Google Scholar]
- Butruille, L.; Marousez, L.; Pourpe, C.; Oger, F.; Lecoutre, S.; Catheline, D.; Görs, S.; Metges, C.C.; Guinez, C.; Laborie, C.; et al. Maternal high-fat diet during suckling programs visceral adiposity and epigenetic regulation of adipose tissue stearoyl-CoA desaturase-1 in offspring. Int. J. Obes. 2019, 43, 2381–2393. [Google Scholar]
- Suter, M.A.; Chen, A.; Burdine, M.S.; Choudhury, M.; Harris, R.A.; Lane, R.H.; Friedman, J.E.; Grove, K.L.; Tackett, A.J.; Aagaard, K.M. A maternal high-fat diet modulates fetal SIRT1 histone and protein deacetylase activity in nonhuman primates. FASEB J. 2012, 26, 5106–5114. [Google Scholar]
- Yang, K.F.; Cai, W.; Xu, J.L.; Shi, W. Maternal high-fat diet programs Wnt genes through histone modification in the liver of neonatal rats. J. Mol. Endocrinol. 2012, 49, 107–114. [Google Scholar]
- Suter, M.A.; Ma, J.; Vuguin, P.M.; Hartil, K.; Fiallo, A.; Harris, R.A.; Charron, M.J.; Aagaard, K.M. In utero exposure to a maternal high-fat diet alters the epigenetic histone code in a murine model. Am. J. Obstet. Gynecol. 2014, 210, e461–e463. [Google Scholar]
- Bariani, M.V.; Correa, F.; Domínguez Rubio, A.P.; Marvaldi, C.; Schander, J.A.; Beltrame, J.S.; Cella, M.; Silberman, D.M.; Aisemberg, J.; Franchi, A.M. Maternal obesogenic diet combined with postnatal exposure to high-fat diet induces metabolic alterations in offspring. J. Cell Physiol. 2020, 235, 8260–8269. [Google Scholar]
- Khan, I.Y.; Taylor, P.D.; Dekou, V.; Seed, P.T.; Lakasing, L.; Graham, D.; Dominiczak, A.F.; Hanson, M.A.; Poston, L. Gender-linked hypertension in offspring of lard-fed pregnant rats. Hypertension 2003, 41, 168–175. [Google Scholar]
- Nivoit, P.; Morens, C.; Van Assche, F.A.; Jansen, E.; Poston, L.; Remacle, C.; Reusens, B. Established diet-induced obesity in female rats leads to offspring hyperphagia, adiposity and insulin resistance. Diabetologia 2009, 52, 1133–1142. [Google Scholar] [PubMed]
- Mingrone, G.; Manco, M.; Mora, M.E.; Guidone, C.; Iaconelli, A.; Gniuli, D.; Leccesi, L.; Chiellini, C.; Ghirlanda, G. Influence of maternal obesity on insulin sensitivity and secretion in offspring. Diabetes Care 2008, 31, 1872–1876. [Google Scholar] [PubMed]
- Mao, J.; Zhang, X.; Sieli, P.T.; Falduto, M.T.; Torres, K.E.; Rosenfeld, C.S. Contrasting effects of different maternal diets on sexually dimorphic gene expression in the murine placenta. Proc. Natl. Acad. Sci. USA 2010, 107, 5557–5562. [Google Scholar] [PubMed]
- Aiken, C.E.; Ozanne, S.E. Sex differences in developmental programming models. Reproduction 2013, 145, R1–R13. [Google Scholar] [PubMed]
- Jungheim, E.S.; Schoeller, E.L.; Marquard, K.L.; Louden, E.D.; Schaffer, J.E.; Moley, K.H. Diet-induced obesity model: Abnormal oocytes and persistent growth abnormalities in the offspring. Endocrinology 2010, 151, 4039–4046. [Google Scholar]
- Aizawa, R.; Ibayashi, M.; Hatakeyama, T.; Tatsumi, T.; Tsukamoto, S. Impact of short-term high-fat feeding on lipid droplet content in mouse oocytes. J. Reprod. Dev. 2021, 67, 73–77. [Google Scholar]
- Islam, M.M.; Sultana, N.; Liu, C.; Mao, A.; Katsube, T.; Wang, B. Impact of dietary ingredients on radioprotection and radiosensitization: A comprehensive review. Ann. Med. 2024, 56, 2396558. [Google Scholar]
- Wang, B.; Katsube, T.; Tanaka, K.; Murakami, M.; Nenoi, M. Mitigation of iron irradiation-induced genotoxicity and genomic instability by postexposure dietary restriction in mice. BioMed. Res. Int. 2021, 2021, 2888393. [Google Scholar]
- Mercier, B.D.; Tizpa, E.; Philip, E.J.; Feng, Q.; Huang, Z.; Thomas, R.M.; Pal, S.K.; Dorff, T.B.; Li, Y.R. Dietary interventions in cancer treatment and response: A comprehensive review. Cancers 2022, 14, 5149. [Google Scholar] [CrossRef]
