Construction of a Heterotrophic Nitrification–Aerobic Denitrification Composite Microbial Consortium and Its Bioaugmentation Role in Wastewater Treatment
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Strain
2.2. Medium
2.3. Experimental Setup and Design
2.4. Construction of Synthetic Microbial Consortia
2.5. Bioaugmentation Efficacy and Microbial Diversity Assessment of Synthetic Microbial Consortia in Sequencing Batch Reactors
2.5.1. SBR Operation Phases
2.5.2. 16S rRNA Amplicon Sequencing and Data Processing
2.6. Data Analysis
3. Results
3.1. Construction of Synthetic Microbial Consortia
3.2. Impact of Synthetic Microbial Consortia on Pollutant Removal in SBRs
3.3. Impact of Nitrogen-Removal Bioaugmentation on Microbial Community Structure in SBR Reactors
3.3.1. Analysis of Bacterial Community Diversity in SBR Sludge Across Operational Phases
3.3.2. Temporal Shifts in Bacterial Community Composition at the Phylum Level in SBR Activated Sludge
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The Microbial Nitrogen-Cycling Network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef]
- Jetten, M.S.M. The Microbial Nitrogen Cycle. Environ. Microb. 2008, 10, 2903–2909. [Google Scholar] [CrossRef]
- Stein, L.Y.; Klotz, M.G. The Nitrogen Cycle. Curr. Biol. 2016, 26, R94–R98. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Shen, L.; Li, Y.; Cao, H.; Chen, C.; Zhang, G.; Xu, Z.; Lu, Y. Insights into the Nitrogen Transformation Mechanism of Pseudomonas Sp. Y15 Capable of Heterotrophic Nitrification and Aerobic Denitrification. Environ. Res. 2024, 240, 117595. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Zhao, X.; Senbati, Y.; Song, K.; He, X. Nitrosgen Removal by Heterotrophic Nitrifying and Aerobic Denitrifying Bacterium Pseudomonas Sp. DM02: Removal Performance, Mechanism and Immobilized Application for Real Aquaculture Wastewater Treatment. Bioresour. Technol. 2021, 322, 124555. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Wang, S.; Ding, R.; Liu, Y.; Yuan, B. Comparative Analyses of the Gut Microbiome of Two Sympatric Rodent Species, Myodes rufocanus and Apodemus peninsulae, in Northeast China Based on Metagenome Sequencing. PeerJ 2025, 13, e19260. [Google Scholar] [CrossRef]
- An, Q.; Zhou, Y.; Zhao, B.; Huang, X.L. Efficient Ammonium Removal through Heterotrophic Nitrification-Aerobic Denitrification by Acinetobacter baumannii Strain AL-6 in the Presence of Cr(VI). J. Biosci. Bioeng. 2020, 130, 622–629. [Google Scholar] [CrossRef]
- Chen, X.; Li, S.; Zhang, W.; Li, S.; Gu, Y.; Ouyang, L. A Newly Isolated Rhodococcus sp. S2 from Landfill Leachate Capable of Heterotrophic Nitrification and Aerobic Denitrification. Water 2024, 16, 431. [Google Scholar] [CrossRef]
- Chen, Y.; Zhong, J.; Li, B.; Dai, W.; Yang, Z.; Huang, C.; Zeng, J. Exploring the Nitrogen Removal Capacity of Klebsiella aerogenes B23 Isolated from Shrimp Farm Wastewater: Heterotrophic Nitrification and Aerobic Denitrification. Aquac. Int. 2024, 32, 1453–1471. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Liang, C.; Yang, Q.; Wang, S.; Wang, B.; Zhang, F.; Zhang, L.; Cheng, H.; Song, S.; et al. Utilization of Marigold (Tagetes erecta) Flower Fermentation Wastewater as a Fertilizer and Its Effect on Microbial Community Structure in Maize Rhizosphere and Non-Rhizosphere Soil. Biotechnol. Biotechnol. Equip. 2020, 34, 522–531. [Google Scholar] [CrossRef]
