The Role of TRPV1 in Type 1 Diabetes
Simple Summary
Abstract
1. Introduction
2. TRPV1’s Role in Immune Modulation and Autoimmunity
3. Beta-Cell Function and Survival

4. Vascular Dysfunction and Cardiometabolic Complications
5. CNS Dysregulation and Cognitive Impairment
6. Sensory Neuropathy and Pain Signaling in Type 1 Diabetes
7. Genetics, Epigenetics, and TRPV1 Regulation
8. Translational Overview: Human Evidence and Clinical Implications
9. Limitations and Future Directions
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| TRPV1 | Transient Receptor Potential Vanilloid 1 |
| CNS | Central Nervous System |
| T1D | Type 1 Diabetes |
| NOD | Non-Obese Diabetic |
| NSAIDs | Non-Steroidal Anti-Inflammatory Drugs |
| GSIS | Glucose-Stimulated Insulin Secretion |
| SP | Substance P |
| CGRP | Calcitonin Gene–Related Peptide |
| STZ | Streptozotocin |
| IGF-1 | Insulin-Like Growth Factor 1 |
| PI3K | Phosphoinositide 3-Kinase |
| FGF3 | Fibroblast Growth Factor 3 |
| TLR4 | Toll-Like Receptor 4 |
| HMGB1 | High-Mobility Group Box 1 |
| ROS | Reactive Oxygen Species |
| eNOS | Endothelial Nitric Oxide Synthase |
| NO | Nitric Oxide |
| HDAC2 | Histone Deacetylase 2 |
| CA1 | Cornu Ammonis 1 |
| LPS | Lipopolysaccharide |
| IL-1β | Interleukin-1 Beta |
| IL-6 | Interleukin-6 |
| TNF-α | Tumor Necrosis Factor Alpha |
| TRPA1 | Transient Receptor Potential Ankyrin 1 |
| ERK1/2 | Extracellular Signal–Regulated Kinase 1/2 |
| MAPK | Mitogen-Activated Protein Kinase |
| DRG | Dorsal Root Ganglia |
| P2X3 | Purinergic Receptor P2X, Ligand-Gated Ion Channel 3 |
| P2Y13 | Purinergic Receptor P2Y13 |
| ATP | Adenosine Triphosphate |
| PKC | Protein Kinase C |
| EA | Electroacupuncture |
| CaMKIIα | Calcium/Calmodulin-Dependent Protein Kinase II Alpha |
| NT-3 | Neurotrophin-3 |
| CCR2 | C-C Chemokine Receptor Type 2 |
| SNP | Single Nucleotide Polymorphism |
| M315I | Methionine-to-Isoleucine Substitution at Position 315 |
| miR-199a | MicroRNA-199a |
| lncRNA | Long Non-Coding RNA |
| BC168687 | Long Non-Coding RNA BC168687 |
| CXCL16/ox-LDL | C-X-C Motif Chemokine Ligand 16 / Oxidized Low-Density Lipoprotein |
| LPL | Lysophosphatidylcholine |
| ER | Endoplasmic Reticulum |
| TRP | Transient Receptor Potential |
| CHOP | C/EBP Homologous Protein |
| BiP | Binding Immunoglobulin Protein |
| TRPC | Transient receptor potential canonical channels |
| TRPM2 | Transient receptor potential melastatin-2 |
| TRPV4 | Transient receptor potential vanilloid-4 |
| HLA | Human leukocyte antigen |
References
- Moraes, R.D.A.; Webb, R.C.; Silva, D.F. Vascular Dysfunction in Diabetes and Obesity: Focus on TRP Channels. Front. Physiol. 2021, 12, 645109. [Google Scholar] [CrossRef] [PubMed]
- Basso, L.; Altier, C. Transient receptor potential channels in neuropathic pain. Curr. Opin. Pharmacol. 2017, 32, 9–15. [Google Scholar] [CrossRef]
- Majhi, R.K.; Sahoo, S.S.; Yadav, M.; Pratheek, B.M.; Chattopadhyay, S.; Goswami, C. Functional expression of TRPV channels in T cells and their implications in immune regulation. FEBS J. 2015, 282, 2661–2681. [Google Scholar] [CrossRef]
