Gatekeepers of the Germ Line: How Mitochondria Shape Reproductive Evolution in Metazoans
Simple Summary
Abstract
1. Introduction
2. Mitochondria Fate in Gametogenesis
2.1. Cross-Taxa Variation in Mitochondrial Number, Distribution, and Morphology in Gametes
2.1.1. Mitochondrial Quantity Variations
2.1.2. Spatial Distribution of Mitochondria
2.1.3. Mitochondrial Ultrastructure and Morphological Remodeling During Gametogenesis
| Taxa | Gamete | Species | Mitochondrial Number | Distribution | Morphological Features |
|---|---|---|---|---|---|
| Platyhelminthes | Sperm | Pseudodactylogyrus sp. [4] | 1 | / | / |
| Nematoda | Sperm | Admirandus multicavus [44] | >50 per cross-section | Scattered in cytoplasm between membranous organelles (MOs) | Oval; ~0.3–0.4 µm long, 0.1–0.2 µm wide |
| Annelida | Oocyte | Enchytraeus albidus [28] | ~105 | Dispersed among yolk, traversed by annular tubes | Round to elongated, sometimes branched, with cristae |
| Insulodrilus bifidus [35] | Few in early stages; markedly increase at vitellogenesis | Cytoplasm, especially periphery | Early: round/oval; Later: elongated/rod-like | ||
| Sperm | Lumbricus terrestris [39] | 6 | Posterior pole of nucleus, later midpiece | From round → wedge-like; outer membranes fuse into hexagonal frame; reduced cristae | |
| Isochaetides arenarius [43] | Eusperm: 5; Parasperm: 2–3 (rarely 4) | Midpiece | Eusperm: cylindrical-fan shaped; Parasperm: oval, sector-like | ||
| Mollusca | Oocyte | Ilyanassa obsoleta [36] | / | Pre-vitellogenic: clustered at vegetal pole near follicle cells; Vitellogenic: distributed in both poles, more at vegetal pole | Pre-vitellogenic: diverse (round, elongated, dumbbell, donut-shaped), with cristae and dense granules; Vitellogenic: mainly round, occasional fused forms resembling autophagosomes |
| Sperm | Pitar rudis [5] | 4 (10% with 5) | Midpiece | Typical clustered midpiece mitochondria | |
| Chamelea gallina [5] | 4 | Midpiece | Similar to P. rudis | ||
| Meretrix sp. [45] | 5 | Arranged around centriole complex | Densely packed, well-developed cristae | ||
| Ruditapes philippinarum [26] | / | Aggregation or dispersion linked to embryo sex | Sperm mitochondrial diameter 800–1000 nm; oocyte mitochondrial diameter ~600 nm (few >500 nm) | ||
| Arthropoda | Oocyte | Meconema meridionale [37] | / | Bouquet stage: mitochondrial network with nuage; later fragmented into smaller networks, finally single mitochondria | Network → micro-networks → single mitochondria |
| Sperm | Melanoplus differentialis [40] | / | Midpiece/flagellum | Large mitochondria elongate into filaments, C- or crescent-shaped around nucleus | |
| Osteichthyes | Oocyte | Polyodon spathula and Acipenser gueldenstaedtii [42] | / | Cytoplasm of dictyotene and previtellogenic oocytes | Two types: (1) elongated with well-developed cristae, often near nucleus and nuage; (2) spherical with deformed/fused cristae, randomly distributed, sometimes with lipid-like inclusions; deformed mitochondria degenerate and fuse with lipid droplets |
| Amphibia | Oocyte | Xenopus laevis [29,30,31,32] | >5 × 105 when oocyte diameter ~300 µm | Uneven distribution in ooplasm | Prominent Balbiani body |
| Sperm | Ambystoma mexicanum [3] | 3200–4000 | Midpiece, tightly packed in semicircular sheet covering dense core | Very small (0.15–0.22 µm), spherical, with outer and inner membranes and round cristae; contain electron-dense vesicles | |
| Aves | Oocyte | Coturnix japonica [30] | / | Two groups: one forms a “crown” around germinal vesicle, another migrates to vegetal pole (future germ cells) | Typical oocyte mitochondria |
| Sperm | Coturnix japonica [33] | >1400 | Midpiece, helically arranged around axoneme, covering 64–74% of sperm length (160–170 µm) | Double-membrane; cristae parallel to outer membrane | |
| Mammals | Oocyte | Homo sapiens [6,15,31] | ~105 | Uniform or perinuclear clustering; denser in inner cytoplasm | Round, sparse arched cristae, contacts with smooth ER |