Organ/System | Mechanisms | Details | References |
---|---|---|---|
Metabolic system | Insulin resistance and lipid dysregulation | IR disrupted insulin signaling by reducing IRS-1 phosphorylation in subcutaneous adipose tissue and increasing basal lipolysis, leading to adipocyte hypertrophy, macrophage infiltration, and reduced adiponectin levels | [148,151] |
Mitochondrial dysfunction | IR reduced mtDNA copy numbers and increased mtDNA mutations, impairing energy balance, promoting fat storage, and disrupting systemic lipid metabolism | [150,151] | |
Hormonal dysregulation | IR reduced IGF-1 signaling and downregulates CPT1 and IRS2, critical for lipid metabolism and insulin sensitivity, leading to obesity, insulin resistance, and systemic metabolic syndrome | [152] | |
Adipose tissue | Hepatic inflammation mitigation | Enlarged adipocytes (hypertrophy), increased lipolysis, and macrophage-driven inflammation disrupt glycemic control | [148] |
Absence of fibrosis | IR-induced metabolic dysfunction occurred without evidence of adipose tissue fibrosis, highlighting alternative pathways | [148] | |
Liver | Lipid accumulation | IR increased liver lipid content and serum leptin levels, reflecting systemic lipid dysregulation independent of food intake | [150,151] |
Cardiovascular system | IGF-1 signaling impairment | Reduced cardiac IGF-1 signaling contributed to metabolic syndrome and cardiovascular dysfunction, paralleling HFD outcomes | [152] |
TGF-β1-mediated fibrosis | Elevated TGF-β1 levels exacerbated tissue damage and fibrosis, impairing organ function and promoting cardiovascular abnormalities | [152] | |
Systemic effects | Chronic inflammation and adiposity | IR-induced inflammation and systemic lipid dysregulation contributed to adiposity and metabolic syndrome, resembling HFD outcomes | [147,151] |
Dose-dependent weight gain | Chronic low-dose-rate IR exposure caused weight gain in a dose-dependent manner, alongside increased adiposity and disrupted lipid profiles | [149,150] | |
Metabolic syndrome | IR exposure lead to systemic metabolic dysfunction, including altered lipid profiles, reduced IGF-1 levels, and increased leptin, contributing to obesity and related disorders | [147,151] | |
Endocrine system | Disrupted hormonal | IR reduced circulating IGF-1 and leptin signaling dysregulation reflecting systemic endocrine dysfunction, contributing to obesity and metabolic abnormalities | [151,152] |
Organ/System | Mechanisms | Details | References |
---|---|---|---|
Cardiovascular system | Reduction in atherosclerosis | High-dose localized irradiation reduced atherosclerotic lesions in cholesterol-fed rabbits by suppressing intimal hyperplasia | [153,154] |
Inhibition of atherosclerosis | LDR reduced neutrophil extracellular traps, decreasing endothelial plaque formation in atherosclerosis models by modulating immune pathways and inflammation | [163] | |
Reduction in inflammation | LDR reduced pro-inflammatory cytokines while increasing anti-inflammatory markers, helping suppress cardiovascular inflammation | [159] | |
Hepatic system | Hepatic inflammation mitigation | FWBGI reduced liver inflammation, increased anti-inflammatory cytokines, and modulated gene expression to improve insulin sensitivity and energy balance | [159,160] |
Endocrine system | Enhanced glucose metabolism and insulin sensitivity | FWBGI increased GLP-1 expression, upregulated GLP-1 receptors in the liver and brain, and activated mitochondrial uncoupling proteins, improving insulin sensitivity and energy balance | [161] |
Systemic metabolic effects | Systemic metabolic benefits | LDR improved dyslipidemia, insulin resistance, and kidney pathology by enhancing protein kinase B activation and Nrf2-mediated antioxidant responses | [157,158] |