- Akiba, Y.; Kato, S.; Katsube, K.I.; Nakamura, M.; Takeuchi, K.; Ishii, H.; Hibi, T. Transient receptor potential vanilloid subfamily 1 expressed in pancreatic islet β cells modulates insulin secretion in rats. Biochem. Biophys. Res. Commun. 2004, 321, 219–225. [Google Scholar] [CrossRef]
- Malenczyk, K.; Girach, F.; Szodorai, E.; Storm, P.; Segerstolpe, Å.; Tortoriello, G.; Schnell, R.; Mulder, J.; Romanov, R.A.; Borók, E.; et al. A TRPV1-to-secretagogin regulatory axis controls pancreatic β-cell survival by modulating protein turnover. EMBO J. 2017, 36, 2107–2125. [Google Scholar] [CrossRef]
- Zhong, B.; Ma, S.; Wang, D.H. TRPV1 mediates glucose-induced insulin secretion through releasing neuropeptides. In Vivo 2019, 33, 1431–1437. [Google Scholar] [CrossRef]
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, M.; Caterina, M.J. Thermosensation and pain. J. Neurobiol. 2004, 61, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Vennekens, R.; Menigoz, A.; Nilius, B. TRPs in the brain. Rev. Physiol. Biochem. Pharmacol. 2012, 163, 27–64. [Google Scholar] [CrossRef]
- Julius, D. TRP channels and pain. Annu. Rev. Cell Dev. Biol. 2013, 29, 355–384. [Google Scholar] [CrossRef]
- Razavi, R.; Chan, Y.; Afifiyan, F.N.; Liu, X.J.; Wan, X.; Yantha, J.; Tsui, H.; Tang, L.; Tsai, S.; Santamaria, P.; et al. TRPV1+ sensory neurons control β cell stress and islet inflammation in autoimmune diabetes. Cell 2006, 127, 1123–1135. [Google Scholar] [CrossRef]
- Zsombok, A.; Derbenev, A.V.; Yang, J.; Rinaman, L. Functional plasticity of central TRPV1 receptors in brainstem dorsal vagal complex circuits of streptozotocin-treated hyperglycemic mice. J. Neurosci. 2011, 31, 14024–14031. [Google Scholar] [CrossRef]
- Wang, S.E.; Ko, S.Y.; Jo, S.; Jo, H.R.; Han, J.; Kim, Y.S.; Kaang, B.K. Capsaicin upregulates HDAC2 via TRPV1 and impairs neuronal maturation in mice. Exp. Mol. Med. 2018, 50, e455. [Google Scholar] [CrossRef]
- Atkinson, M.A.; Eisenbarth, G.S.; Michels, A.W. Type 1 diabetes. Lancet 2014, 383, 69–82. [Google Scholar] [CrossRef]
- Van Buren, J.J.; Bhat, S.; Rotello, R.; Pauza, M.E.; Premkumar, L.S. Sensitization and translocation of TRPV1 by insulin and IGF-I. Mol. Pain 2005, 1, 17. [Google Scholar] [CrossRef] [PubMed]
- Gram, D.X.; Ahrén, B.; Nagy, I.; Olsen, U.B.; Brand, C.L.; Sundler, F.; Tabanera, R.; Svendsen, O.; Carr, R.D.; Santha, P.; et al. Capsaicin-sensitive sensory fibers in the islets of Langerhans contribute to defective insulin secretion in Zucker diabetic rat, an animal model for some aspects of human type 2 diabetes. Eur. J. Neurosci. 2007, 25, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, M.; Wen, L.; Xing, P.; Chen, J.; Xia, X.; Ding, W. Role of TRPV1 in neuroendocrine regulation: A potential target against obesity? Front. Immunol. 2025, 16, 1598804. [Google Scholar] [CrossRef]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020, 180, 114147. [Google Scholar] [CrossRef]
- Łukowski, W. Reframing Type 1 Diabetes Through the Endocannabinoidome–Microbiota Axis: A Systems Biology Perspective. Front. Endocrinol. 2025, 16, 1576419. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Tian, M.; Ding, C.; Yu, S. The C/EBP Homologous Protein (CHOP) Transcription Factor Functions in Endoplasmic Reticulum Stress-Induced Apoptosis and Microbial Infection. Front. Immunol. 2019, 9, 3083. [Google Scholar]