| Mus musculus [31] | Increase from GV → MI → MII | GV: dispersed; MI: clustered in inner cytoplasm; MII: larger clusters inside cytoplasm | Round/oval, few cristae, low metabolic activity | ||
| Sperm | Mammals (general) [41] | ~100 mtDNA copies | Midpiece, spiral arrangement | Typical helical sheath | |
| Meriones unguiculatus [46] | / | Early: dispersed in cytoplasm; Later: spiral around midpiece | Elongated, helically arranged mitochondria |

2.2. Mitochondrial Functions During Gametogenesis
2.2.1. Energy Metabolism
2.2.2. Redox Balance and ROS Signaling
2.2.3. Apoptosis and Germ Cell Selection
2.2.4. Epigenetic Regulation
2.2.5. Mitochondrial DNA Transmission and the Bottleneck Effect
2.3. Evolution of Mitochondrial Bioenergetics and Its Link to Reproductive Strategies
2.3.1. Evolutionary Plasticity of Mitochondrial Metabolism
2.3.2. Divergent Bioenergetic Strategies in Gametes
2.3.3. Species-Specific Metabolic Strategies and Environmental Adaptation
2.4. Challenging Maternal Mitochondrial Inheritance: The Case and Evolutionary Significance of Doubly Uniparental Inheritance (DUI)
3. Evolutionary Strategy of Mitochondrial Inheritance and Coevolution
3.1. Evolution of the Mitochondrial Genome
3.1.1. Mitochondrial Genome Content and Structure
3.1.2. Exceptions: DUI Systems with F-Type and M-Type mtDNA
3.2. Maternal Inheritance and the Mitochondrial Bottleneck
3.3. Mito-Nuclear Coevolution in the Reproductive Dimension
4. Conclusions
5. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lluch, S.; López-Fuster, M.J.; Ventura, J. Giant mitochondria in the retina cone inner segments of shrews of genus Sorex (Insectivora, Soricidae). Anat. Rec. Part A Discov. Mol. Cell. Evol. Biol. 2003, 272A, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Vays, V.B.; Vangeli, I.M.; Eldarov, C.M.; Efeykin, B.D.; Bakeeva, L.E. Mitochondria in Obliquely Striated Muscles of the Horsehair Worm Gordionus alpestris (Nematomorpha, Gordioidea) with Structural Organization Typical of Cells with Energy-Intensive Processes. Biochem. Mosc. 2019, 84, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Keyhani, E.; Lemanski, L.F. Mitochondrial morphology in the spermatozoa of the mexican axolotl, Ambystoma mexicanum. J. Cell Sci. 1981, 50, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Mollaret, I.; Justine, J.-L. Immunocytochemical study of tubulin in the 9 + ‘1’ sperm axoneme of a monogenean (Platyhelminthes), Pseudodactylogyrus sp. Tissue Cell 1997, 29, 699–706. Tissue Cell 1997, 29, 699–706. [Google Scholar] [CrossRef]
- Erkan, M.; Sousa, M. Fine structural study of the spermatogenic cycle in Pitar rudis and Chamelea gallina (Mollusca, Bivalvia, Veneridae). Tissue Cell 2002, 34, 262–272. [Google Scholar] [CrossRef]
- Barritt, J.; Kokot, M.; Cohen, J.; Steuerwald, N.; Brenner, C. Quantification of human ooplasmic mitochondria. Reprod. Biomed. Online 2002, 4, 243–247. [Google Scholar] [CrossRef]
- Miller, W.H. Morphology of the ommatidia of the compound eye of Limulus. J. Biophys. Biochem. Cytol. 1957, 3, 421–428. [Google Scholar] [CrossRef]
- Slautterback, D.B.; Fawcett, D.W. The development of the cnidoblasts of Hydra; an electron microscope study of cell differentiation. J. Biophys. Biochem. Cytol. 1959, 5, 441–452. [Google Scholar] [CrossRef]
- Hammersen, F.; Staudte, H.W.; Möhring, E. Studies on the fine structure of invertebrate blood vessels. II. The valves of the lateral sinus of the leech, Hirudo medicinalis L. Cell Tissue Res. 1976, 172, 405–423. [Google Scholar] [CrossRef]
- Rube, D.A.; van der Bliek, A.M. Mitochondrial morphology is dynamic and varied. Mol. Cell. Biochem. 2004, 256, 331–339. [Google Scholar] [CrossRef]
- Kuznetsov, A.V.; Hermann, M.; Saks, V.; Hengster, P.; Margreiter, R. The cell-type specificity of mitochondrial dynamics. Int. J. Biochem. Cell Biol. 2009, 41, 1928–1939. [Google Scholar] [CrossRef] [PubMed]