- Qu, F.; Cheng, H.; Han, Z.; Wei, Z.; Song, C. Identification of Driving Factors of Lignocellulose Degrading Enzyme Genes in Different Microbial Communities during Rice Straw Composting. Bioresour. Technol. 2023, 381, 129109. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Zhao, Y.; Pan, D.; Wang, S.; Wu, D.; Wang, L.; Hao, J.; Wei, Z. Heavy Metals Passivation Driven by the Interaction of Organic Fractions and Functional Bacteria during Biochar/Montmorillonite-Amended Composting. Bioresour. Technol. 2021, 329, 124923. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Li, L.; Zhou, S.; Xiao, P.; Zhang, L. Metabolomic Insight into Regulatory Mechanism of Heterotrophic Bacteria Nitrification-Aerobic Denitrification Bacteria to High-Strength Ammonium Wastewater Treatment. Bioresour. Technol. 2024, 394, 130278. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, X.; Song, Y.; Sun, L.; Chen, X.; Wu, J.; Song, C.; Zhao, Y. Slowed down Nitrogen Mineralization under Bacterial Community-Driven Conditions by Adding Inhibitors during Rice Straw Composting. Bioresour. Technol. 2022, 362, 127778. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhao, Y.; Liu, H.; Song, C.; Wei, Z.; Chen, X.; Kang, K.; Yang, H. The Action Difference of Metabolic Regulators on Carbon Conversion during Different Agricultural Organic Wastes Composting. Bioresour. Technol. 2021, 329, 124902. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, J.; Cui, Y.; Zhao, Y.; Ma, B.; Zeng, L.; Chen, H. Hormesis and Synergistic Effects of Disinfectants Chloroxylenol and Benzethonium Chloride on Highly Efficient Heterotrophic Nitrification-Aerobic Denitrification Functional Strain: From Performance to Mechanism. J. Hazard. Mater. 2024, 476, 135160. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, J.; Zhang, Y.; Xie, T.; Wang, Q.; An, J. Will the Removal of Carbon, Nitrogen and Mixed Disinfectants Occur Simultaneously: The Key Role of Heterotrophic Nitrification-Aerobic Denitrification Strain. J. Hazard. Mater. 2024, 480, 136431. [Google Scholar] [CrossRef]
- Hayatsu, M.; Tago, K.; Saito, M. Various Players in the Nitrogen Cycle: Diversity and Functions of the Microorganisms Involved in Nitrification and Denitrification. Soil Sci. Plant Nutr. 2008, 54, 33–45. [Google Scholar] [CrossRef]
- Huan, C.; Lyu, Q.; Wang, Z.; Tian, X.; Yan, Z.; Ji, G. Conversion Behavior of Heterotrophic Nitrification—Aerobic Denitrification Bacterium Paracoccus denitrificans HY-1 in Nitrogen and Phosphorus Removal. J. Water Process Eng. 2024, 62, 105347. [Google Scholar] [CrossRef]
- Hu, J.; Wan, K.; Deng, X.; Liu, X.; Fang, Y.; Zhou, F.; Yu, J.; Chi, R.; Xiao, C. Metagenomic Analysis Revealed the Evolution of Microbial Communities, Metabolic Pathways, and Functional Genes in the Heterotrophic Nitrification-Aerobic Denitrification Process under La3+ Stress. Sci. Total Environ. 2024, 912, 169243. [Google Scholar] [CrossRef]