- Ohta, T.; Imagawa, T.; Ito, S. Novel gating and sensitizing mechanism of capsaicin receptor (TRPV1). J. Biol. Chem. 2008, 283, 9377–9387. [Google Scholar] [CrossRef]
- Um, J.; Lee, S.; Lee, Y.; Kim, H.; Lee, M.S. Substance P preserves pancreatic β-cells in type 1 and type 2 diabetic mice. Biochem. Biophys. Res. Commun. 2018, 499, 960–966. [Google Scholar] [CrossRef]
- Jung, N.; Kim, H.; Lee, Y.; Kim, H.Y.; Lee, M.S. Substance P preserves pancreatic β-cells in streptozotocin-induced type 1 diabetic mice. Biochem. Biophys. Res. Commun. 2017, 491, 958–965. [Google Scholar] [CrossRef]
- Karam, J.B.; Cai, W.; Mohamed, R.; Huang, T.; Meng, L.; Homan, E.P.; Dirice, E.; Kahn, C.R.; El Ouaamari, A. TRPV1 neurons regulate β-cell function in a sex-dependent manner. Mol. Metab. 2018, 18, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, P.; Yan, Y.; Zhang, X.; Guo, Y.; Liu, Y. Capsaicin reduces blood glucose by increasing insulin levels and glycogen content better than capsiate in streptozotocin-induced diabetic rats. J. Agric. Food Chem. 2017, 65, 2323–2330. [Google Scholar] [CrossRef]
- Li, Y.; Mai, Y.; Qiu, X.; Chen, X.; Li, C.; Yuan, W.; Hou, N. Effect of long-term treatment of carvacrol on glucose metabolism in streptozotocin-induced diabetic mice. BMC Complement. Med. Ther. 2020, 20, 142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, J.; Wang, Y.; Zhou, M.; Chen, H.; Feng, X. Dietary capsaicin exacerbates gut microbiota dysbiosis and mental disorders in type 1 diabetes mice. Nutrients 2025, 17, 593. [Google Scholar] [CrossRef]
- Akopian, A.N.; Souslova, V.; England, S.; Okuse, K.; Wood, J.N. The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat. Neurosci. 1996, 1, 541–543. [Google Scholar] [CrossRef]
- Grote, C.W.; Wright, D.E.; Wessells, R.J. Deletion of the insulin receptor in sensory neurons increases pancreatic insulin levels. Exp. Neurol. 2018, 305, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Tahiri, A.; Yamashita, Y.; Zhang, H.; Chen, J.; Oliva, M.; Liberles, S.D. Vagal sensory neuron-derived FGF3 controls insulin secretion. Dev. Cell 2025, 60, 51–61. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z.; Deng, Y.; Lu, X.; Luo, C.; Mu, X.; Zhang, T.; Liu, Q.; Tang, S.; Li, J.; et al. Function of TRP channels in monocytes/macrophages. Front. Immunol. 2023, 14, 1187890. [Google Scholar] [CrossRef]
- Wang, F.; Yu, H.; Zhu, F.; Zhang, X.; Chen, Y.; Dong, Y. Vitexin alleviates lipopolysaccharide-induced islet cell injury by inhibiting HMGB1 release. Mol. Med. Rep. 2017, 15, 1079–1086. [Google Scholar] [CrossRef]
- Darwish, M.A.; El-Shamarka, M.E.; Algefare, A.I.; Alruwaili, N.K.; Alharbi, K.S.; Abdelaziz, E.Z. Resveratrol mitigates pancreatic TF activation and autophagy-mediated beta cell death via inhibition of CXCL16/ox-LDL pathway: A novel protective mechanism against type 1 diabetes mellitus in mice. Eur. J. Pharmacol. 2021, 901, 174059. [Google Scholar] [CrossRef]
