Detection of Genetic Variants in Thai Population by Trio-Based Whole-Genome Sequencing Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Whole-Genome Sequencing
2.3. Variant Calling and Annotation
3. Results
3.1. Demographic Data
3.2. Whole-Genome Sequencing Quality
3.3. Whole-Genome Sequencing Variant Detection in a Healthy Thai Population
3.4. De Novo Mutation of a Healthy Thai Population Using Trio Whole-Genome Sequencing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WGS | Whole-genome sequencing |
WES | Whole-exome sequencing |
DNMs | De novo mutations |
gVCF | Genomic variant call format |
VCF | Variant call format |
SNV | Single nucleotide variant |
INDEL | Insertion and deletion |
INS | Insertion |
MNV | Multi-nucleotide variants |
1KGP | 1000 Genomes Project database |
A | Adenine |
T | Thymine |
C | Cytosine |
G | Guanine |
AF | Allele Frequencies |
Chr: Pos | Chromosome and positions |
rsID | Reference SNP cluster ID. |
LoF | loss-of-function |
km2 | square kilometer |
mL | Milliliter |
SD | Standard deviation |
CFM | Craniofacial microsomia |
References
- Van El, C.G.; Cornel, M.C.; Borry, P.; Hastings, R.J.; Fellmann, F.; Hodgson, S.V.; De Wert, G.M. Whole-genome sequencing in health care. Rec-ommendations of the European Society of Human Genetics. Eur. J. Hum. Genet. 2013, 21 (Suppl. S1), S1–S5. [Google Scholar] [CrossRef] [PubMed]
- Genome of the Netherlands Consortium. Whole-genome sequence variation, population structure, and demographic history of the Dutch population. Nat. Genet. 2014, 46, 818–825. [Google Scholar] [CrossRef] [PubMed]
- Le, V.S.; Tran, K.T.; Bui, H.T.P.; Le, H.T.T.; Nguyen, C.D.; Do, D.H.; Ly, H.T.T.; Pham, L.T.D.; Dao, L.T.M.; Nguyen, L.T. A Vietnamese human genetic variation database. Hum. Mutat. 2019, 40, 1664–1675. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.N.; Piro, R.M.; Jager, M. Computational Exome and Genome Analysis; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–423. [Google Scholar] [CrossRef] [PubMed]
- Besenbacher, S.; Liu, S.; Izarzugaza, J.M.G.; Grove, J.; Belling, K.; Bork-Jensen, J.; Huang, S.; Als, T.D.; Li, S.; Yadav, R.; et al. Novel variation and de novo mutation rates in population-wide de novo assembled Danish trios. Nat. Commun. 2015, 6, 5969. [Google Scholar] [CrossRef] [PubMed]
- Veltman, J.A.; Brunner, H.G. De novo mutations in human genetic disease. Nat. Rev. Genet. 2012, 13, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Scally, A.; Durbin, R. Revising the human mutation rate: Implications for understanding human evolution. Nat. Rev. Genet. 2012, 13, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Ségurel, L.; Wyman, M.J.; Przeworski, M. Determinants of Mutation Rate Variation in the Human Germline. Annu. Rev. Genom. Hum. Genet. 2014, 15, 47–70. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, G.; Veltman, J.A. The role of de novo mutations in adult-onset neurodegenerative disorders. Acta Neuropathol. 2019, 137, 183–207. [Google Scholar] [CrossRef] [PubMed]
- Goswami, C.; Chattopadhyay, A.; Chuang, E.Y. Rare variants: Data types and analysis strategies. Ann. Transl. Med. 2021, 9, 961. [Google Scholar] [CrossRef] [PubMed]
- The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1092 human genomes. Nature 2012, 491, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Palma, E.; Gramm, M.; Nürnberg, P.; May, P.; Lal, D. Simple ClinVar: An interactive web server to explore and retrieve gene and disease variants aggregated in ClinVar database. Nucleic Acids Res. 2019, 47, W99–W105. [Google Scholar] [CrossRef] [PubMed]
- Administration TBoR. Available online: https://www.bora.dopa.go.th (accessed on 6 November 2022).