- Wang, S.; Song, C.; Li, J.; Zhang, C.; Li, P. Inhibitory Effects of Ammonia on Archaeal 16S rRNA Transcripts in Thermophilic Anaerobic Digester Sludge. Fermentation 2023, 9, 728. [Google Scholar] [CrossRef]
- Wu, D.; Xia, T.; Zhang, Y.; Wei, Z.; Qu, F.; Zheng, G.; Song, C.; Zhao, Y.; Kang, K.; Yang, H. Identifying Driving Factors of Humic Acid Formation during Rice Straw Composting Based on Fenton Pretreatment with Bacterial Inoculation. Bioresour. Technol. 2021, 337, 125403. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xia, T.; Wang, J.; Zhao, Y.; Xie, X.; Wei, Z.; Zhang, X.; Song, C.; Song, X. Role of Bacillus Inoculation in Rice Straw Composting and Bacterial Community Stability after Inoculation: Unite Resistance or Individual Collapse. Bioresour. Technol. 2021, 337, 125464. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liu, X.; Jin, Y.; Zhang, Q. Transcriptome Analysis of the Degradation Process of Organic Nitrogen by Two Heterotrophic Nitrifying and Aerobic Denitrifying Bacteria. Arch. Microbiol. 2024, 206, 351. [Google Scholar] [CrossRef]
- Li, H.; Wei, Z.; Song, C.; Chen, X.; Zhang, R.; Liu, Y. Functional Keystone Drive Nitrogen Conversion during Different Animal Manures Composting. Bioresour. Technol. 2022, 361, 127721. [Google Scholar] [CrossRef]
- Shi, M.; Liu, C.; Wang, Y.; Zhao, Y.; Wei, Z.; Zhao, M.; Song, C.; Liu, Y. Nitrate Shifted Microenvironment: Driven Aromatic-Ring Cleavage Microbes and Aromatic Compounds Precursor Biodegradation during Sludge Composting. Bioresour. Technol. 2021, 342, 125907. [Google Scholar] [CrossRef]
- Huo, R.; Li, W.; Di, Y.; Zhou, S. Characterization and Performance of Efficient Heterotrophic Nitrification and Aerobic Denitrification by Comamonas testosteroni HR5 under Low Temperature and High Alkalinity. J. Water Process Eng. 2025, 72, 107474. [Google Scholar] [CrossRef]
- Qiu, J.-G.; Liu, S.-J. Dirammox (Direct Ammonia Oxidation) to Nitrogen (N2): Discovery, Current Status, and Perspectives. Curr. Opin. Microbiol. 2025, 83, 102565. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, Y.; Liu, Y.; Pan, D.; Zhang, Y. Continuous Production of Chitin Oligosaccharides Utilizing an Optimized Enzyme Production-Adsorption-Enzymolysis-Product Separation (EAES) System. Fermentation 2024, 10, 634. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, Y.; Liu, Y.; Pan, D.; Zhang, Y. Efficient Production of N-Acetyl-β-D-Glucosamine from Shrimp Shell Powder Using Chitinolytic Enzyme Cocktail with β-N-Acetylglucosaminidase from Domesticated Microbiome Metagenomes. Fermentation 2024, 10, 652. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Y.; Li, F.; Huang, Y.; Xuan, H.; Zhang, Y. Enhancement of the Degradation of Phytosterol Side Chains in Mycolicibacterium by Eliminating the Redox Sensitivity of Key Thiolase and Augmenting Cell Activity. Fermentation 2024, 10, 627. [Google Scholar] [CrossRef]