- Benkhalifa, M.; Ferreira, Y.J.; Chahine, H.; Louanjli, N.; Miron, P.; Merviel, P.; Copin, H. Mitochondria: Participation to infertility as source of energy and cause of senescence. Int. J. Biochem. Cell Biol. 2014, 55, 60–64. [Google Scholar] [CrossRef] [PubMed]
- McBride, H.M.; Neuspiel, M.; Wasiak, S. Mitochondria: More Than Just a Powerhouse. Curr. Biol. 2006, 16, R551–R560. [Google Scholar] [CrossRef] [PubMed]
- Coffman, J.A. Mitochondria and metazoan epigenesis. Semin. Cell Dev. Biol. 2009, 20, 321–329. [Google Scholar] [CrossRef]
- Au, H.-K.; Yeh, T.-S.; Kao, S.-H.; Tzeng, C.-R.; Hsieh, R.-H. Abnormal Mitochondrial Structure in Human Unfertilized Oocytes and Arrested Embryos. Ann. N.Y. Acad. Sci. 2005, 1042, 177–185. [Google Scholar] [CrossRef]
- Gray, M.W.; Burger, G.; Lang, B.F. Mitochondrial evolution. Science 1999, 283, 1476–1481. [Google Scholar] [CrossRef]
- Andersson, G.E.; Karlberg, O.; Canbäck, B.; Kurland, C.G. On the origin of mitochondria: A genomics perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 165–179. [Google Scholar] [CrossRef]
- Gray, M.W. The pre-endosymbiont hypothesis: A new perspective on the origin and evolution of mitochondria. Cold Spring Harb. Perspect. Biol. 2014, 6, a016097. [Google Scholar]
- Rotte, C.; Henze, K.; Müller, M.; Martin, W. Origins of hydrogenosomes and mitochondria. Curr. Opin. Microbiol. 2000, 3, 481–486. [Google Scholar] [CrossRef]
- Lee, W.; Zamudio-Ochoa, A.; Buchel, G.; Podlesniy, P.; Gutierrez, N.M.; Puigròs, M.; Calderon, A.; Tang, H.-Y.; Li, L.; Mikhalchenko, A.; et al. Molecular basis for maternal inheritance of human mitochondrial DNA. Nat. Genet. 2023, 55, 1632–1639. [Google Scholar] [CrossRef]
- Chappel, S. The Role of Mitochondria from Mature Oocyte to Viable Blastocyst. Obstet. Gynecol. Int. 2013, 2013, 183024. [Google Scholar] [CrossRef] [PubMed]
- Hill, G.E. Sex linkage of nuclear-encoded mitochondrial genes. Heredity 2014, 112, 469–470. [Google Scholar] [CrossRef] [PubMed]
- Radzvilavicius, A.L.; Hadjivasiliou, Z.; Pomiankowski, A.; Lane, N. Selection for Mitochondrial Quality Drives Evolution of the Germline. PLoS Biol. 2016, 14, e2000410. [Google Scholar] [CrossRef] [PubMed]
- Medini, H.; Cohen, T.; Mishmar, D. Mitochondria Are Fundamental for the Emergence of Metazoans: On Metabolism, Genomic Regulation, and the Birth of Complex Organisms. Annu. Rev. Genet. 2020, 54, 151–166. [Google Scholar] [CrossRef]
- Dégletagne, C.; Abele, D.; Glöckner, G.; Alric, B.; Gruber, H.; Held, C. Presence of male mitochondria in somatic tissues and their functional importance at the whole animal level in the marine bivalve Arctica islandica. Commun. Biol. 2021, 4, 1104. [Google Scholar] [CrossRef]
- Milani, L.; Ghiselli, F.; Passamonti, M. Sex-Linked Mitochondrial Behavior During Early Embryo Development in Ruditapes philippinarum (Bivalvia Veneridae) a Species with the Doubly Uniparental Inheritance (DUI) of Mitochondria. J. Exp. Zoolog. B Mol. Dev. Evol. 2012, 318, 182–189. [Google Scholar] [CrossRef]
- Zouros, E. The exceptional mitochondrial DNA system of the mussel family Mytilidae. Genes Genet. Syst. 2000, 75, 313–318. [Google Scholar] [CrossRef]
- Urbisz, A.Z.; Chajec, Ł.; Małota, K.; Student, S.; Sawadro, M.K.; Śliwińska, M.A.; Świątek, P. All for one: Changes in mitochondrial morphology and activity during syncytial oogenesis. Biol. Reprod. 2022, 106, 1232–1253. [Google Scholar] [CrossRef]
- Kloc, M.; Bilinski, S.; Dougherty, M.T.; Brey, E.M.; Etkin, L.D. Formation, architecture and polarity of female germline cyst in Xenopus. Dev. Biol. 2004, 266, 43–61. [Google Scholar] [CrossRef]
- D’Herde, K.; Callebaut, M.; Roels, F.; De Prest, B.; van Nassauw, L. Homology between mitochondriogenesis in the avian and amphibian oocyte. Reprod. Nutr. Dev. 1995, 35, 305–311. [Google Scholar] [CrossRef][Green Version]
- Bahety, D.; Böke, E.; Rodríguez-Nuevo, A. Mitochondrial morphology, distribution and activity during oocyte development. Trends Endocrinol. Metab. 2024, 35, 902–917. [Google Scholar] [CrossRef] [PubMed]
