Factors Affecting Macro-Structural Development in the Cerebral Cortex: The Potential Role of Tissue Removal Through Pruning and Apoptosis
Simple Summary
Abstract
1. Background
2. Potential Factors in Macro-Structural Cortical Development
2.1. Spatially Varying Brain Growth
2.2. Skull Constraints
2.3. Axonal Tension and Pushing
2.4. Tissue Removal: Potential Role in MSCD
2.4.1. Tissue Removal: Potential Connection with Learning and MSCD
A Potentially Illustrative Example from Electrical Engineering
2.4.2. Tissue Removal: Potential Connection with Cerebrospinal Fluid
2.4.3. Insights from Pathologies Potentially Characterized by Abnormally Reduced Tissue Removal
2.4.4. Insights from Pathologies Potentially Characterized by Abnormally Increased Tissue Removal
2.4.5. Tissue Removal: Potential Relationship with Pre-Existing Theories of MSCD
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CSF | Cerebrospinal fluid |
| FPGA | Field programmable gate array |
| FSIQ | Full-scale intelligence quotient |
| GM | Gray matter |
| IS | Idiopathic scoliosis |
| MR | Magnetic resonance |
| MRI | Magnetic resonance imaging |
| MS | Multiple sclerosis |
| MSCD | Macro-structural cortical development |
| WM | White matter |
References
- Richman, D.P.; Stewart, R.M.; Hutchinson, J.; Caviness, V.S. Mechanical model of brain convolutional development. Science 1975, 189, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Tallinen, T.; Chung, J.Y.; Rousseau, F.; Girard, N.; Lefèvre, J.; Mahadevan, L. On the growth and form of cortical convolutions. Nat. Phys. 2016, 12, 588–593. [Google Scholar] [CrossRef]
- Toro, R.; Burnod, Y. A morphogenetic model for the development of cortical convolutions. Cereb. Cortex 2005, 15, 1900–1913. [Google Scholar] [CrossRef]
- Le Gros Clark, W.E. Deformation Patterns in the Cerebral Cortex; Essays on Growth and Form; Oxford University Press: Oxford, UK, 1945; pp. 1–22. [Google Scholar]
- Hilgetag, C.C.; Barbas, H. Role of mechanical factors in the morphology of the primate cerebral cortex. PLoS Comput. Biol. 2006, 2, e22. [Google Scholar] [CrossRef]
- Van Essen, D.C. A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 1997, 385, 313–318. [Google Scholar] [CrossRef]
- Kriegstein, A.; Noctor, S.; Martinez-Cerdeno, V. Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat. Rev. Neurosci. 2006, 7, 883–890. [Google Scholar] [CrossRef]
- Ronan, L.; Fletcher, P.C. From genes to folds: A review of cortical gyrification theory. Brain Struct. Funct. 2015, 220, 2475–2483. [Google Scholar] [CrossRef]
- Welker, W. Why Does the Cerebral Cortex Fissure and Fold? A Review of Determinants of Gyri and Sulci. In Cerebral Cortex; Springer Nature: Berlin/Heidelberg, Germany, 1990; pp. 3–136. [Google Scholar]
- Nie, J.; Guo, L.; Li, K.; Wang, Y.; Chen, G.; Li, L.; Chen, H.; Deng, F.; Jiang, X.; Zhang, T.; et al. Axonal fiber terminations concentrate on gyri. Cereb. Cortex 2012, 22, 2831–2839. [Google Scholar] [CrossRef]
- Im, K.; Grant, P.E. Sulcal pits and patterns in developing human brains. NeuroImage 2019, 185, 881–890. [Google Scholar] [CrossRef]
- Fernandez, V.; Borrell, V. Developmental mechanisms of gyrification. Curr. Opin. Neurobiol. 2023, 80, 102711. [Google Scholar] [CrossRef]
- White, T.; Su, S.; Schmidt, M.; Kao, C.-Y.; Sapiro, G. The development of gyrification in childhood and adolescence. Brain Cogn. 2010, 72, 36–45. [Google Scholar] [CrossRef]
- Cao, B.; Mwangi, B.; Passos, I.C.; Wu, M.J.; Keser, Z.; Zunta-Soares, G.B. Lifespan Gyrification Trajectories of Human Brain in Healthy Individuals and Patients with Major Psychotic Disorders. Sci. Rep. 2017, 7, 511. [Google Scholar]
- Parker, N.; Patel, Y.; Jackowski, A.P.; Pan, P.M.; Salum, G.A.; Pausova, Z.; Paus, T. Assessment of Neurobiological Mechanisms of Cortical Thinning During Childhood and Adolescence and Their Implications for Psychiatric Disorders. JAMA Psychiatry 2020, 77, 1127–1136. [Google Scholar] [CrossRef]
- Levman, J.; MacDonald, P.; Lim, A.R.; Forgeron, C.; Takahashi, E. A pediatric structural MRI analysis of healthy brain development from newborns to young adults. Hum. Brain Mapp. 2017, 38, 5931–5942. [Google Scholar] [CrossRef]
- Salat, D.H.; Buckner, R.L.; Snyder, A.Z.; Greve, D.N.; Desikan, R.S.; Busa, E.; Morris, J.C.; Dale, A.M.; Fischl, B. Thinning of the Cerebral Cortex in Aging. Cereb. Cortex 2004, 14, 721–730. [Google Scholar] [CrossRef]
- Barkovich, A.J.; Guerrini, R.; Kuzniecky, R.I.; Jackson, G.D.; Dobyns, W.B. A developmental and genetic classification for malformations of cortical development: Update. Brain 2022, 135, 1348–1369. [Google Scholar] [CrossRef] [PubMed]
- Iegiani, G.; Ferraro, A.; Pallavicini, G.; Di Cunto, F. The impact of TP53 activation and apoptosis in primary hereditary microcephaly. Front. Neurosci. 2023, 17, 1220010. [Google Scholar] [CrossRef] [PubMed]
- Di Donato, N.; Jean, Y.Y.; Maga, A.M.; Krewson, B.D.; Shupp, A.B.; Avrutsky, M.I. Mutations in CRADD Result in Reduced Caspase-2-Mediated Neuronal Apoptosis and Cause Megalencephaly with a Rare Lissencephaly Variant. Am. J. Hum. Genet. 2016, 99, 1117–1129. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Gauthier, C.; Berger, D.; Cai, H.; Levman, J. Identifying Cortical Molecular Biomarkers Potentially Associated with Learning in Mice Using Artificial Intelligence. Int. J. Mol. Sci. 2025, 26, 6878. [Google Scholar] [CrossRef]
- BCL2. National Cancer Institute. Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/bcl2 (accessed on 17 April 2025).