- Li, Q.; He, Y.; Wang, B.; Weng, N.; Zhang, L.; Wang, K.; Tian, F.; Lyu, M.; Wang, S. Heterotrophic Nitrification–Aerobic Denitrification by Bacillus Sp. L2: Mechanism of Denitrification and Strain Immobilization. Water 2024, 16, 416. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, S.; Ye, Y.; Tang, Q.; Tian, W.; Liu, H.; Li, D.; Jiang, W.; Wang, Z.; Liu, D. Characteristics of a Heavy Metal Resistant Heterotrophic Nitrification–Aerobic Denitrification Bacterium Isolated from Municipal Activated Sludge. Environ. Res. 2024, 263, 120111. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Gao, W.; Mi, J.; Xie, L.; Wei, Z.; Song, C. Effect of Ferrous Ions Combined with Zeolite on Humification Degree during Food Waste Composting. Bioresour. Technol. 2023, 389, 129826. [Google Scholar] [CrossRef]
- Sun, R.; Zhu, X.; Wang, C.; Yue, J.; Pan, L.; Song, C.; Zhao, Y. Effect of NH4+ and NO3− Cooperatively Regulated Carbon to Nitrogen Ratio on Organic Nitrogen Fractions during Rice Straw Composting. Bioresour. Technol. 2024, 395, 130316. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, S.; Zhao, Y.; Xie, L.; Zhang, G.; Wei, Z.; Li, J.; Song, C. Effects of Initial Carbon-Phosphorus Ratio on Phosphatase, and Phosphorus Availability in Sludge Composting. Bioresour. Technol. 2023, 382, 129192. [Google Scholar] [CrossRef]
- Qu, F.; Wen, X.; Zhou, J.; Lv, S.; Fan, M.; Mohamed, T.A.; Song, C.; Wei, Z. Feedback of Co-Inoculation of Lignocellulose Degrading Microorganisms on Dissolved Organic Matter during Rice Straw Composting: Neutral Balance of Bacterial Community. Int. J. Biol. Macromol. 2025, 318, 145031. [Google Scholar] [CrossRef]
- Xi, H.; Zhou, X.; Arslan, M.; Luo, Z.; Wei, J.; Wu, Z.; Gamal El-Din, M. Heterotrophic Nitrification and Aerobic Denitrification Process: Promising but a Long Way to Go in the Wastewater Treatment. Sci. Total Environ. 2022, 805, 150212. [Google Scholar] [CrossRef]
- Lenferink, W.B.; Bakken, L.R.; Jetten, M.S.M. Hydroxylamine Production by Alcaligenes faecalis Challenges the Paradigm of Heterotrophic Nitrification. Sci. Adv. 2024, 10, eadl3587. [Google Scholar] [CrossRef]
- Song, C.; Li, M.; Qi, H.; Zhang, Y.; Liu, D.; Xia, X.; Pan, H.; Xi, B. Impact of Anti-Acidification Microbial Consortium on Carbohydrate Metabolism of Key Microbes during Food Waste Composting. Bioresour. Technol. 2018, 259, 1–9. [Google Scholar] [CrossRef]
- Han, Q.; Li, J.; Fu, C.; Qi, H.; Lv, Z.; Gao, Y.; Zhang, M.; Wang, S.; Wei, Z.; Song, C. Improvement in Lignocellulose Degradation and Humus Synthesis by Adding Gallic Acid during Cow Manure Composting. Int. J. Biol. Macromol. 2025, 310, 143469. [Google Scholar] [CrossRef]
- Mu, D.; Yang, H.; Gao, W.; Zhao, J.; Wang, L.; Wang, F.; Song, C.; Wei, Z. Nuclear Magnetic Resonance Revealed the Structural Unit Difference and Polymerization Process of Pre-Humic Acid from Different Organic Waste Sources. Int. J. Biol. Macromol. 2025, 304, 140457. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Z.; Liu, J.; Song, C.; Wei, Z. The Biotic Effects of Lignite on Humic Acid Components Conversion during Chicken Manure Composting. Bioresour. Technol. 2024, 398, 130503. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Chen, Z.; Zhao, Y.; Li, J.; Gao, Y.; Wang, S.; Wei, Z. The Driving Mechanism of Passivator Islands Adsorbing and Immobilizing Heavy Metals during Chicken Manure Composting. Bioresour. Technol. 2023, 380, 129115. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhao, Y.; Xie, L.; Zhang, G.; Wei, Z.; Li, J.; Song, C. The Effect of Calcium Superphosphate Addition in Different Stages on the Nitrogen Fixation and Ammonification during Chicken Manure Composting. Bioresour. Technol. 2023, 374, 128731. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xie, X.; Miao, Y.; Dong, Z.; Zhu, B. Isolation and Characterization of a Cold-Tolerant Heterotrophic Nitrification–Aerobic Denitrification Bacterium and Evaluation of Its Nitrogen-Removal Efficiency. Environ. Res. 2024, 242, 117674. [Google Scholar] [CrossRef]