- Li, G.; Liu, N.; Huang, L.-Y.M. Mechanisms underlying purinergic P2X3 receptor-mediated mechanical allodynia induced in diabetic rats. Mol. Pain 2011, 7, 60. [Google Scholar]
- Lee, E.; Jung, D.Y.; Kim, J.H.; Patel, P.R.; Hu, X.; Lee, Y.; Azuma, Y.; Wang, H.F.; Tsitsilianos, N.; Shafiq, U.; et al. Transient receptor potential vanilloid type-1 channel regulates diet-induced obesity, insulin resistance, and leptin resistance. FASEB J. 2015, 29, 3182–3192. [Google Scholar] [CrossRef] [PubMed]
- Otto, M.; Bucher, C.; Liu, W.; Müller, M.; Schmidt, T.; Kardell, M.; Driessen, M.N.; Rossaint, J.; Gross, E.R.; Wagner, N.M. 12(S)-HETE mediates diabetes-induced endothelial dysfunction by activating intracellular endothelial cell TRPV1. J. Clin. Investig. 2020, 130, 4999–5010. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.H.; Park, H.S.; Kim, J.; Lee, J.H.; Yang, J.H.; Kang, H.C.; Kim, E. Sesamin induces endothelial nitric oxide synthase activation via transient receptor potential vanilloid type 1. J. Agric. Food Chem. 2020, 68, 3474–3484. [Google Scholar] [CrossRef] [PubMed]
- Marche, P.; Dubois, S.; Abraham, P.; Parot-Schinkel, E.; Gascoin, L.; Humeau-Heurtier, A.; Ducluzeau, P.H.; Mahé, G. Neurovascular microcirculatory vasodilation mediated by C-fibers and transient receptor potential vanilloid-type-1 channels (TRPV1) is impaired in type 1 diabetes. Sci. Rep. 2017, 7, 44322. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Q.; Sun, Z.; Han, J.; Wang, L.; Zheng, L. Impaired capsaicin-induced relaxation in diabetic mesenteric arteries. J. Diabetes Complicat. 2015, 29, 747–754. [Google Scholar] [CrossRef]
- Shi, H.; Lee, S.J.; Lee, W.H. Delayed recovery of renal regional blood flow in diabetic mice subjected to acute ischemic kidney injury. Am. J. Physiol. Ren. Physiol. 2007, 293, F1512–F1517. [Google Scholar] [CrossRef]
- Duan, X.; Li, J.; Wang, Y.; Zhang, R.; Chen, S.; Sun, Q.; Liu, L. Interference of periostin attenuates pathological changes, proinflammatory markers and renal fibrosis in diabetic kidney injury. Genes Genom. 2023, 45, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.P.S.; Frencher, S.; Reddy, V.; Kessler, A.; Malhotra, A.; Meggs, L.G. High glucose promotes mesangial cell apoptosis by oxidant-dependent mechanism. Am. J. Physiol. Ren. Physiol. 2003, 284, F455–F466. [Google Scholar] [CrossRef] [PubMed]
- Ohanyan, V.A.; Guarini, G.; Thodeti, C.K.; Talasila, P.K.; Raman, P.; Haney, R.M.; Damron, D.S. Endothelin-mediated in vivo pressor responses following TRPV1 activation. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H1135–H1142. [Google Scholar] [CrossRef] [PubMed]
- Führer, M.; Hammer, J. Lack of an effect of gastric capsaicin on the rectal component of the gastrocolonic response. Dig. Dis. Sci. 2017, 62, 3542–3549. [Google Scholar] [CrossRef]
- Tan, A.M. Dendritic spine dysgenesis in neuropathic pain. In Progress in Molecular Biology and Translational Science; North, R.A., Ed.; Academic Press: Cambridge, MA, USA, 2015; Volume 131, pp. 385–408. [Google Scholar]
- Malone, J.I.; Hanna, S.; Saporta, S.; Mervis, R.F.; Park, G.A.; Chong, L. Hyperglycemia not hypoglycemia alters neuronal dendrites and impairs spatial memory. Pediatr. Diabetes 2008, 9, 531–539. [Google Scholar] [CrossRef]