- Schroer, J.; Warm, D.; De Rosa, F.; Luhmann, H.J.; Sinning, A. Activity-dependent regulation of the BAX/BCL-2 pathway protects cortical neurons from apoptotic death during early development. Cell. Mol. Life Sci. 2023, 80, 175. [Google Scholar] [CrossRef]
- Ertürk, A.; Wang, Y.; Sheng, M. Local pruning of dendrites and spines by caspase-3-dependent and proteasome-limited mechanisms. J. Neurosci. 2014, 34, 1672–1688. [Google Scholar] [CrossRef] [PubMed]
- Faust, T.E.; Gunner, G.; Schafer, D.P. Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS. Nat. Rev. Neurosci. 2021, 22, 657–673. [Google Scholar] [CrossRef] [PubMed]
- Sakai, J. How synaptic pruning shapes neural wiring during development and, possibly, in disease. Proc. Natl. Acad. Sci. USA 2020, 117, 16096–16099. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Dissing-Olesen, L.; Stevens, B. New insights on the role of microglia in synaptic pruning in health and disease. Curr. Opin. Neurobiol. 2016, 36, 128–134. [Google Scholar] [CrossRef]
- Riccomagno, M.M.; Kolodkin, A.L. Sculpting Neural Circuits by Axon and Dendrite Pruning. Annu. Rev. Cell Dev. Biol. 2015, 31, 779–805. [Google Scholar] [CrossRef]
- Hanson, K.L.; Avino, T.; Taylor, S.L.; Murray, K.D.; Schumann, C.M. Age-related differences in axon pruning and myelination may alter neural signaling in autism spectrum disorder. Mol. Autism 2025, 16, 53. [Google Scholar] [CrossRef]
- Bertheloot, D.; Latz, E.; Franklin, B.S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell. Mol. Immunol. 2021, 18, 1106–1121. [Google Scholar] [CrossRef]
- de Vareilles, H.; Rivière, D.; Mangin, J.F.; Dubois, J. Development of cortical folds in the human brain: An Attempt to review biological hypotheses, early neuroimaging investigations and functional correlates. Dev. Cogn. Neurosci. 2023, 61, 101249. [Google Scholar] [CrossRef]
- Chen, H.; Guo, L.; Nie, J.; Zhang, T.; Hu, X.; Liu, T. A dynamic skull model for simulation of cerebral cortex folding. Med. Image Comput. Comput. Assist. Interv. 2010, 13 Pt 2, 412–419. [Google Scholar]
- Nie, J.; Li, G.; Guo, L.; Liu, T. A Computational Model of Cerebral Cortex Folding. Med. Image Comput. Comput. Assist. Interv. 2009, 12 Pt 2, 458–465. [Google Scholar]
- Chavoshnejad, P.; Chen, L.; Yu, X.; Hou, J.; Filla, N.; Zhu, D.; Liu, T.; Li, G.; Razavi, M.J.; Wang, X. An integrated finite element method and machine learning algorithm for brain morphology prediction. Cereb. Cortex 2023, 33, 8354–9366. [Google Scholar] [CrossRef] [PubMed]
- Garcia, K.; Kroenke, C.; Bayly, P. Mechanics of cortical folding: Stress, growth and stability. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170321. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.G.; Peters, A. Cerebral Cortex: Comparative Structure and Evolution of Cerebral Cortex, Part II; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Tallinen, T.; Chung, J.Y.; Biggins, J.S.; Mahadevan, L. Gyrification from constrained cortical expansion. Proc. Natl. Acad. Sci. USA 2014, 111, 12667–12672. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.P. MRI Protocol for Craniosynostosis: Replacing Ionizing Radiation-Based CT. Am. J. Roentgenol. 2019, 213, 1374–1380. [Google Scholar] [CrossRef]
- Van Essen, D.C. A 2020 view of tension-based cortical morphogenesis. Proc. Natl. Acad. Sci. USA 2020, 117, 32868–32879. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Holland, M.A. Axonal tension contributes to consistent fold placement. Soft Matter 2024, 20, 3053–3065. [Google Scholar] [CrossRef]
- Ackerman, S. Chapter 6 The Development and Shaping of the Brain. In Discovering the Brain; National Academies Press: Washington, DC, USA, 1992. [Google Scholar]
- Azevedo, F.A.C.; Carvalho, L.R.B.; Grinberg, L.T.; Farfel, J.M.; Ferretti, R.E.L.; Leite, R.E.P.; Filho, W.J.; Lent, R.; Herculano-Houzel, S. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 2009, 513, 532–541. [Google Scholar] [CrossRef]
- Andrade-Moraes, C.H.; Oliveira-Pinto, A.V.; Castro-Fonseca, E.; da Silva, C.G.; Guimarães, D.M.; Szczupak, D.; Parente-Bruno, D.R.; Carvalho, L.R.B.; Polichiso, L.; Gomes, B.V.; et al. Cell number changes in Alzheimer’s disease relate to dementia, not to plaques and tangles. Brain 2013, 136, 3738–3752. [Google Scholar] [CrossRef]
- Goriely, A. Eighty-six billion and counting: Do we know the number of neurons in the human brain? Brain 2025, 148, 689–691. [Google Scholar] [CrossRef]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35, 415–516. [Google Scholar] [CrossRef]