- Kutanan, W.; Shoocongdej, R.; Srikummool, M.; Hübner, A.; Suttipai, T.; Srithawong, S.; Kampuansai, J.; Stoneking, M. Cultural variation impacts paternal and maternal genetic lineages of the Hmong-Mien and Sino-Tibetan groups from Thailand. Eur. J. Hum. Genet. 2020, 28, 1563–1579. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Dou, J.; Chai, X.; Bellis, C.; Wilm, A.; Shih, C.C.; Soon, W.W.J.; Bertin, N.; Lin, C.B.; Khor, C.C.; et al. Large-Scale Whole-Genome Sequencing of Three Diverse Asian Populations in Singapore. Cell 2019, 179, 736–749.e15. [Google Scholar] [CrossRef] [PubMed]
- Boomsma, D.I.; Wijmenga, C.; Slagboom, E.P.; Swertz, M.A.; Karssen, L.C.; Abdellaoui, A.; Ye, K.; Guryev, V.; Vermaat, M.; van Dijk, F.; et al. The Genome of the Netherlands: Design, and project goals. Eur. J. Hum. Genet. 2014, 22, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Francioli, L.C.; Cretu-Stancu, M.; Garimella, K.V.; Fromer, M.; Kloosterman, W.P.; Genome of the Netherlands Consortium; Samocha, K.E.; Neale, B.M.; Daly, M.J.; Banks, E.; et al. A framework for the detection of de novo mutations in family-based sequencing data. Eur. J. Hum. Genet. 2017, 25, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Kong, A.; Frigge, M.L.; Masson, G.; Besenbacher, S.; Sulem, P.; Magnusson, G.; Gudjonsson, S.A.; Sigurdsson, A.; Jonasdottir, A.; Jonasdottir, A.; et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 2012, 488, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Timberlake, A.T.; Griffin, C.; Heike, C.L.; Hing, A.V.; Cunningham, M.L.; Chitayat, D.; Luquetti, D.V. Haploinsufficiency of SF3B2 causes cranio-facial microsomia. Nat. Commun. 2021, 12, 4680. [Google Scholar] [CrossRef] [PubMed]
- Pranckėnienė, L.; Jakaitienė, A.; Ambrozaitytė, L.; Kavaliauskienė, I.; Kučinskas, V. Insights Into de novo Mutation Variation in Lithuanian Exome. Front. Genet. 2018, 9, 315. [Google Scholar] [CrossRef] [PubMed]
Participants | Female | Male | Median Age (Year) |
---|---|---|---|
Maternal (n = 40) | 40 | 57.3 (43–70) | |
Parental (n = 40) | 40 | 61.0 (45–80) | |
Offspring (n = 40) | 26 | 14 | 27.3 (18–37) |
Databases | No. of Variants | Type of Variants |
---|---|---|
Total variants | 20,217,302 | |
Novel variants | 1,104,725 (5.46%) | |
Known variants | 19,112,577 (94.54%) | SNV = 62.1% INDEL = 29.9% DEL = 1.5% INS = 1.3% MNV = 0.0007% |
Databases | No. of Variants | Type of Variants |
---|---|---|
Rare variant (<0.01) | 3,048,219 (15.08%) | Intergenic and intron = 97.56% Non-intergenic and intron = 2.44% |
Low frequency (0.01–0.05) | 1,421,767 (7.03%) | Intergenic and intron = 99.255% Non-intergenic and intron = 0.75% |
Common variant (>0.05) | 7,596,517 (37.57%) | Intergenic and intron = 97.50% Non-intergenic and intron = 2.50% |
Missing (not found in 1KGP) | 8,150,799 (40.32%) | Intergenic and intron = 98.62% Non-intergenic and intron = 1.38% |
Type of Variants | Rare | Low Frequency | Common | Missing | Total |
---|---|---|---|---|---|
Pathogenic | 56 (33.14%) | 11 (6.51%) | 15 (8.88%) | 87 (51.48%) | 169 |
Likely pathogenic | 18 (30.00%) | 1 (1.67%) | 6 (10.00%) | 35 (58.33%) | 60 |
Uncertain significance | 1933 (35.27%) | 43 (0.78%) | 98 (1.79%) | 3407 (62.16%) | 5481 |
Likely benign | 5696 (36.66%) | 3392 (21.83%) | 2350 (15.13%) | 4099 (26.38%) | 15,537 |
Benign | 5215 (5.28%) | 8539 (8.65%) | 71,618 (72.57%) | 13,314 (13.49%) | 98,686 |
Chr: Pos | Identifier | Gene Names | Condition | AF in 80 Thai |
---|---|---|---|---|
1:144915624 | rs66512216 | PDE4DIP | Hepatocellular carcinoma | 0.338 |
1:26608812 | rs2073002071 | UBXN11 | Hepatocellular carcinoma, small cell lung carcinoma, lung cancer | 0.088 |