- Marinos, E.; Billett, F.S. Mitochondrial number, cytochrome oxidase and succinic dehydrogenase activity in Xenopus laevis oocytes. Development 1981, 62, 395–409. [Google Scholar] [CrossRef]
- Korn, N.; Thurston, R.J.; Pooser, B.P.; Scott, T.R. Ultrastructure of spermatozoa from Japanese quail. Poult. Sci. 2000, 79, 407–414. [Google Scholar] [CrossRef]
- Reader, K.L.; Stanton, J.-A.L.; Juengel, J.L. The Role of Oocyte Organelles in Determining Developmental Competence. Biology 2017, 6, 35. [Google Scholar] [CrossRef]
- Świątek, P.; Pinder, A.; Gajda, Ł. Description of ovary organization and oogenesis in a phreodrilid clitellate. J. Morphol. 2020, 281, 81–94. [Google Scholar] [CrossRef]
- Taylor, G.T.; Anderson, E. Cytochemical and fine structural analysis of oogenesis in the gastropod, Ilyanassa obsoleta. J. Morphol. 1969, 129, 211–247. [Google Scholar] [CrossRef]
- Sekula, M.; Tworzydlo, W.; Bilinski, S.M. Balbiani body of basal insects is potentially involved in multiplication and selective elimination of mitochondria. Sci. Rep. 2024, 14, 8263. [Google Scholar] [CrossRef]
- Hertig, A.T. The primary human oocyte: Some observations on the fine structure of Balbiani’s vitelline body and the origin of the annulate lamellae. Am. J. Anat. 1968, 122, 107–137. [Google Scholar] [CrossRef]
- Anderson, W.A.; Weissman, A.; Ellis, R.A. Cytodifferentiation during spermiogenesis in Lumbricus terrestris. J. Cell Biol. 1967, 32, 11–26. [Google Scholar] [CrossRef]
- Tahmisian, T.N.; Powers, E.L.; Devine, R.L. Light and electron microscope studies of morphological changes of mitochondria during spermatogenesis in the grasshopper. J. Biophys. Biochem. Cytol. 1956, 2, 325–330. [Google Scholar] [CrossRef]
- Pesch, S.; Bergmann, M. Structure of mammalian spermatozoa in respect to viability, fertility and cryopreservation. Micron 2006, 37, 597–612. [Google Scholar] [CrossRef] [PubMed]
- Zelazowska, M.; Kilarski, W. Possible participation of mitochondria in lipid yolk formation in oocytes of paddlefish and sturgeon. Cell Tissue Res. 2009, 335, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Ferraguti, M.; Marotta, R.; Martin, P. The double sperm line in Isochaetides (Annelida, Clitellata, Tubificidae). Tissue Cell 2002, 34, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Yushin, V.V.; Gliznutsa, L.A. Spermatozoa in the Demanian system of free-living marine nematode Admirandus multicavus (Enoplida: Oncholaimidae). Invertebr. Zool. 2021, 18, 369–383. [Google Scholar] [CrossRef]
- Gwo, J.-C.; Hsu, T.-H. Ultrastructure of sperm and complete mitochondrial genome in Meretrix sp. (Bivalvia: Veneridae) from Taiwan. Tissue Cell 2020, 67, 101454. [Google Scholar] [CrossRef]
- Segatelli, T.M.; Almedia, C.; Pinheiro, P.; Martinez, M.; Padovani, C.; Martinez, F. Ultrastructural study of acrosomeformation in mongolian gerbil (Meriones unguiculatus). Tissue Cell 2000, 32, 508–517. [Google Scholar] [CrossRef]
- Wang, X.; Yin, L.; Wen, Y.; Yuan, S. Mitochondrial regulation during male germ cell development. Cell. Mol. Life Sci. 2022, 79, 91. [Google Scholar] [CrossRef]
- Motta, P.M.; Nottola, S.A.; Makabe, S.; Heyn, R. Mitochondrial morphology in human fetal and adult female germ cells. Hum. Reprod. 2000, 15, 129–147. [Google Scholar] [CrossRef]
- Ramalho-Santos, J.; Amaral, S. Mitochondria and mammalian reproduction. Mol. Cell. Endocrinol. 2013, 379, 74–84. [Google Scholar] [CrossRef]
- Ramalho-Santos, J.; Varum, S.; Amaral, S.; Mota, P.C.; Sousa, A.P.; Amaral, A. Mitochondrial functionality in reproduction: From gonads and gametes to embryos and embryonic stem cells. Hum. Reprod. Update 2009, 15, 553–572. [Google Scholar] [CrossRef]
- van der Reest, J.; Nardini Cecchino, G.; Haigis, M.C.; Kordowitzki, P. Mitochondria: Their relevance during oocyte ageing. Ageing Res. Rev. 2021, 70, 101378. [Google Scholar] [CrossRef]
- Milani, L.; Ghiselli, F. Mitochondrial activity in gametes and transmission of viable mtDNA. Biol. Direct 2015, 10, 22. [Google Scholar] [CrossRef]