- Chechik, G.; Meilijson, I.; Ruppin, E. Synaptic Pruning in Development: A Computational Account. Neural Comput. 1998, 10, 1759–1777. [Google Scholar] [CrossRef] [PubMed]
- Nasiraei-Moghadam, S.; Kazeminezhad, B.; Dargahi, L.; Ahmadiani, A. Maternal oral consumption of morphine increases Bax/Bcl-2 ratio and caspase 3 activity during early neural system development in rat embryos. J. Mol. Neurosci. 2010, 41, 156–164. [Google Scholar] [CrossRef]
- Yun, H.J.; Nagaraj, U.D.; Grant, P.E.; Merhar, S.L.; Ou, X.; Lin, W.; Acheson, A.; Grewen, K.; Kline-Fath, B.M.; Im, K. A Prospective Multi-Institution Study Comparing the Brain Development in the Third Trimester between Opioid-Exposed and Nonexposed Fetuses Using Advanced Fetal MR Imaging Techniques. Am. J. Neuroradiol. 2024, 45, 218–223. [Google Scholar] [CrossRef]
- Berntson, G.G.; Khalsa, S.S. Neural Circuits of Interoception. Trends Neurosci. 2021, 44, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Fjell, A.M.; Westlye, L.T.; Amlien, I.; Espeseth, T.; Reinvang, I.; Raz, N.; Agartz, I.; Salat, D.H.; Greve, D.N.; Fischl, B.; et al. High Consistency of Regional Cortical Thinning in Aging across Multiple Samples. Cereb. Cortex 2009, 19, 2001–2012. [Google Scholar] [CrossRef] [PubMed]
- McCormick, C.M.; Mathews, I.Z. Adolescent development, hypothalamic-pituitary-adrenal function, and programming of adult learning and memory. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2010, 34, 756–765. [Google Scholar] [CrossRef]
- Sowell, E.R.; Delis, D.; Stiles, J.; Jernigan, T.L. Improved memory functioning and frontal lobe maturation between childhood and adolescence: A structural MRI study. J. Int. Neuropsychol. Soc. 2001, 7, 312–322. [Google Scholar] [CrossRef]
- Engvig, A.; Fjell, A.M.; Westlye, L.T.; Moberget, T.; Sundseth, Ø.; Larsen, V.A.; Walhovd, K.B. Effects of memory training on cortical thickness in the elderly. NeuroImage 2010, 52, 1667–1676. [Google Scholar] [CrossRef]
- Tamnes, C.K.; Østby, Y.; Walhovd, K.B.; Westlye, L.T.; Due-Tønnessen, P.; Fjell, A.M. Neuroanatomical correlates of executive functions in children and adolescents: A magnetic resonance imaging (MRI) study of cortical thickness. Neuropsychologia 2010, 48, 2496–2508. [Google Scholar] [CrossRef]
- Janacsek, K.; Fiser, J.; Nemeth, D. The Best Time to Acquire New Skills: Age-related Differences in Implicit Sequence Learning across Human Life Span. Dev. Sci. 2012, 15, 496–505. [Google Scholar] [CrossRef]
- Navlakha, S.; Barth, A.L.; Bar-Joseph, Z. Decreasing-Rate Pruning Optimizes the Construction of Efficient and Robust Distributed Networks. PLoS Comput. Biol. 2015, 11, e1004347. [Google Scholar] [CrossRef]
- Burgaleta, M.; Johnson, W.; Waber, D.P.; Colom, R.; Karama, S. Cognitive ability changes and dynamics of cortical thickness development in healthy children and adolescents. NeuroImage 2014, 84, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Ashtari, F.; Manouchehri, N.; Shaygannejad, V.; Barekatain, M.; Adibi, I.; Afshari-Safavi, A.; Ramezani, N.; Ghalamkari, A.; Barzegar, M. Assessment of intelligence quotient in patients with neuromyelitis optica spectrum disease and multiple sclerosis. Mult. Scler. Relat. Disord. 2023, 70, 104492. [Google Scholar] [CrossRef] [PubMed]
- Kapanci, T.; Rostásy, K.; Häusler, M.G.; Geis, T.; Schimmel, M.; Elpers, C.; Kreth, J.H.; Thiels, C.; Troche, S.J. Evaluating the relationship between psychometric intelligence and cognitive functions in paediatric multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin. 2019, 5, 2055217319894365. [Google Scholar] [CrossRef] [PubMed]
- Ekmekci, O. Pediatric Multiple Sclerosis and Cognition: A Review of Clinical, Neuropsychologic, and Neuroradiologic Features. Behav. Neurol. 2017, 2017, 1463570. [Google Scholar] [CrossRef]
- Natu, V.S.; Gomez, J.; Barnett, M.; Jeska, B.; Kirilina, E.; Jaeger, C.; Zhen, Z.; Cox, S.; Weiner, K.S.; Weiskopf, N.; et al. Apparent thinning of human visual cortex during childhood is associated with myelination. Proc. Natl. Acad. Sci. USA 2019, 116, 20750–20759. [Google Scholar] [CrossRef]
- Vidal-Pineiro, D.; Parker, N.; Shin, J.; French, L.; Grydeland, H.; Jackowski, A.P.; Mowinckel, A.M.; Patel, Y.; Pausova, Z.; Salum, G.; et al. Cellular correlates of cortical thinning throughout the lifespan. Sci. Rep. 2020, 10, 21803. [Google Scholar] [CrossRef]
- Jeon, T.; Mishra, V.; Ouyang, M.; Chen, M.; Huang, H. Synchronous Changes of Cortical Thickness and Corresponding White Matter Microstructure During Brain Development Accessed by Diffusion MRI Tractography from Parcellated Cortex. Front. Neuroanat. 2015, 9, 158. [Google Scholar] [CrossRef]