- Zheng, C.; Zhang, X.; He, T.; Wu, P.; Wu, W.; Zhang, M.; Zhao, H. New Insight into the Mechanism of Nitrite Enhancement on Heterotrophic Nitrification and Aerobic Denitrification Bacterium in Gene Expression. Environ. Microbiol. 2025, 27, e70080. [Google Scholar] [CrossRef]
- Wei, X.; Li, S.; Li, C.; Liao, J.; Yang, Y.; He, Z. Characterization and Genomic Insights into the Nitrogen Metabolism of Heterotrophic Nitrifying and Aerobic Denitrifying Bacterium Pseudomonas aeruginosa WS-03. J. Environ. Manag. 2025, 376, 124405. [Google Scholar] [CrossRef]
- Sui, X.; Wu, X.; Xiao, B.; Wang, C.; Tian, C. Denitrification Mechanism of Heterotrophic Aerobic Denitrifying Pseudomonas hunanensis Strain DC-2 and Its Application in Aquaculture Wastewater. Water 2024, 16, 1625. [Google Scholar] [CrossRef]
- Wu, Q.; He, T.; Chen, M.; Zhang, M. Elucidating the Mechanisms Underlying Heterotrophic Nitrification-Aerobic Denitrification and Cold Tolerance in Pseudomonas Fragi EH-H1 under Weakly Acidic Conditions. Int. Biodeterior. Biodegrad. 2025, 200, 106046. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Yang, Y.-L.; Tan, X.; Li, X.; Zhao, L. Enhanced Nutrients Removal from Low C/N Ratio Rural Sewage by Embedding Heterotrophic Nitrifying Bacteria and Activated Alumina in a Tidal Flow Constructed Wetland. Bioresour. Technol. 2024, 413, 131513. [Google Scholar] [CrossRef]
- Medina, L.R.; Silva, L.C.F.; Lima, H.S.; Vidigal, P.M.P.; De Castro, A.G.; De Paula Sousa, M.; De Souza, R.S.; De Paula, S.O.; Da Silva, C.C. Genomic Insights into Heterotrophic Nitrifying-Aerobic Denitrifying Bacteria from Petroleum Terminal Effluents. Heliyon 2024, 10, e39436. [Google Scholar] [CrossRef]
- Yang, L.; Lu, H.; Wang, Y.; Liu, Y.; Tu, L.; Meng, H.; Ren, Y.; Lan, J. Nitrogen Removal Characteristics and Cr(VI) Tolerance Mechanisms of Heterotrophic Nitrifying Bacterium Pseudomonas putida Strain LX1. J. Water Process Eng. 2024, 64, 105647. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, P.; Lou, Y.; Liu, Y.; Shan, Q.; Xiong, Y.; Wei, H.; Song, J. Characteristics of Novel Heterotrophic Nitrification–Aerobic Denitrification Bacteria Bacillus subtilis F4 and Alcaligenes faecalis P4 Isolated from Landfill Leachate Biochemical Treatment System. Water 2024, 16, 1993. [Google Scholar] [CrossRef]
- Xiao, W.; Meng, G.; Meng, C.; Sun, R.; Hu, S.; Yi, M.; Bai, X.; Lv, C.; Wu, Y. New Insights into Microbial Community for Simultaneous Removal of Carbon and Nitrogen via Heterotrophic Nitrification Aerobic Denitrification Process. J. Environ. Chem. Eng. 2024, 12, 112896. [Google Scholar] [CrossRef]