- Pepling, M.E.; Spradling, A.C. Mouse Ovarian Germ Cell Cysts Undergo Programmed Breakdown to Form Primordial Follicles. Dev. Biol. 2001, 234, 339–351. [Google Scholar] [CrossRef]
- Sheng, X.; Liu, C.; Yan, G.; Li, G.; Liu, J.; Yang, Y.; Li, S.; Li, Z.; Zhou, J.; Zhen, X.; et al. The mitochondrial protease LONP1 maintains oocyte development and survival by suppressing nuclear translocation of AIFM1 in mammals. eBioMedicine 2022, 75, 103790. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Z.-H.; Liu, Y.; Chen, Y.; Sun, N.; Gucek, M.; Zhang, F.; Xu, H. PINK1 Inhibits Local Protein Synthesis to Limit Transmission of Deleterious Mitochondrial DNA Mutations. Mol. Cell 2019, 73, 1127–1137.e5. [Google Scholar] [CrossRef] [PubMed]
- Antelman, J.; Manandhar, G.; Yi, Y.; Li, R.; Whitworth, K.; Sutovsky, M.; Agca, C.; Prather, R.; Sutovsky, P. Expression of mitochondrial transcription factor A (TFAM) during porcine gametogenesis and preimplantation embryo development. J. Cell. Physiol. 2008, 217, 529–543. [Google Scholar] [CrossRef] [PubMed]
- Zouros, E.; Oberhauser Ball, A.; Saavedra, C.; Freeman, K.R. An unusual type of mitochondrial DNA inheritance in the blue mussel Mytilus. Proc. Natl. Acad. Sci. USA 1994, 91, 7463–7467. [Google Scholar] [CrossRef]
- Xu, R.; Iannello, M.; Havird, J.C.; Milani, L.; Ghiselli, F. Lack of transcriptional coordination between mitochondrial and nuclear oxidative phosphorylation genes in the presence of two divergent mitochondrial genomes. Zool. Res. 2022, 43, 111–128. [Google Scholar] [CrossRef]
- Müller, M.; Mentel, M.; van Hellemond, J.J.; Henze, K.; Woehle, C.; Gould, S.B.; Yu, R.-Y.; van der Giezen, M.; Tielens, A.G.M.; Martin, W.F. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 2012, 76, 444–495. [Google Scholar] [CrossRef]
- Abruzzese, G.A.; Sanchez-Rodriguez, A.; Roldan, E.R.S. Sperm Metabolism. Mol. Reprod. Dev. 2024, 91, e23772. [Google Scholar] [CrossRef]
- Wetzker, C.; Reinhardt, K. Distinct metabolic profiles in Drosophila sperm and somatic tissues revealed by two-photon NAD(P)H and FAD autofluorescence lifetime imaging. Sci. Rep. 2019, 9, 19534. [Google Scholar] [CrossRef]
- Yahalomi, D.; Atkinson, S.D.; Neuhof, M.; Chang, E.S.; Philippe, H.; Cartwright, P.; Bartholomew, J.L.; Huchon, D. A cnidarian parasite of salmon (Myxozoa: Henneguya) lacks a mitochondrial genome. Proc. Natl. Acad. Sci. USA 2020, 117, 5358–5363. [Google Scholar] [CrossRef]
- Ballantyne, J.S. Mitochondria: Aerobic and anaerobic design--lessons from molluscs and fishes. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2004, 139, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ge, J.; Wang, Y.; Chen, M.; Guo, X.; Zhu, S.; Wang, H.; Wang, Q. Integrative Omics Reveals the Metabolic Patterns During Oocyte Growth. Mol. Cell. Proteom. 2024, 23, 100862. [Google Scholar] [CrossRef] [PubMed]
- Mateo-Otero, Y.; Madrid-Gambin, F.; Llavanera, M.; Gomez-Gomez, A.; Haro, N.; Pozo, O.J.; Yeste, M. Sperm physiology and in vitro fertilising ability rely on basal metabolic activity: Insights from the pig model. Commun. Biol. 2023, 6, 344. [Google Scholar] [CrossRef] [PubMed]
- Vaught, R.C.; Dowling, D.K. Maternal inheritance of mitochondria: Implications for male fertility? Reproduction 2018, 155, R159–R168. [Google Scholar] [CrossRef]
- Kim, E.H.; Kim, G.A.; Taweechaipaisankul, A.; Ridlo, M.R.; Lee, S.H.; Ra, K.; Ahn, C.; Lee, B.C. Phytanic acid-derived peroxisomal lipid metabolism in porcine oocytes. Theriogenology 2020, 157, 276–285. [Google Scholar] [CrossRef]
- Shen, Y.; Dinh, H.V.; Cruz, E.R.; Chen, Z.; Bartman, C.R.; Xiao, T.; Call, C.M.; Ryseck, R.-P.; Pratas, J.; Weilandt, D.; et al. Mitochondrial ATP generation is more proteome efficient than glycolysis. Nat. Chem. Biol. 2024, 20, 1123–1132. [Google Scholar] [CrossRef]