- Bernard, J.A.; Orr, J.M.; Mittal, V.A. Differential motor and prefrontal cerebello-cortical network development: Evidence from multimodal neuroimaging. NeuroImage 2016, 124 Pt A, 591–601. [Google Scholar] [CrossRef]
- Higuera, C.; Gardiner, K.J.; Cios, K.J. Self-Organizing Feature Maps Identify Proteins Critical to Learning in a Mouse Model of Down Syndrome. PLoS ONE 2015, 10, e0129126. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Dhanasekaran, A.R.; Block, A.; Tong, S.; Costa, A.C.S.; Stasko, M.; Gardiner, K.J. Protein dynamics associated with failed and rescued learning in the Ts65Dn mouse model of Down syndrome. PLoS ONE 2015, 10, e0119491. [Google Scholar] [CrossRef]
- Chambers, R.A.; Potenza, M.N.; E Hoffman, R.; Miranker, W. Simulated Apoptosis/Neurogenesis Regulates Learning and Memory Capabilities of Adaptive Neural Networks. Neuropshycopharmacology 2004, 29, 747–758. [Google Scholar] [CrossRef]
- Siegel, C.; Daily, J.; Vishnu, A. Adaptive Neuron Apoptosis for Accelerating Deep Learning on Large Scale Systems. arXiv 2016, arXiv:1610.00790. [Google Scholar] [CrossRef]
- Farooq, U.; Marrakchi, Z.; Mehrez, H. FPGA Architectures: An Overview. In Tree-Based Heterogeneous FPGA Architectures; Springer Nature: Berlin/Heidelberg, Germany, 2012; pp. 7–48. [Google Scholar]
- Warm, D.; Bassetti, D.; Schroer, J.; Luhmann, H.J.; Sinning, A. Spontaneous Activity Predicts Survival of Developing Cortical Neurons. Front. Cell Dev. Biol. 2022, 10, 937761. [Google Scholar] [CrossRef] [PubMed]
- Sholl, D.A. A comparative study of the neuronal packing density in the cerebral cortex. J. Anat. 1959, 93 Pt 2, 143–158. [Google Scholar] [PubMed]
- Sparrey, C.J.; Manley, G.T.; Keaveny, T.M. Effects of White, Grey, and Pia Mater Properties on Tissue Level Stresses and Strains in the Compressed Spinal Cord. J. Neurotrauma 2009, 26, 585–595. [Google Scholar] [CrossRef]
- Ozawa, H.; Matsumoto, T.; Ohashi, T.; Sato, M.; Kokubun, S. Mechanical properties and function of the spinal pia mater. J. Neurosurg. Spine 2004, 1, 122–127. [Google Scholar] [CrossRef]
- Aimedieu, P.; Grebe, R. Tensile strength of cranial pia mater: Preliminary results. J. Neurosurg. 2004, 100, 111–114. [Google Scholar] [CrossRef]
- Bothwell, S.W.; Janigro, D.; Patabendige, A. Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological diseases. Fluids Barriers CNS 2019, 16, 9. [Google Scholar] [CrossRef]
- Shen, M.D.; Nordahl, C.W.; Li, D.D.; Lee, A.; Angkustsiri, K.; Emerson, R.W. Extra-axial cerebrospinal fluid in high-risk and normal-risk children with autism aged 2–4 years: A case-control study. Lancet Psychiatry 2018, 5, 895–904. [Google Scholar] [CrossRef]
- Fletcher, T.L.; Wirthl, B.; Kolias, A.G.; Adams, H.; Hutchinson, P.J.; Sutcliffe, M.P. Modelling of Brain Deformation After Decompressive Craniectomy. Ann. Biomed. Eng. 2016, 44, 3495–3509. [Google Scholar] [CrossRef]
- Salamon, N.; Andres, M.; Chute, D.J.; Nguyen, S.T.; Chang, J.W.; Huynh, M.N.; Chandra, P.S.; Andre, V.M.; Cepeda, C.; Levine, M.S.; et al. Contralateral hemimicrencephaly and clinical-pathological correlations in children with hemimegalencephaly. Brain 2006, 129, 352–365. [Google Scholar] [CrossRef]
- Mathern, G.W.; Andres, M.; Salamon, N.; Chandra, P.S.; Andre, V.M.; Cepeda, C.; Levine, M.S.; Leite, J.P.; Neder, L.; Vinters, H.V. A hypothesis regarding the pathogenesis and epileptogenesis of pediatric cortical dysplasia and hemimegalencephaly based on MRI cerebral volumes and NeuN cortical cell densities. Epilepsia 2007, 48, 74–78. [Google Scholar] [CrossRef]
- Lee, N.R.; Adeyemi, E.I.; Lin, A.; Clasen, L.S.; Lalonde, F.M.; Condon, E.; Driver, D.I.; Shaw, P.; Gogtay, N.; Raznahan, A.; et al. Dissociations in Cortical Morphometry in Youth with Down Syndrome: Evidence for Reduced Surface Area but Increased Thickness. Cereb. Cortex 2016, 26, 2982–2990. [Google Scholar] [CrossRef]
- Levman, J.; MacDonald, A.; Baumer, N.; MacDonald, P.; Stewart, N.; Lim, A.; Cogger, L.; Shiohama, T.; Takahashi, E. Structural Magnetic Resonance Imaging Demonstrates Abnormal Cortical Thickness in Down Syndrome: Newborns to Young Adults. NeuroImage Clin. 2019, 23, 101874. [Google Scholar] [CrossRef]
- Wiseman, F.K.; Al-Janabi, T.; Hardy, J.; Karmiloff-Smith, A.; Nizetic, D.; Tybulewicz, V.L.J.; Fisher, E.M.C.; Strydom, A. A genetic cause of Alzheimer disease: Mechanistic insights from Down syndrome. Nat. Rev. Neurosci. 2015, 16, 564–574. [Google Scholar] [CrossRef]