Anti-inflammatory effects | FWBGI suppressed pro-inflammatory cytokines while promoting anti-inflammatory balance | [159] | |
Lipid metabolism | Modulation of lipid metabolism | IR altered lipid remodeling processes, with HFD partially mitigating IR-induced skin injuries; Adipocytes facilitated tissue repair via fatty acid-binding protein 4 and palmitic acid pathways | [162] |
Organ/System | Mechanisms | Details | References |
---|---|---|---|
Cardiovascular system | Lipid dysregulation and atherosclerosis | HFD elevated LDL, reduced HDL, and induced lipid deposition in arterial walls; when combined with IR, leading to oxidative stress, inflammation, smooth muscle cell proliferation, and accelerating atherosclerotic lesions in coronary arteries | [164,165,168,169,178,179] |
Oxidative stress and vascular inflammation | IR and HFD synergistically enhanced oxidative stress and vascular inflammation, promoting arterial injury and plaque formation | [166,167,168] | |
Metabolic system | Insulin resistance and glucose dysregulation | HFD disrupted glucose metabolism and insulin signaling in skeletal muscle and adipose progenitor cells; IR exacerbated these metabolic dysfunctions through persistent intracellular signaling disruptions | [173,176] |
Epigenetic reprogramming | HFD altered methylation of gene promoters and disrupts microRNA, leading to radiosensitization and impaired adaptive responses to IR | [171] | |
Gut microbiota dysregulation | HFD reduced microbial diversity, increased inflammation, and exacerbated systemic IR-induced damage; synergistic effects worsened insulin resistance and intestinal barrier dysfunction, especially in female mice | [12,176,177] | |
Liver | Oxidative stress, inflammation, and fibrosis | HFD amplified IR-induced liver damage, leading to heightened inflammation, oxidative stress, fibrosis, and increased cancer risk | [174] |
Hematopoietic system | Suppression of hematopoietic stem and progenitor cells | LDR improved dyslipidemia, insulin resistance, and kidney pathology by enhancing protein kinase B activation and Nrf2-mediated antioxidant responses | [175] |
Increase in radiosensitivity and genotoxicity | HFD increased radiosensitivity, as evidenced by reduced survival following WBI and persistent presence of micronucleated erythrocytes in bone marrow | [172] | |
Intestinal system | Intestinal barrier dysfunction | HFD combined with IR damaged the intestinal barrier, reduced stem cell regeneration, and altered gut microbiota, worsening systemic inflammation and recovery; effects were more pronounced in female mice | [13,177] |
Systemic effects | Chronic inflammation | HFD synergized with IR induced chronic inflammation via cGAS-STING signaling, leading to systemic oxidative stress, vascular stiffness, and enhanced inflammatory responses | [178] |
Decrease in survival post-IR | HFD diminished the adaptive response to IR, reducing survival rates and increasing the LD50. | [172] |
Organ/System | Mechanisms | Details | References |
---|---|---|---|
Hematopoietic tissues | HFD-induced obesity can affect the hematopoietic system not only in affected individuals themselves but also in their offspring | These papers demonstrate in the mouse models that HFD-induced obesity compromises hematopoiesis in the bone marrow, modulates immune responses, and sensitizes affected individuals to environmental stresses such as IR | [172,175,189,190,191,192] |
These papers demonstrate in the moue and rhesus macaque models that maternal HFD compromises the proliferation and differentiation of HSPCs in the fetal liver and bone marrow | [187,188] | ||