- Ghiselli, F.; Maurizii, M.G.; Reunov, A.; Ariño-Bassols, H.; Cifaldi, C.; Pecci, A.; Alexandrova, Y.; Bettini, S.; Passamonti, M.; Franceschini, V.; et al. Natural Heteroplasmy and Mitochondrial Inheritance in Bivalve Molluscs. Integr. Comp. Biol. 2019, 59, 1016–1032. [Google Scholar] [CrossRef]
- Milani, L.; Ghiselli, F.; Guerra, D.; Breton, S.; Passamonti, M. A comparative analysis of mitochondrial ORFans: New clues on their origin and role in species with doubly uniparental inheritance of mitochondria. Genome Biol. Evol. 2013, 5, 1408–1434. [Google Scholar] [CrossRef]
- Smith, C.H.; Pinto, B.J.; Kirkpatrick, M.; Hillis, D.M.; Pfeiffer, J.M.; Havird, J.C. A tale of two paths: The evolution of mitochondrial recombination in bivalves with doubly uniparental inheritance. J. Hered. 2023, 114, 199–206. [Google Scholar] [CrossRef]
- Ghiselli, F.; Iannello, M.; Piccinini, G.; Milani, L. Bivalve Molluscs as Model Systems for Studying Mitochondrial Biology. Integr. Comp. Biol. 2021, 61, 1699–1714. [Google Scholar] [CrossRef]
- Milani, L.; Ghiselli, F.; Maurizii, M.G.; Passamonti, M. Doubly uniparental inheritance of mitochondria as a model system for studying germ line formation. PLoS ONE 2011, 6, e28194. [Google Scholar] [CrossRef]
- Passamonti, M.; Ricci, A.; Milani, L.; Ghiselli, F. Mitochondrial genomes and Doubly Uniparental Inheritance: New insights from Musculista senhousia sex-linked mitochondrial DNAs (Bivalvia Mytilidae). BMC Genom. 2011, 12, 442. [Google Scholar] [CrossRef] [PubMed]
- Leroux, É.; Khorami, H.H.; Angers, A.; Angers, B.; Breton, S. Mitochondrial epigenetics brings new perspectives on doubly uniparental inheritance in bivalves. Sci. Rep. 2024, 14, 31544. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, X.; Gu, Y.; Liu, Z.; Mao, Y.; Liu, X.; Bai, Z.; Wang, G.; Li, J. Study on the Role of Mitophagy Receptor PHB2 in Doubly Uniparental Inheritance of Hyriopsis cumingii. Mar. Biotechnol. 2023, 25, 790–799. [Google Scholar] [CrossRef]
- Pozzi, A.; Plazzi, F.; Milani, L.; Ghiselli, F.; Passamonti, M. SmithRNAs: Could Mitochondria ‘Bend’ Nuclear Regulation? Mol. Biol. Evol. 2017, 34, 1960–1973. [Google Scholar] [CrossRef]
- Ryan, M.T.; Hoogenraad, N.J. Mitochondrial-Nuclear Communications. Annu. Rev. Biochem. 2007, 76, 701–722. [Google Scholar] [CrossRef]
- Zheng, D.; Ma, R.; Guo, X.; Li, J. Comparative Mitogenomics of Wonder Geckos (Sphaerodactylidae: Teratoscincus Strauch, 1863): Uncovering Evolutionary Insights into Protein-Coding Genes. Genes 2025, 16, 531. [Google Scholar] [CrossRef]
- Plese, B.; Kenny, N.J.; Rossi, M.E.; Cárdenas, P.; Schuster, A.; Taboada, S.; Koutsouveli, V.; Riesgo, A. Mitochondrial evolution in the Demospongiae (Porifera): Phylogeny, divergence time, and genome biology. Mol. Phylogenet. Evol. 2021, 155, 107011. [Google Scholar] [CrossRef]
- Castresana, J.; Feldmaier-Fuchs, G.; Yokobori, S.; Satoh, N.; Pääbo, S. The mitochondrial genome of the hemichordate Balanoglossus carnosus and the evolution of deuterostome mitochondria. Genetics 1998, 150, 1115–1123. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.; Bankier, A.T.; Barrell, B.G.; De Bruijn, M.H.L.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Lavrov, D.V.; Brown, W.M. Trichinella spiralis mtDNA: A nematode mitochondrial genome that encodes a putative ATP8 and normally structured tRNAS and has a gene arrangement relatable to those of coelomate metazoans. Genetics 2001, 157, 621–637. [Google Scholar] [CrossRef] [PubMed]
- Breton, S.; Stewart, D.T.; Hoeh, W.R. Characterization of a mitochondrial ORF from the gender-associated mtDNAs of Mytilus spp. (Bivalvia: Mytilidae): Identification of the “missing” ATPase 8 gene. Mar. Genom. 2010, 3, 11–18. [Google Scholar] [CrossRef]
- Iannello, M.; Bettinazzi, S.; Breton, S.; Ghiselli, F.; Milani, L. A Naturally Heteroplasmic Clam Provides Clues about the Effects of Genetic Bottleneck on Paternal mtDNA. Genome Biol. Evol. 2021, 13, evab022. [Google Scholar] [CrossRef]