- Kamat, P.K.; Kalani, A.; Rai, S.; Swarnkar, S.; Tota, S.; Nath, C.; Tyagi, N. Streptozotocin intracerebroventricular-induced neurotoxicity and brain insulin resistance: A therapeutic intervention for treatment of sporadic Alzheimer’s disease (sAD)-like pathology. Mol. Neurobiol. 2016, 53, 4548–4562. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Li, H.; Chen, Y.; Liu, Q.; Zhao, Y. Relationship between IL-22 and IL-22BP in diabetic cognitive dysfunction. Acta Diabetol. 2023, 60, 631–644. [Google Scholar] [CrossRef]
- Reisi, P.; Ghaedrahmati, F.; Alaei, H.; Pilehvarian, A.A. Effects of amitriptyline and fluoxetine on synaptic plasticity and TNF-α level at hippocampus of streptozotocin-induced diabetic rats. Physiol. Pharmacol. 2017, 21, 137–146. [Google Scholar]
- Marsch, R.; Foeller, E.; Rammes, G.; Bunck, M.; Kössl, M.; Holsboer, F.; Zieglgänsberger, W.; Landgraf, R.; Lutz, B.; Wotjak, C.T. Reduced anxiety, conditioned fear, and hippocampal long-term potentiation in TRPV1 receptor-deficient mice. J. Neurosci. 2007, 27, 832–839. [Google Scholar] [CrossRef]
- Stock, K.; Garthe, A.; de Almeida Sassi, F.; Kettenmann, H.; Kempen, G. The capsaicin receptor TRPV1 as a novel modulator of neural precursor cell proliferation. Stem Cells 2014, 32, 697–711. [Google Scholar] [CrossRef]
- Arnold, R.A.; Fowler, D.K.; Peters, J.H. TRPV1 Enhances Cholecystokinin Signaling in Primary Vagal Afferent Neurons and Mediates the Central Effects on Spontaneous Glutamate Release in the Nucleus Tractus Solitarius. Am. J. Physiol. Cell Physiol. 2024, 326, C112–C124. [Google Scholar] [CrossRef] [PubMed]
- Skrzypczak-Wiercioch, A.; Sałat, K. Lipopolysaccharide-Induced Model of Neuroinflammation: Mechanisms of Action, Research Application and Future Directions for Its Use. Molecules 2022, 27, 5481. [Google Scholar] [CrossRef]
- Ren, J.-Y.; Wu, N.; Liu, Y.; Yang, Q.-W.; Cao, Y.-X.; Zhou, Y.; Xu, C.-B. Cardioprotection by ischemic postconditioning is lost in isolated perfused heart from diabetic rats: Involvement of transient receptor potential vanilloid 1, CGRP and substance P. Regul. Pept. 2011, 169, 49–57. [Google Scholar] [CrossRef]
- Bagatini, P.B.; Cardoso, A.M.; Reus, G.Z.; Streck, E.L.; Quevedo, J. An evaluation of aversive memory and hippocampal oxidative status in streptozotocin-induced diabetic rats treated with resveratrol. Neurosci. Lett. 2017, 636, 184–189. [Google Scholar] [CrossRef]
- Zychowska, M.; Rojewska, E.; Piotrowska, A.; Makuch, W.; Mika, J. Minocycline influences the anti-inflammatory interleukins and enhances the effectiveness of morphine under mice diabetic neuropathy. J. Neuroimmunol. 2013, 262, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-H.; Lee, Y.-W.; Yang, Y.-Y.; Lin, Y.-W. Phosphorylation of extracellular signal-regulated kinase 1/2 in subepidermal nerve fibers mediates hyperalgesia following diabetic peripheral neuropathy. Neurotoxicology 2019, 71, 60–74. [Google Scholar] [CrossRef]