- Tian, X.; Qin, W.; Zhang, Y.; Liu, Y.; Lyu, Q.; Chen, G.; Feng, Z.; Ji, G.; Yan, Z. The Inoculation of Thermophilic Heterotrophic Nitrifiers Improved the Efficiency and Reduced Ammonia Emission during Sewage Sludge Composting. Chem. Eng. J. 2024, 479, 147237. [Google Scholar] [CrossRef]
- Lang, X.; Li, Q.; Ji, M.; Yan, G.; Guo, S. Isolation and Niche Characteristics in Simultaneous Nitrification and Denitrification Application of an Aerobic Denitrifier, Acinetobacter Sp. YS2. Bioresour. Technol. 2020, 302, 122799. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Liao, S.; Qiu, M.; Chen, M.; Ye, J.; Zeng, J.; Wang, A. Effects of Carbon Sources on the Removal of Ammonium, Nitrite and Nitrate Nitrogen by the Red Yeast Sporidiobolus pararoseus Y1. Bioresour. Technol. 2020, 312, 123593. [Google Scholar] [CrossRef]
- Li, J.; Wan, X.; Wang, H.; Zhang, Y.; Ma, Z.; Yang, W.; Hu, Y. Electrospun Nanofibers Electrostatically Adsorb Heterotrophic Nitrifying and Aerobic Denitrifying Bacteria to Degrade Nitrogen in Wastewater. J. Environ. Manag. 2024, 353, 120199. [Google Scholar] [CrossRef]
- Duan, J.; Fang, H.; Su, B.; Chen, J.; Lin, J. Characterization of a Halophilic Heterotrophic Nitrification–Aerobic Denitrification Bacterium and Its Application on Treatment of Saline Wastewater. Bioresour. Technol. 2015, 179, 421–428. [Google Scholar] [CrossRef]
- Yang, X.-P.; Wang, S.-M.; Zhang, D.-W.; Zhou, L.-X. Isolation and Nitrogen Removal Characteristics of an Aerobic Heterotrophic Nitrifying–Denitrifying Bacterium, Bacillus subtilis A1. Bioresour. Technol. 2011, 102, 854–862. [Google Scholar] [CrossRef]
- Chen, L.F.; Chen, L.X.; Pan, D.; Ren, Y.L.; Zhang, J.; Zhou, B.; Lin, J.Q.; Lin, J.Q. Ammonium Removal Characteristics of Delftia tsuruhatensis SDU2 with Potential Application in Ammonium-rich Wastewater Treatment. Int. J. Environ. Sci. Technol. 2023, 20, 3911–3926. [Google Scholar] [CrossRef]
- Chen, L.; Lin, J.; Pan, D.; Ren, Y.; Zhang, J.; Zhou, B.; Chen, L.; Lin, J. Ammonium Removal by a Newly Isolated Heterotrophic Nitrification–Aerobic Denitrification Bacteria Pseudomonas stutzeri SDU10 and Its Potential in Treatment of Piggery Wastewater. Curr. Microbiol. 2020, 77, 2792–2801. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chen, L.; Pan, D.; Lin, H.; Ren, Y.; Zhang, J.; Zhou, B.; Lin, J.; Lin, J. Heterotrophic Nitrification and Related Functional Gene Expression Characteristics of Alcaligenes faecalis SDU20 with the Potential Use in Swine Wastewater Treatment. Bioprocess Biosyst. Eng. 2021, 44, 2035–2050. [Google Scholar] [CrossRef] [PubMed]
- Tessier, L.; Côté, O.; Bienzle, D. Sequence Variant Analysis of RNA Sequences in Severe Equine Asthma. PeerJ 2018, 6, e5759. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and Clustering Orders of Magnitude Faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Sun, H.; Yao, X.; Wu, Y.; Wang, X.; Chen, Y.; Tang, J. A Comparative Study of Pig Manure with Different Waste Straws in an Ectopic Fermentation System with Thermophilic Bacteria during the Aerobic Process: Performance and Microbial Community Dynamics. Bioresour. Technol. 2019, 281, 202–208. [Google Scholar] [CrossRef]
- ISO 6060:1989; Water Quality—Determination of the Chemical Oxygen Demand. International Organization for Standardization (ISO): Geneva, Switzerland, 1989.