- Ahmed, M.; Kayal, E.; Lavrov, D.V. Mitochondrial DNA of the Demosponge Acanthella acuta: Linear Architecture and Other Unique Features. Genome Biol. Evol. 2024, 16, evae168. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, L.; Zhang, M.; Tang, H.; Huang, Y.; Su, Y.; Ding, Y.; Li, C.; Wang, M.; Zhou, Y.; et al. A novel protein CYTB-187AA encoded by the mitochondrial gene CYTB modulates mammalian early development. Cell Metab. 2024, 36, 1586–1597.e7. [Google Scholar] [CrossRef]
- Nass, M.M. The circularity of mitochondrial DNA. Proc. Natl. Acad. Sci. USA 1966, 56, 1215–1222. [Google Scholar] [CrossRef]
- Kayal, E.; Bentlage, B.; Collins, A.G.; Kayal, M.; Pirro, S.; Lavrov, D.V. Evolution of linear mitochondrial genomes in medusozoan cnidarians. Genome Biol. Evol. 2012, 4, 1–12. [Google Scholar] [CrossRef]
- Zapata, F.; Goetz, F.E.; Smith, S.A.; Howison, M.; Siebert, S.; Church, S.H.; Sanders, S.M.; Ames, C.L.; McFadden, C.S.; France, S.C.; et al. Phylogenomic Analyses Support Traditional Relationships within Cnidaria. PLoS ONE 2015, 10, e0139068. [Google Scholar] [CrossRef]
- Lavrov, D.V.; Pett, W.; Voigt, O.; Wörheide, G.; Forget, L.; Lang, B.F.; Kayal, E. Mitochondrial DNA of Clathrina clathrus (Calcarea, Calcinea): Six Linear Chromosomes, Fragmented rRNAs, tRNA Editing, and a Novel Genetic Code. Mol. Biol. Evol. 2012, 30, 865–880. [Google Scholar] [CrossRef]
- Rot, C.; Goldfarb, I.; Ilan, M.; Huchon, D. Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria. BMC Evol. Biol. 2006, 6, 71. [Google Scholar] [CrossRef]
- Breton, S.; Beaupré, H.D.; Stewart, D.T.; Piontkivska, H.; Karmakar, M.; Bogan, A.E.; Blier, P.U.; Hoeh, W.R. Comparative Mitochondrial Genomics of Freshwater Mussels (Bivalvia: Unionoida) with Doubly Uniparental Inheritance of mtDNA: Gender-Specific Open Reading Frames and Putative Origins of Replication. Genetics 2009, 183, 1575–1589. [Google Scholar] [CrossRef]
- Cao, L.; Kenchington, E.; Zouros, E. Differential Segregation Patterns of Sperm Mitochondria in Embryos of the Blue Mussel (Mytilus edulis). Genetics 2004, 166, 883–894. [Google Scholar] [CrossRef]
- Smith, C.H.; Mejia-Trujillo, R.; Havird, J.C. Mitonuclear compatibility is maintained despite relaxed selection on male mitochondrial DNA in bivalves with doubly uniparental inheritance. Evol. Int. J. Org. Evol. 2024, 78, 1790–1803. [Google Scholar] [CrossRef] [PubMed]
- Breton, S.; Stewart, D.T.; Brémaud, J.; Havird, J.C.; Smith, C.H.; Hoeh, W.R. Did doubly uniparental inheritance (DUI) of mtDNA originate as a cytoplasmic male sterility (CMS) system? BioEssays News Rev. Mol. Cell. Dev. Biol. 2022, 44, e2100283. [Google Scholar] [CrossRef] [PubMed]
- Palozzi, J.M.; Hurd, T.R. The role of programmed mitophagy in germline mitochondrial DNA quality control. Autophagy 2023, 19, 2817–2818. [Google Scholar] [CrossRef] [PubMed]
- Howell, N.; Halvorson, S.; Kubacka, I.; McCullough, D.A.; Bindoff, L.A.; Turnbull, D.M. Mitochondrial gene segregation in mammals: Is the bottleneck always narrow? Hum. Genet. 1992, 90, 117–120. [Google Scholar] [CrossRef]
- Hauswirth, W.W.; Laipis, P.J. Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc. Natl. Acad. Sci. USA 1982, 79, 4686–4690. [Google Scholar] [CrossRef]
- Kavoosi, S.; Picard, M.; Kaufman, B.A. TFAM mislocalization during spermatogenesis. Trends Genet. 2024, 40, 112–114. [Google Scholar] [CrossRef]
- Merlet, J.; Rubio-Peña, K.; Al Rawi, S.; Galy, V. Autophagosomal Sperm Organelle Clearance and mtDNA Inheritance in C. elegans. Adv. Anat. Embryol. Cell Biol. 2019, 231, 1–23. [Google Scholar] [PubMed]
- Zhou, Q.; Li, H.; Li, H.; Nakagawa, A.; Lin, J.L.J.; Lee, E.-S.; Harry, B.L.; Skeen-Gaar, R.R.; Suehiro, Y.; William, D.; et al. Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization. Science 2016, 353, 394–399. [Google Scholar] [CrossRef]
- Sasaki, T.; Kushida, Y.; Norizuki, T.; Kosako, H.; Sato, K.; Sato, M. ALLO-1- and IKKE-1-dependent positive feedback mechanism promotes the initiation of paternal mitochondrial autophagy. Nat. Commun. 2024, 15, 1460. [Google Scholar] [CrossRef]