- Lian, N.; Zhang, Z.; Zhang, M.; Li, H.; Fang, J.; Zhang, S.; Wang, Z. Protein phosphatase 2Cm-regulated branched-chain amino acid catabolic defect in dorsal root ganglion neurons drives pain sensitization. Acta Neuropathol. Commun. 2024, 12, 147. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Wang, L.; Zhang, L.; Han, X.; Li, Y.; Li, C.; Wang, Y. Activation of spinal dorsal horn P2Y13 receptors can promote the expression of IL-1β and IL-6 in rats with diabetic neuropathic pain. J. Pain Res. 2018, 11, 615–628. [Google Scholar] [CrossRef]
- Zhou, Y.-F.; Tan, L.-H.; Huang, Y.; Yang, X.-F.; Liu, W.-Z.; Liu, H.-R. Suppressing PKC-dependent membrane P2X3 receptor upregulation in dorsal root ganglia mediated electroacupuncture analgesia in rat painful diabetic neuropathy. Purinergic Signal. 2018, 14, 359–369. [Google Scholar] [CrossRef]
- Saloman, J.L.; Chung, M.K.; Ro, J.Y. P2X3 and TRPV1 functionally interact and mediate sensitization of trigeminal sensory neurons. Neuroscience 2013, 232, 226–238. [Google Scholar] [CrossRef]
- Fei, X.; Huang, Y.; Tan, L.; Yang, X.; Zhang, W.; Liu, H. Electroacupuncture alleviates diabetic neuropathic pain in rats by suppressing P2X3 receptor expression in dorsal root ganglia. Purinergic Signal. 2020, 16, 491–502. [Google Scholar] [CrossRef]
- He, X.-F.; Liu, Y.; Wang, X.-H.; Tan, L.-H.; Yang, X.-F.; Zhang, W.-Y.; Huang, Y. Inhibition of phosphorylated CaMKIIα relieves streptozotocin-induced diabetic neuropathic pain through regulation of P2X3 receptor in dorsal root ganglia. Purinergic Signal. 2023, 19, 99–111. [Google Scholar] [CrossRef]
- Ton, B.-H.T.; Nguyen, D.H.; Thacker, M.A.; Tan, P.P. Activation profile of dorsal root ganglia Iba-1(+) macrophages varies with the type of lesion in rats. Acta Histochem. 2013, 115, 840–850. [Google Scholar] [CrossRef]
- Chi, H.; Hu, T.; Huang, Y.; Yang, X.; Liu, H.; Tan, L. Electroacupuncture alleviates diabetes-induced mechanical allodynia and downregulates bradykinin B1 receptor expression in spinal cord dorsal horn. NeuroReport 2024, 35, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Wilson-Gerwing, T.D.; Verge, V.M.K.; Johnston, J.M. Neurotrophin-3 suppresses thermal hyperalgesia associated with neuropathic pain and attenuates TRPV1 expression in adult sensory neurons. J. Neurosci. 2005, 25, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Aye-Mon, A.; Inoue, T.; Iwata, K.; Inokuchi, T.; Nishihara, M. CCR2 upregulation in DRG neurons plays a crucial role in gastric hyperalgesia associated with diabetic gastropathy. Mol. Pain 2018, 14, 1744806917751322. [Google Scholar] [CrossRef] [PubMed]
- Yorek, M.S.; Obrosov, A.; Shevalye, H.; Lupachyk, S.; Vareniuk, I.; Kirkpatrick, L.R.; Yorek, M.A. Corneal sensitivity to hyperosmolar eye drops: A novel behavioral assay to assess diabetic peripheral neuropathy. Investig. Ophthalmol. Vis. Sci. 2016, 57, 2412–2419. [Google Scholar] [CrossRef]
- Aboutorabi, R.B.; Mohebbi, M.; Yaghoubi, M.A.; Rezaee, A.R.; Sahebkar, A. TRPV1 gene polymorphisms in patients with diabetes compared with healthy individuals. Comp. Clin. Pathol. 2017, 26, 971–974. [Google Scholar] [CrossRef]