- Kim, D.; Tsai, L.H. Bridging Physiology and Pathology in AD. Cell 2009, 137, 997–1000. [Google Scholar] [CrossRef] [PubMed]
- Paolicelli, R.C.; Bolasco, G.; Pagani, F.; Maggi, M.; Scianni, M.; Panzanelli, P.; Giustetto, M.; Ferreira, T.A.; Guiducci, E.; Dumas, L.; et al. Synaptic pruning by microglia is necessary for normal brain development. Science 2011, 333, 1456–1458. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.S.; Streit, W.J. Microglial pathology in Down syndrome. Acta Neuropathol. 2011, 122, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, W.; Moser, H.W. Dendritic anomalies in disorders associated with mental retardation. Cereb. Cortex 2000, 10, 981–991. [Google Scholar] [CrossRef]
- Moser, H.W. Dendritic anomalies in disorders associated with mental retardation. Dev. Neuropsychol. 1999, 16, 369–371. [Google Scholar] [CrossRef]
- Yun, H.J.; Perez, J.D.R.; Sosa, P.; Valdés, J.A.; Madan, N. Regional Alterations in Cortical Sulcal Depth in Living Fetuses with Down Syndrome. Cereb. Cortex 2021, 31, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Bidmon, B.; Bajo, M.; Yoo, B.C.; Cairns, N.; LaCasse, E.C.; Lubec, G. Evidence for Apoptosis in the Fetal Down Syndrome Brain. J. Child Neurol. 2001, 16, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Busciglio, J.; Yankner, B.A. Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature 1995, 378, 776–779. [Google Scholar] [CrossRef]
- Liston, C.; Cohen, M.M.; Teslovich, T.; Levenson, D.; Casey, B. Atypical prefrontal connectivity in attention-deficit/hyperactivity disorder: Pathway to disease or pathological end point? Biol. Psychiatry 2011, 69, 1168–1177. [Google Scholar] [CrossRef]
- Stanley, J.A.; Kipp, H.; Greisenegger, E.; MacMaster, F.P.; Panchalingam, K.; Keshavan, M.S. Evidence of developmental alterations in cortical and subcortical regions of children with attention-deficit/hyperactivity disorder: A multivoxel in vivo phosphorus 31 spectroscopy study. Arch. Gen. Psychiatry 2008, 65, 1419–1428. [Google Scholar] [CrossRef]
- Véronneau-Veilleux, F.; Robaey, P.; Ursino, M.; Nekka, F. A mechanistic model of ADHD as resulting from dopamine phasic/tonic imbalance during reinforcement learning. Front. Comput. Neurosci. 2022, 16, 849323. [Google Scholar] [CrossRef]
- Dickstein, D.P. Paying attention to attention-deficit/hyperactivity disorder. JAMA Netw. Open 2018, 1, e181504. [Google Scholar] [CrossRef]
- Oades, R.D.; Dauvermann, M.R.; Schimmelmann, B.G.; Schwarz, M.J.; Myint, A.-M. Attention-deficit hyperactivity disorder (ADHD) and glial integrity: S100B, cytokines and kynurenine metabolism—Effects of medication. Behav. Brain Funct. 2010, 6, 29. [Google Scholar] [CrossRef]
- Ambrosino, S.; de Zeeuw, P.; Wierenga, L.M.; van Dijk, S.; Durston, S. What can Cortical Development in Attention-Deficit/Hyperactivity Disorder Teach us About the Early Developmental Mechanisms Involved? Cereb. Cortex 2017, 27, 4624–4634. [Google Scholar] [CrossRef]
- Narr, K.L.; Woods, R.P.; Lin, J.; Kim, J.; Phillips, O.R.; Del’HOmme, M.; Caplan, R.; Toga, A.W.; McCracken, J.T.; Levitt, J.G. Widespread Cortical Thinning Is a Robust Anatomical Marker for Attention Deficit/Hyperacticity Disorder (ADHD). J. Am. Acad. Child Adolesc. Psychiatry 2010, 48, 1014–1022. [Google Scholar] [CrossRef] [PubMed]
- Shaw, P.; Lerch, J.; Greenstein, D.; Sharp, W.; Clasen, L.; Evans, A.; Giedd, J.; Castellanos, F.X.; Rapoport, J. Longitudinal Mapping of Cortical Thickness and Clinical Outcome in Children and Adolescents with Attention-Deficit/Hyperactivity Disorder. Arch. Gen. Psychiatry 2006, 63, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Silk, T.J.; Beare, R.; Malpas, C.; Adamson, C.; Vilgis, V.; Vance, A.; Bellgrove, M.A. Cortical morphometry in attention deficit/hyperactivity disorder: Contribution of thickness and surface area to volume. Cortex 2016, 82, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Almeida Montes, L.G.; Prado Alcántara, H.; Martínez García, R.B.; De La Torre, L.B.; Ávila Acosta, D.; Duarte, M.G. Brain cortical thickness in ADHD: Age, sex, and clinical correlations. J. Atten. Disord. 2013, 17, 641–654. [Google Scholar] [CrossRef]
- Shaw, P.; Eckstrand, K.; Sharp, W.; Blumenthal, J.; Lerch, J.P.; Greenstein, D.; Clasen, L.; Evans, A.; Giedd, J.; Rapoport, J.L. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc. Natl. Acad. Sci. USA 2007, 104, 19649–19654. [Google Scholar] [CrossRef]