1:26608826 | rs752317296 | UBXN11 | Hepatocellular carcinoma, lung cancer | 0.154 |
1:26608836 | rs757094832 | UBXN11 | Hepatocellular carcinoma, lung cancer | 0.154 |
1:26608866 | rs764852231 | UBXN11 | Hepatocellular carcinoma, lung cancer, small cell lung carcinoma | 0.108 |
3:113376111 | rs10606566 | USF3 | Hepatocellular carcinoma | 0.117 |
3:113376111 | rs10606566 | USF3 | Hepatocellular carcinoma | 0.417, 0.117 |
3:195508455 | rs1553873983 | MUC4 | Hepatocellular carcinoma, lung cancer | 0.071 |
6:16327865 | rs751421308 | ATXN1 | Hepatocellular carcinoma | 0.050 |
6:16327913 | rs751377396 | ATXN1 | Hepatocellular carcinoma | 0.242 |
6:170871055 | rs770128377 | TBP | Hepatocellular carcinoma | 0.313 |
11:5248173 | rs33950507 | HBB | Hemoglobin E/beta thalassemia disease | 0.063 |
16:72821594 | rs374416547 | ZFHX3 | Lung cancer, small cell lung carcinoma | 0.071 |
16:72821619 | rs751575363 | ZFHX3 | Lung cancer | 0.283 |
17:28564285 | rs774676466 | Serotonin transporter activity | 0.333 | |
19:501702 | rs1555716175 | MADCAM1 | Hepatocellular carcinoma | 0.417 |
19:501702 | rs768810399, rs1555716175 | MADCAM1 | Hepatocellular carcinoma | 0.417, 0.133 |
19:501744 | rs1555716199 | MADCAM1 | Hepatocellular carcinoma | 0.650 |
22:46191235 | rs60726084 | ATXN10 | Spinocerebellar ataxia type 10 | 0.088 |
X:146993568 | rs193922936 | FMR1 | Fragile-X associated tremor/ataxia syndrome | 0.250 |
Detail | No. of Variants |
---|---|
hiconfdenovo | 19,710 |
dbSNP155 | |
Known variants | 14,503 (73.58%) |
Novel variants | 5207 (26.42%) |
RefSeq | |
Intergenic_variant | 12,910 (65.50%) |
Intron_variant | 6453 (32.74%) |
Non-intergenic_variant and intron_variant | 347 (1.76%) |
ClinVar | |
Pathogenic | 1 |
Likely pathogenic | 0 |
Uncertain significance | 6 |
Likely benign | 4 |
Benign | 18 |
Chr: Pos | Gene Names | Sequence Ontology | Effect | Conditions |
---|---|---|---|---|
Pathogenic variant | ||||
11:65829404 | SF3B2 | stop gained | LoF | Craniofacial microsomia |
Uncertain significance variants | ||||
2:62067418 | FAM161A | missense_variant | Missense | Retinitis pigmentosa |
2:63712067 | WDPCP | missense_variant | Missense | Bardet–Biedl syndrome |
3:113664291 | GRAMD1C | missense_variant | Missense | Inborn genetic diseases |
12:104379507 | TDG | frameshift_variant | LoF | Hereditary breast–ovarian cancer syndrome |
16:28950575 | CD19 | 3_prime_UTR_variant | Other | Common variable immune deficiency |
16:89383444 | ANKRD11 | 5_prime_UTR_variant | Other | KBG syndrome |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boonin, P.; Klumsathian, S.; Iemwimangsa, N.; Sensorn, I.; Charoenyingwatana, A.; Chantratita, W.; Chareonsirisuthigul, T. Detection of Genetic Variants in Thai Population by Trio-Based Whole-Genome Sequencing Study. Biology 2025, 14, 301. https://doi.org/10.3390/biology14030301
Boonin P, Klumsathian S, Iemwimangsa N, Sensorn I, Charoenyingwatana A, Chantratita W, Chareonsirisuthigul T. Detection of Genetic Variants in Thai Population by Trio-Based Whole-Genome Sequencing Study. Biology. 2025; 14(3):301. https://doi.org/10.3390/biology14030301
Chicago/Turabian StyleBoonin, Patcharin, Sommon Klumsathian, Nareenart Iemwimangsa, Insee Sensorn, Angkana Charoenyingwatana, Wasun Chantratita, and Takol Chareonsirisuthigul. 2025. "Detection of Genetic Variants in Thai Population by Trio-Based Whole-Genome Sequencing Study" Biology 14, no. 3: 301. https://doi.org/10.3390/biology14030301
APA StyleBoonin, P., Klumsathian, S., Iemwimangsa, N., Sensorn, I., Charoenyingwatana, A., Chantratita, W., & Chareonsirisuthigul, T. (2025). Detection of Genetic Variants in Thai Population by Trio-Based Whole-Genome Sequencing Study. Biology, 14(3), 301. https://doi.org/10.3390/biology14030301