- Sadeh, M.; Glazer, B.; Landau, Z.; Wainstein, J.; Bezaleli, T.; Dabby, R.; Hanukoglu, A.; Boaz, M.; Leshinsky-Silver, E. Association of the M315I variant in the transient receptor potential vanilloid receptor-1 (TRPV1) gene with type 1 diabetes in an Ashkenazi Jewish population. Isr. Med. Assoc. J. 2013, 15, 477–480. [Google Scholar]
- Zhou, Q.; Yang, L.; Larson, S.; Basra, S.; Merwat, S.; Tan, A.; Croce, C.; Verne, G.N. Decreased miR-199 augments visceral pain in patients with IBS through translational upregulation of TRPV1. Gut 2016, 65, 797–805. [Google Scholar] [CrossRef]
- Liu, C.; Li, C.; Deng, Z.; Du, E.; Xu, C. Long non-coding RNA BC168687 is involved in TRPV1-mediated diabetic neuropathic pain in rats. Neuroscience 2018, 374, 214–222. [Google Scholar] [CrossRef]
- Koivisto, A.P.; Belvisi, M.G.; Gaudet, R.; Szallasi, A. Advances in TRP channel drug discovery: From target validation to clinical studies. Nat. Rev. Drug Discov. 2022, 21, 41–59. [Google Scholar] [CrossRef]
- Premkumar, L.S.; Sikand, P. TRPV1: A target for next-generation analgesics. Curr. Neuropharmacol. 2008, 6, 151–163. [Google Scholar]
- Galosi, E.; Falco, P.; Di Pietro, G.; Esposito, N.; De Stefano, G.; Evangelisti, E.; Leone, C.; Litewczuk, D.; Tramontana, L.; Di Stefano, G.; et al. Epidermal Transient Receptor Potential Vanilloid 1 Innervation Is Increased in Patients with Painful Diabetic Polyneuropathy Experiencing Ongoing Burning Pain. Pain 2025, 166, 824–834. [Google Scholar] [CrossRef]
- Tavares-Ferreira, D.; Shen, B.Q.; Mwirigi, J.M.; Shiers, S.; Sankaranarayanan, I.; Sreerangapuri, A.; Kotamarti, M.B.; Inturi, N.N.; Mazhar, K.; Ubogu, E.E.; et al. Cell and Molecular Profiles in Peripheral Nerves Shift toward Inflammatory Phenotypes in Diabetic Peripheral Neuropathy. J. Clin. Investig. 2025, 135, e184075. [Google Scholar] [CrossRef]
- Ives, S.J.; Park, S.Y.; Kwon, O.S.; Gifford, J.R.; Andtbacka, R.H.I.; Hyngstrom, J.R.; Richardson, R.S. TRPV1 Channels in Human Skeletal Muscle Feed Arteries: Implications for Vascular Function. Exp. Physiol. 2017, 102, 1245–1258. [Google Scholar] [CrossRef]
- Liviero, F.; Pavanello, S. Epidemiological and Mechanistic Links between PM2.5 Exposure and Type 2 Diabetes: Focus on the TRPV1 Receptor. Front. Endocrinol. 2025, 16, 1653375. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Ma, D.; Zhu, X.; Wu, Z.; An, Q.; Zhao, J.; Gao, X.; Zhang, L. Roles of TRP and PIEZO Receptors in Autoimmune Diseases. Expert Rev. Mol. Med. 2024, 26, e10. [Google Scholar] [CrossRef]
- Maggi, F.; Morelli, M.B.; Aguzzi, C.; Zeppa, L.; Nabissi, M.; Polidori, C.; Santoni, G.; Amantini, C. Calcium Influx, Oxidative Stress, and Apoptosis Induced by TRPV1 in Chronic Myeloid Leukemia Cells: Synergistic Effects with Imatinib. Front. Mol. Biosci. 2023, 10, 1129202. [Google Scholar] [CrossRef] [PubMed]