- Levman, J.; Forgeron, C.; Shiohama, T.; MacDonald, P.; Stewart, N.; Lim, A.; Berrigan, L.; Takahashi, E. Cortical Thickness Abnormalities in Attention Deficit Hyperactivity Disorder Revealed by Structural Magnetic Resonance Imaging: Newborns to Young Adults. Int. J. Dev. Neurosci. 2022, 82, 584–595. [Google Scholar] [CrossRef]
- MacDonald, H.J.; Kleppe, R.; Szigetvari, P.D.; Haavik, J. The dopamine hypothesis for ADHD: An evaluation of evidence accumulated from human studies and animal models. Front. Psychiatry 2024, 15, 1492126. [Google Scholar] [CrossRef]
- Li, X.; Wang, W.; Wang, P.; Hao, C.; Li, Z. Atypical sulcal pattern in boys with attention-deficit/hyperactivity disorder. Hum. Brain Mapp. 2021, 42, 4362–4371. [Google Scholar] [CrossRef]
- Li, S.; Wang, S.; Li, X.; Li, Q.; Li, X. Abnormal surface morphology of the central sulcus in children with attention-deficit/hyperactivity disorder. Front. Neuroanat. 2015, 9, 114. [Google Scholar] [CrossRef]
- Zhang, Y.-Q.; Lin, W.-P.; Huang, L.-P.; Zhao, B.; Zhang, C.-C.; Yin, D.-M. Dopamine D2 receptor regulates cortical synaptic pruning in rodents. Nat. Commun. 2021, 12, 6444. [Google Scholar] [CrossRef]
- Hess, J.L.; Radonjić, N.V.; Patak, J.; Glatt, S.J.; Faraone, S.V. Autophagy, apoptosis, and neurodevelopment genes might underlie selective brain region vulnerability in attention-deficit/hyperactivity disorder. Mol. Psychiatry 2021, 26, 6643–6654. [Google Scholar] [CrossRef]
- Shiohama, T.; McDavid, J.; Levman, J.; Takahashi, E. Quantitative brain morphological analysis in CHARGE syndrome. NeuroImage Clin. 2019, 23, 101866. [Google Scholar] [CrossRef] [PubMed]
- Ishii, N.; Owada, Y.; Yamada, M.; Miura, S.; Murata, K.; Asao, H.; Kondo, H.; Sugamura, K. Loss of neurons in the hippocampus and cerebral cortex of AMSH-deficient mice. Mol. Cell Biol. 2001, 21, 8626–8637. [Google Scholar] [CrossRef] [PubMed]
- Innocenti, G.M.; Ansermet, F.; Parnas, J. Schizophrenia, neurodevelopment and corpus callosum. Mol. Psychiatry 2003, 8, 261–274. [Google Scholar] [CrossRef] [PubMed]
- Keshavan, M.S.; Anderson, S.; Pettegrew, J.W. Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinburg hypothesis revisited. J. Psychiatr. Res. 1994, 28, 239–265. [Google Scholar] [CrossRef]
- Feinberg, I. Cortical pruning and the development of schizophrenia. Schizophr. Bull. 1990, 16, 567–568. [Google Scholar] [CrossRef]
- Hoffman, R.E.; Dobscha, S.K. Cortical Pruning and the Development of Schizophrenia: A Computer Model. Schizophr. Bull. 1989, 15, 477–490. [Google Scholar] [CrossRef]
- Rimol, L.M.; Hartberg, C.B.; Nesvåg, R.; Fennema-Notestine, C.; Hagler, D.J.; Pung, C.J.; Jennings, R.G.; Haukvik, U.K.; Lange, E.; Nakstad, P.H.; et al. Cortical Thickness and Subcortical Volumes in Schizophrenia and Bipolar Disorder. Biol. Psychiatry 2010, 68, 41–50. [Google Scholar] [CrossRef]
- Narr, K.L.; Bilder, R.M.; Toga, A.W.; Woods, R.P.; Rex, D.E.; Szeszko, P.R.; Robinson, D.; Sevy, S.; Gunduz-Bruce, H.; Wang, Y.-P.; et al. Mapping Cortical Thickness and Gray Matter Concentration in First Episode Schizophrenia. Cereb. Cortex 2005, 15, 708–719. [Google Scholar] [CrossRef]
- Venkatasubramanian, G.; Jayakumar, P.N.; Gangadhar, B.N.; Keshavan, M.S. Automated MRI parcellation study of regional volume and thickness of prefrontal cortex (PFC) in antipsychotic-naïve schizophrenia. Acta Psychiatr. Scandanavica 2008, 117, 420–431. [Google Scholar] [CrossRef]
- Van Haren, N.E.; Schnack, H.G.; Cahn, W.; Van Den Heuvel, M.P.; Lepage, C.; Collins, L. Changes in cortical thickness during the course of illness in schizophrenia. Arch. Gen. Psychiatry 2011, 68, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Schultz, C.C.; Koch, K.; Wagner, G.; Roebel, M.; Schachtzabel, C.; Gaser, C.; Nenadic, I.; Reichenbach, J.R.; Sauer, H.; Schlösser, R.G. Reduced cortical thickness in first episode schizophrenia. Schizophr. Res. 2010, 116, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Nesvåg, R.; Lawyer, G.; Varnäs, K.; Fjell, A.M.; Walhovd, K.B.; Frigessi, A.; Jönsson, E.G.; Agartz, I. Regional thinning of the cerebral cortex in schizophrenia: Effects of diagnosis, age and antipsychotic medication. Schizophr. Res. 2008, 98, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Levman, J.; Jennings, M.; Rouse, E.; Berger, D.; Kabaria, P.; Nangaku, M.; Gondra, I.; Takahashi, E. A morphological study of schizophrenia with magnetic resonance imaging, advanced analytics, and machine learning. Front. Neurosci. 2022, 16, 926426. [Google Scholar] [CrossRef]
- Levman, J.; Kabaria, P.; Nangaku, M.; Takahashi, E. Morphological Abnormalities in Childhood Onset Schizophrenia Revealed by Structural Magnetic Resonance Imaging. Biology 2023, 12, 353. [Google Scholar] [CrossRef]