- de Melo, K.P.; Camargo, M. Mechanisms for sperm mitochondrial removal in embryos. Biochim. Biophys. Acta BBA—Mol. Cell Res. 2021, 1868, 118916. [Google Scholar] [CrossRef] [PubMed]
- Song, W.-H.; Ballard, J.W.O.; Yi, Y.-J.; Sutovsky, P. Regulation of Mitochondrial Genome Inheritance by Autophagy and Ubiquitin-Proteasome System: Implications for Health, Fitness, and Fertility. BioMed Res. Int. 2014, 2014, 981867. [Google Scholar] [CrossRef] [PubMed]
- Cree, L.M.; Samuels, D.C.; De Sousa Lopes, S.C.; Rajasimha, H.K.; Wonnapinij, P.; Mann, J.R.; Dahl, H.-H.M.; Chinnery, P.F. A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat. Genet. 2008, 40, 249–254. [Google Scholar] [CrossRef]
- Palozzi, J.M.; Jeedigunta, S.P.; Minenkova, A.V.; Monteiro, V.L.; Thompson, Z.S.; Lieber, T.; Hurd, T.R. Mitochondrial DNA quality control in the female germline requires a unique programmed mitophagy. Cell Metab. 2022, 34, 1809–1823.e6. [Google Scholar] [CrossRef]
- Marlow, F.L. Mitochondrial matters: Mitochondrial bottlenecks, self-assembling structures, and entrapment in the female germline. Stem Cell Res. 2017, 21, 178–186. [Google Scholar] [CrossRef]
- Blumberg, A.; Barshad, G.; Mishmar, D. Mitochondrial and Nuclear Genome Coevolution. In Encyclopedia of Evolutionary Biology; Kliman, R.M., Ed.; Academic Press: Oxford, UK, 2016; pp. 19–26. [Google Scholar] [CrossRef]
- Hill, G.E. Mitonuclear Ecology. Mol. Biol. Evol. 2015, 32, 1917–1927. [Google Scholar] [CrossRef]
- Bar-Yaacov, D.; Blumberg, A.; Mishmar, D. Mitochondrial-nuclear co-evolution and its effects on OXPHOS activity and regulation. Biochim. Biophys. Acta BBA—Gene Regul. Mech. 2012, 1819, 1107–1111. [Google Scholar] [CrossRef]
- Roberti, M.; Polosa, P.L.; Bruni, F.; Manzari, C.; Deceglie, S.; Gadaleta, M.N.; Cantatore, P. The MTERF family proteins: Mitochondrial transcription regulators and beyond. Biochim. Biophys. Acta BBA—Bioenerg. 2009, 1787, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Daskalaki, I.; Markaki, M.; Gkikas, I.; Tavernarakis, N. Local coordination of mRNA storage and degradation near mitochondria modulates C. elegans ageing. EMBO J. 2023, 42, e112446. [Google Scholar]
- Colella, M.; Cuomo, D.; Peluso, T.; Falanga, I.; Mallardo, M.; De Felice, M.; Ambrosino, C. Ovarian Aging: Role of Pituitary-Ovarian Axis Hormones and ncRNAs in Regulating Ovarian Mitochondrial Activity. Front. Endocrinol. 2021, 12, 791071. [Google Scholar] [CrossRef] [PubMed]
- Keaney, T.A.; Wong, H.W.S.; Dowling, D.K.; Jones, T.M.; Holman, L. Mother’s curse and indirect genetic effects: Do males matter to mitochondrial genome evolution? J. Evol. Biol. 2020, 33, 189–201. [Google Scholar] [CrossRef]
- Plazzi, F.; Le Cras, Y.; Formaggioni, A.; Passamonti, M. Mitochondrially mediated RNA interference, a retrograde signaling system affecting nuclear gene expression. Heredity 2024, 132, 156–161. [Google Scholar] [CrossRef]
- Piccinini, G.; Iannello, M.; Puccio, G.; Plazzi, F.; Havird, J.C.; Ghiselli, F. Mitonuclear Coevolution, but not Nuclear Compensation, Drives Evolution of OXPHOS Complexes in Bivalves. Mol. Biol. Evol. 2021, 38, 2597–2614. [Google Scholar] [CrossRef] [PubMed]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.-T.; Yang, W.-X. Gatekeepers of the Germ Line: How Mitochondria Shape Reproductive Evolution in Metazoans. Biology 2025, 14, 1728. https://doi.org/10.3390/biology14121728
Sun Y-T, Yang W-X. Gatekeepers of the Germ Line: How Mitochondria Shape Reproductive Evolution in Metazoans. Biology. 2025; 14(12):1728. https://doi.org/10.3390/biology14121728
Chicago/Turabian StyleSun, Yu-Tong, and Wan-Xi Yang. 2025. "Gatekeepers of the Germ Line: How Mitochondria Shape Reproductive Evolution in Metazoans" Biology 14, no. 12: 1728. https://doi.org/10.3390/biology14121728
APA StyleSun, Y.-T., & Yang, W.-X. (2025). Gatekeepers of the Germ Line: How Mitochondria Shape Reproductive Evolution in Metazoans. Biology, 14(12), 1728. https://doi.org/10.3390/biology14121728