- Garami, A.; Shimansky, Y.P.; Rumbus, Z.; Vizin, R.C.L.; Farkas, N.; Hegyi, J.; Szakacs, Z.; Solymar, M.; Csenkey, A.; Chiche, D.A.; et al. Hyperthermia Induced by Transient Receptor Potential Vanilloid-1 (TRPV1) Antagonists in Human Clinical Trials: Insights from Mathematical Modeling and Meta-Analysis. Pharmacol. Ther. 2020, 208, 107474. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.W.S.; Yuan, L.; Braz, J.M.; Basbaum, A.I.; Julius, D. TRPV1 Drugs Alter Core Body Temperature via Central Projections of Primary Afferent Sensory Neurons. eLife 2022, 11, e80139. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Sun, W.; Zhu, Y.; Zhao, F.; Deng, S.; Tian, M.; Wang, Y.; Gong, Y. TRPV1: The Key Bridge in Neuroimmune Interactions. J. Intensive Med. 2024, 4, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Kort, M.E.; Kym, P.R. TRPV1 Antagonists: Clinical Setbacks and Prospects for Future Development. Prog. Med. Chem. 2012, 51, 57–70. [Google Scholar] [PubMed]

| Compound/ Intervention | Mechanism of Action on TRPV1 | Experimental Model | Observed Effect/Outcome | Reference |
|---|---|---|---|---|
| SP (TRPV1-linked neuropeptide) | Released via TRPV1+ sensory afferents; acts on neuroimmune pathways | STZ-induced diabetic mice | Preserved β-cell morphology; ↓ apoptosis; improved glycemic control | [22,23] |
| Capsaicin (TRPV1 agonist) | Activates TRPV1; induces Ca2+ influx in β-cells; modulates sensory–islet signaling | STZ-induced diabetic rats | ↑ Insulin secretion, ↓ blood glucose, improved glycogen storage | [25] |
| Carvacrol (dietary TRPV1 agonist) | Enhances TRPV1 activity and antioxidant defense | STZ-induced diabetic mice | Improved glucose tolerance, preserved islet morphology | [26] |
| Vitexin | Inhibits HMGB1 release; attenuates TRPV1-related inflammation | Islet cell culture (LPS-induced pancreatic β-cell injury and apoptosis) | ↓ Inflammatory apoptosis, preserved islet cell integrity | [32] |
| Resveratrol (indirect TRPV1 modulator) | Inhibits CXCL16/ox-LDL pathway; reduces TRPV1-related oxidative stress | STZ-induced diabetic mice | ↓ β-cell autophagy, ↓ oxidative injury, improved glucose regulation | [33] |
| Hovenia dulcis extract | Antioxidant and TRP-modulating effects | STZ-induced diabetic rats | ↓ Blood glucose, preserved β-cell structure | [34] |
| Minocycline (TRPV1–microglia pathway modulator) | Inhibits microglial activation and TRPV1-mediated cytokine release | Streptozotocin (STZ)-induced diabetic neuropathy in mice | ↓ Neuroinflammation; improved pain tolerance | [56] |
| Electroacupuncture (EA) | Downregulates P2X3/P2Y13 receptors that sensitize TRPV1 | STZ-induced diabetic rats | ↓ TRPV1 sensitization, ↓ hyperalgesia and allodynia | [60,61,62,63] |
| Neurotrophin-3 (NT-3) | Reduces TRPV1 expression in sensory neurons | Streptozotocin (STZ)-induced diabetic neuropathy in rats | ↓ Thermal hyperalgesia; improved sensory function | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-Picazo, K.; Allan, E.R.O. The Role of TRPV1 in Type 1 Diabetes. Biology 2025, 14, 1798. https://doi.org/10.3390/biology14121798
Silva-Picazo K, Allan ERO. The Role of TRPV1 in Type 1 Diabetes. Biology. 2025; 14(12):1798. https://doi.org/10.3390/biology14121798
Chicago/Turabian StyleSilva-Picazo, Kelly, and Euan R. O. Allan. 2025. "The Role of TRPV1 in Type 1 Diabetes" Biology 14, no. 12: 1798. https://doi.org/10.3390/biology14121798
APA StyleSilva-Picazo, K., & Allan, E. R. O. (2025). The Role of TRPV1 in Type 1 Diabetes. Biology, 14(12), 1798. https://doi.org/10.3390/biology14121798