- Chen, Q.; Ni, J.; Ma, T.; Liu, T.; Zheng, M. Bioaugmentation Treatment of Municipal Wastewater with Heterotrophic-Aerobic Nitrogen Removal Bacteria in a Pilot-Scale SBR. Bioresour. Technol. 2015, 183, 25–32. [Google Scholar] [CrossRef]
- Song, T.; Zhang, X.; Li, J.; Wu, X.; Feng, H.; Dong, W. A Review of Research Progress of Heterotrophic Nitrification and Aerobic Denitrification Microorganisms (HNADMs). Sci. Total Environ. 2021, 801, 149319. [Google Scholar] [CrossRef]
- Fu, W.; Song, G.; Wang, Y.; Wang, Q.; Duan, P.; Liu, C.; Zhang, X.; Rao, Z. Advances in Research Into and Applications of Heterotrophic Nitrifying and Aerobic Denitrifying Microorganisms. Front. Environ. Sci. 2022, 10, 887093. [Google Scholar] [CrossRef]
- Tao, T.; Chang, S. Simultaneous Heterotrophic Nitrification and Aerobic Denitrification of High C/N Wastewater in a Sequencing Batch Reactor. Water 2025, 17, 2515. [Google Scholar] [CrossRef]





| Level | A | B | C |
|---|---|---|---|
| 1 | 1 mL | 1 mL | 1 mL |
| 2 | 2 mL | 2 mL | 2 mL |
| 3 | 3 mL | 3 mL | 3 mL |
| Component | Concentration (g/L) |
|---|---|
| CH3COONa (Sodium acetate) | 3.14 |
| (NH4)2SO4 (Ammonium sulfate) | 0.48 |
| NaHCO3 (Sodium bicarbonate) | 7.9 |
| KHCO3 (Potassium bicarbonate) | 1.5 |
| MgSO4 (Magnesium sulfate) | 0.1 |
| Trace elements * | 2 mL/L |
| Experiment | A(SDU2) | B(SDU10) | C(SDU20) | Ammonium Removal Efficiency (%) |
|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 77.31 ± 2.15 |
| 2 | 1 | 2 | 2 | 79.51 ± 1.89 |
| 3 | 1 | 3 | 3 | 92.19 ± 2.03 |
| 4 | 2 | 1 | 2 | 77.90 ± 1.56 |
| 5 | 2 | 2 | 3 | 96.02 ± 1.21 |
| 6 | 2 | 3 | 1 | 80.95 ± 1.78 |
| 7 | 3 | 1 | 3 | 85.08 ± 1.92 |
| 8 | 3 | 2 | 1 | 77.55 ± 2.34 |
| 9 | 3 | 3 | 2 | 84.14 ± 1.67 |
| K1 | 249.01 | 240.29 | 235.81 | — |
| K2 | 254.87 | 253.08 | 241.55 | — |
| K3 | 246.77 | 257.28 | 273.29 | — |
| k1 | 83.00 | 80.10 | 78.60 | — |
| k2 | 84.96 | 84.36 | 80.52 | — |
| k3 | 82.26 | 85.76 | 91.10 | — |
| R | 2.70 | 5.66 | 12.49 | — |
| Sample | Sequence Count | Base Count (M) | Mean Length (bp) | Min Length (bp) | Max Length (bp) |
|---|---|---|---|---|---|
| A1 | 67,763 | 28.08 | 414.42 | 200 | 456 |
| A2 | 67,657 | 28.03 | 414.27 | 206 | 504 |
| B1 | 68,840 | 28.61 | 415.56 | 234 | 503 |
| B2 | 60,774 | 25.45 | 418.77 | 218 | 449 |
| C1 | 63,370 | 26.44 | 417.16 | 317 | 444 |
| C2 | 65,704 | 27.81 | 423.33 | 206 | 442 |