- Seitz, J.; Rathi, Y.; Lyall, A.; Pasternak, O.; del Re, E.C.; Niznikiewicz, M.; Nestor, P.; Seidman, L.J.; Petryshen, T.L.; Mesholam-Gately, R.I.; et al. Alteration of gray matter microstructure in schizophrenia. Brain Imaging Behav. 2018, 12, 54–63. [Google Scholar] [CrossRef]
- Liu, R.; Yang, X.-D.; Liao, X.-M.; Xie, X.-M.; Su, Y.-A.; Li, J.-T.; Wang, X.-D.; Si, T.-M. Early postnatal stress suppresses the developmental trajectory of hippocampal pyramidal neurons: The role of CRHR1. Brain Struct. Funct. 2016, 221, 4525–4536. [Google Scholar] [CrossRef]
- Heckers, S.; Rauch, S.; Goff, D.; Savage, C.; Schacter, D.; Fischman, A.; Alpert, N. Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat. Neurosci. 1998, 1, 318–323. [Google Scholar] [CrossRef]
- Heckers, S. Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus 2001, 11, 520–528. [Google Scholar] [CrossRef]
- Harrison, P.J. The hippocampus in schizophrenia: A review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology 2004, 174, 151–162. [Google Scholar] [CrossRef]
- Qiu, A.; Tuan, T.A.; Woon, P.S.; Abdul-Rahman, M.F.; Graham, S.; Sim, K. Hippocampal-cortical structural connectivity disruptions in schizophrenia: An integrated perspective from hippocampal shape, cortical thickness, and integrity of white matter bundles. NeuroImage 2010, 52, 1181–1189. [Google Scholar] [CrossRef]
- Johnson, S.L.; Wang, L.; Alpert, K.I.; Greenstein, D.; Clasen, L.; Lalonde, F.; Miller, R.; Rapoport, J.; Gogtay, N. Hippocampal Shape Abnormalities of Patients with Childhood-Onset Schizophrenia and Their Unaffected Siblings. J. Am. Child Adolesc. Psychiatry 2014, 52, 527–536. [Google Scholar] [CrossRef]
- MacKinley, M.L.; Sabeson, P.; Palaniyappan, L. Deviant cortical sulcation related to schizophrenia and cognitive deficits in the second trimester. Transl. Neurosci. 2020, 11, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Csernansky, J.G.; Gillespie, S.K.; Dierker, D.L.; Anticevic, A.; Wang, L.; Barch, D.M.; Van Essen, D.C. Symmetric Abnormalities in Sulcal Patterning in Schizophrenia. NeuroImage 2008, 43, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Aceti, M.; Creson, T.K.; Vaissiere, T.; Rojas, C.; Huang, W.-C.; Wang, Y.-X.; Petralia, R.S.; Page, D.T.; Miller, C.A.; Rumbaugh, G. Syngap1 haploinsufficiency damages a postnatal critical period of pyramidal cell structural maturation linked to cortical circuit assembly. Biol. Psychiatry 2015, 77, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Bellon, A.; Feuillet, V.; Cortex-Resendiz, A.; Mouaffak, F.; Kong, L.; Hong, L.E.; De Godoy, L.; Jay, T.M.; Hosmalin, A.; Krebs, M.-O. Dopamine-induced pruning in monocyte-derived-neuronal-like cells (MDNCs) from patients with schizophrenia. Mol Psychiatry 2022, 27, 2787–2802. [Google Scholar] [CrossRef]
- Makris, N.; Gasic, G.P.; Kennedy, D.N.; Hodge, S.M.; Kaiser, J.R.; Lee, M.J.; Kim, B.W.; Blood, A.J.; Evins, A.E.; Seidman, L.J.; et al. Cortical thickness abnormalities in cocaine addiction—A reflection of both drug use and a pre-existing disposition to drug abuse? Neuron 2008, 60, 174–188. [Google Scholar] [CrossRef]
- Jarskog, L.F.; Glantz, L.A.; Gilmore, J.H.; Lieberman, J.A. Apoptotic mechanisms in the pathophysiology of schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2005, 29, 846–858. [Google Scholar] [CrossRef]
- Bakker, G.; Caan, M.W.A.; Vingerhoets, W.A.M.; Alves, F.d.S.; de Koning, M.; Boot, E.; Nieman, D.H.; de Haan, L.; Bloemen, O.J.; Booij, J.; et al. Cortical Morphology Differences in Subjects at Increased Vulnerability for Developing a Psychotic Disorder: A Comparison between Subjects with Ultra-High Risk and 22q11.2 Deletion Syndrome. PLoS ONE 2016, 11, e0159928. [Google Scholar] [CrossRef]
- Khundrakpam, B.S.; Lewis, J.D.; Kostopoulos, P.; Carbonell, F.; Evans, A.C. Cortical Thickness Abnormalities in Autism Spectrum Disorders Through Late Childhood, Adolescence, and Adulthood: A Large-Scale MRI Study. Cereb. Cortex 2017, 27, 1721–1731. [Google Scholar] [CrossRef]
- Pereira, A.M.; Campos, B.M.; Coan, A.C.; Pegoraro, L.F.; de Rezende, T.J.R.; Obeso, I.; Dalgalarrondo, P.; da Costa, J.C.; Dreher, J.-C.; Cendes, F. Differences in Cortical Structure and Functional MRI Connectivity in High Functioning Autism. Front. Neurol. 2018, 9, 539. [Google Scholar] [CrossRef]