Endocrine and metabolic systems, adipose tissues, hematopoietic tissues | Maternal HFD induces perturbations in metabolic and endocrine systems, chronic inflammation, increased adipose tissue, and ultimately impacts the hematopoietic system of offspring | Using mouse or Japanese macaque model, these papers show that maternal HFD induces perturbations in metabolic and endocrine systems regulating lipid and glucose metabolism, leads to an increase in adipose tissues, and triggers inflammatory responses in the liver and adipose tissues | [193,194,195] |
This paper links chronic inflammation to altered HSC proliferation and differentiation in HFD-induced obese mice themselves | [191] | ||
These papers show that an increase in adipose tissue in the bone marrow of HFD-induced obese mice impairs the development and homeostasis of hematopoiesis, as adipose tissue in the bone marrow constitutes a specific microenvironment for hematopoietic cells | [198,199] | ||
Intestinal microbiota and hematopoietic and immune systems | Maternal HFD modulates the composition of intestinal microbiota in the mother herself as well as in their offspring; intestinal microbiota plays an important role in the development of the immune system | This review article summarizes the modulating effects of a Western-style diet on the composition of the human intestinal microbiota | [200] |
These papers show that the maternal microbial metabolites can be transferred across the placental barrier to the fetus and through lactation to the neonates and shapes the immune system of the offspring | [201,202] | ||
This paper shows that a maternal HFD persistently alters the offspring microbiome in a primate model (Japanese macaque) | [205] | ||
These papers demonstrate in mice and humans that the colonization of offspring’s microbiota is initiated by the vertical transmission of microbiota during their passage through the birth canal | [203,204] | ||
These papers show that HFD- or obesity-induced changes in intestinal microbiota affect the regulation of hematopoiesis in bone marrow | [206,207] | ||
This review summarizes studies in mouse models demonstrating that changes in the gut microbiota can influence the radiosusceptibility of the host mice | [208] | ||
Oocytes, plasence, adipose tissues, and liver | Maternal HFD induces the epigenetic changes in oocyets, placenta and adipose tissues, and liver of offspring | These papers demonstrate the changes in DNA methylation in oocytes of HFD-induced obese mice | [211,212] |
This paper demonstrates that maternal HFD influences placental methylation patterns only in female offspring of mice | [213] | ||
These papers demonstrate alterations in DNA methylation and histone modifications in adipose tissues following maternal HFD consumption or obesity in mice and rats | [214,215,216] | ||
These papers demonstrate alterations in DNA methylation and histone modifications in liver following exposure to maternal HFD in mice, rats and Japanese macaques | [217,218,219,220] | ||
These papers demonstrate sexual dimorphism in epigenetic changes in the placenta following maternal HFD in mice | [213,224] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kantapan, J.; Katsube, T.; Wang, B. High-Fat Diet and Altered Radiation Response. Biology 2025, 14, 324. https://doi.org/10.3390/biology14040324
Kantapan J, Katsube T, Wang B. High-Fat Diet and Altered Radiation Response. Biology. 2025; 14(4):324. https://doi.org/10.3390/biology14040324
Chicago/Turabian StyleKantapan, Jiraporn, Takanori Katsube, and Bing Wang. 2025. "High-Fat Diet and Altered Radiation Response" Biology 14, no. 4: 324. https://doi.org/10.3390/biology14040324
APA StyleKantapan, J., Katsube, T., & Wang, B. (2025). High-Fat Diet and Altered Radiation Response. Biology, 14(4), 324. https://doi.org/10.3390/biology14040324