| D1 | 74,078 | 30.57 | 412.64 | 280 | 502 |
| D2 | 73,079 | 30.38 | 415.72 | 295 | 504 |
| Total | 541,265 | 225.37 | 416.48 | 200 | 504 |
| Sample | Shannon Index | Simpson Index | ACE Index | Chao1 Index | Coverage | Smith-Wilson Index |
|---|---|---|---|---|---|---|
| A1 | 3.92 ± 0.15 | 0.126 ± 0.01 | 1231.92 ± 58 | 1219.14 ± 62 | 0.995 | 0.434 ± 0.02 |
| A2 | 4.05 ± 0.18 | 0.108 ± 0.01 | 1189.73 ± 49 | 1194.48 ± 57 | 0.996 | 0.434 ± 0.02 |
| B1 | 4.88 ± 0.21 | 0.029 ± 0.003 | 1304.74 ± 63 | 1300.43 ± 65 | 0.994 | 0.458 ± 0.03 |
| B2 | 4.53 ± 0.19 | 0.037 ± 0.004 | 1184.10 ± 52 | 1197.27 ± 59 | 0.994 | 0.462 ± 0.03 |
| C1 | 3.30 ± 0.14 | 0.082 ± 0.007 | 924.04 ± 41 | 721.48 ± 38 | 0.995 | 0.495 ± 0.02 |
| C2 | 3.43 ± 0.16 | 0.061 ± 0.005 | 567.13 ± 34 | 488.50 ± 31 | 0.997 | 0.521 ± 0.03 |
| D1 | 3.33 ± 0.12 | 0.128 ± 0.01 | 785.43 ± 35 | 808.68 ± 41 | 0.997 | 0.504 ± 0.02 |
| D2 | 3.06 ± 0.09 | 0.137 ± 0.01 | 577.55 ± 29 | 563.89 ± 33 | 0.998 | 0.510 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, W.; Sun, H.; Zhang, Z.; Xiao, Z.; Song, H.; Liu, J.; Xu, X.; Wang, J.; Wang, G.; Zhang, J.; et al. Construction of a Heterotrophic Nitrification–Aerobic Denitrification Composite Microbial Consortium and Its Bioaugmentation Role in Wastewater Treatment. Biology 2025, 14, 1734. https://doi.org/10.3390/biology14121734
Jiao W, Sun H, Zhang Z, Xiao Z, Song H, Liu J, Xu X, Wang J, Wang G, Zhang J, et al. Construction of a Heterotrophic Nitrification–Aerobic Denitrification Composite Microbial Consortium and Its Bioaugmentation Role in Wastewater Treatment. Biology. 2025; 14(12):1734. https://doi.org/10.3390/biology14121734
Chicago/Turabian StyleJiao, Wenjing, Haoyang Sun, Zixuan Zhang, Zuyin Xiao, Hanhan Song, Jiale Liu, Xiaole Xu, Juan Wang, Guiying Wang, Jiang Zhang, and et al. 2025. "Construction of a Heterotrophic Nitrification–Aerobic Denitrification Composite Microbial Consortium and Its Bioaugmentation Role in Wastewater Treatment" Biology 14, no. 12: 1734. https://doi.org/10.3390/biology14121734
APA StyleJiao, W., Sun, H., Zhang, Z., Xiao, Z., Song, H., Liu, J., Xu, X., Wang, J., Wang, G., Zhang, J., Wang, C., Li, L., & Chen, L. (2025). Construction of a Heterotrophic Nitrification–Aerobic Denitrification Composite Microbial Consortium and Its Bioaugmentation Role in Wastewater Treatment. Biology, 14(12), 1734. https://doi.org/10.3390/biology14121734