- Zielinski, B.A.; Prigge, M.B.D.; Nielsen, J.A.; Froehlich, A.L.; Abildskov, T.J.; Anderson, J.S.; Fletcher, P.T.; Zygmunt, K.M.; Travers, B.G.; Lange, N.; et al. Longitudinal changes in cortical thickness in autism and typical development. Brain 2014, 137, 1799–1812. [Google Scholar] [CrossRef]
- Levman, J.; MacDonald, P.; Rowley, S.; Stewart, N.; Lim, A.; Ewenson, B.; Galaburda, A.; Takahashi, E. Structural Magnetic Resonance Imaging Demonstrates Abnormal Regionally-Differential Cortical Thickness Variability in Autism: From Newborns to Adults. Front. Hum. Neurosci. 2019, 13, 75. [Google Scholar] [CrossRef]
- Levman, J.; MacDonald, P.; Rowley, S.; Stewart, N.; Lim, A.; Ewenson, B. Structural Magnetic Resonance Imaging Demonstrates Abnormal Regionally-Differential Cortical Thickness Variability in Autism: From Newborns to Adults. In Brain Health and Clinical Neuroscience Editor’s Pick; Leonhard, S., Ed.; Frontiers Media SA: Lausanne, Switzerland, 2021; pp. 29–41. ISSN 1664-8714. ISBN 978-2-88971-162-8. [Google Scholar] [CrossRef]
- Thomas, M.S.; Davis, R.; Karmiloff-Smith, A.; Knowland, V.C.; Charman, T. The over-pruning hypothesis of autism. Dev. Sci. 2015, 19, 284–305. [Google Scholar] [CrossRef]
- Saugstad, L.F. Infantile Autism: A Chronic Psychosis Since Infancy due to Synaptic Pruning of the Supplementary Motor Area. Nutr. Health 2011, 20, 171–182. [Google Scholar] [CrossRef]
- Auzias, G.; Viellard, M.; Takerkart, S.; Villeneuve, N.; Poinso, F.; Da Fonséca, D.; Girard, N.; Deruelle, C. Atypical sulcal anatomy in young children with autism spectrum disorder. NeuroImage Clin. 2014, 4, 593–603. [Google Scholar] [CrossRef]
- Nordahl, C.W.; Dierker, D.; Mostafavi, I.; Schumann, C.M.; Rivera, S.M.; Amaral, D.G.; Van Essen, D.C. Cortical Folding Abnormalities in Autism Revealed by Surface-Based Morphometry. J. Neurosci. 2007, 27, 11725–11735. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Alberts, I.; Li, X. The apoptotic perspective of autism. Int. J. Dev. Neurosci. 2014, 36, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Zielke, H.R.; Yeh, D.; Yang, P. Cellular stress and apoptosis contribute to the pathogenesis of autism spectrum disorder. Autism Res. 2018, 11, 1076–1090. [Google Scholar] [CrossRef] [PubMed]
- Geloso, M.C.; D’Ambrosi, N. Microglial Pruning: Relevance for Synaptic Dysfunction in Multiple Sclerosis and Related Experimental Models. Cells 2021, 10, 686. [Google Scholar] [CrossRef]
- Brex, P.A.; Ciccarelli, O.; O’Riordan, J.I.; Sailer, M.; Thompson, A.J.; Miller, D.H. A Longitudinal Study of Abnormalities on MRI and Disability from Multiple Sclerosis. N. Engl. J. Med. 2002, 346, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Losseff, N.A.; Wang, L.; Lai, H.M.; Yoo, D.S.; Gawne-Cain, M.L.; McDonald, W.I.; Miller, D.H.; Thompson, A.J. Progressive cerebral atrophy in multiple sclerosis A serial MRI study. Brain 1996, 119, 2009–2019. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Narayanan, S.; Collins, D.; Smith, S.; Matthews, P.; Arnold, D. Relating neocortical pathology to disability progression in multiple sclerosis using MRI. NeuroImage 2004, 23, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- Sailer, M.; Fischl, B.; Salat, D.; Tempelmann, C.; Schönfeld, M.A.; Busa, E.; Bodammer, N.; Heinze, H.; Dale, A. Focal thinning of the cerebral cortex in multiple sclerosis. Brain 2003, 126, 1734–1744. [Google Scholar] [CrossRef]
- Levman, J.; Das, A.; MacDonald, A.; MacDonald, P.; Berrigan, L.; Takahashi, E. Clinically Detectable Structural Abnormalities in Pediatric Onset Multiple Sclerosis: A Large-Scale Magnetic Resonance Imaging Analysis. Int. J. Dev. Neurosci. 2021, 81, 200–208. [Google Scholar] [CrossRef]
- Zipp, F. Apoptosis in multiple sclerosis. Cell Tissue Res. 2000, 301, 163–171. [Google Scholar] [CrossRef]
- Kennedy, P.G.E.; George, W.; Yu, X. The Possible Role of Neural Cell Apoptosis in Multiple Sclerosis. Int. J. Mol. Sci. 2022, 23, 7584. [Google Scholar] [CrossRef]
- Treaba, C.A.; Granberg, T.E.; Sormani, M.P.; Herranz, E.; Ouellette, R.A.; Louapre, C.; Sloane, J.A.; Kinkel, R.P.; Mainero, C. Longitudinal Characterization of Cortical Lesion Development and Evolution in Multiple Sclerosis with 7.0-T MRI. Radiology 2019, 291, 740–749. [Google Scholar] [CrossRef]
- Luby, J.L.; Belden, A.C.; Jackson, J.J.; Lessov-Schlaggar, C.N.; Harms, M.P.; Tillman, R.; Botteron, K.; Whalen, D.; Barch, D.M. Early Childhood Depression and Alterations in the Trajectory of Gray Matter Maturation in Middle Childhood and Early Adolescence. JAMA Psychiatry 2016, 73, 31–38. [Google Scholar] [CrossRef]
- Zhang, Y.-F.; Liu, L.-X.; Cao, H.-T.; Ou, L.; Qu, J.; Wang, Y.; Chen, J.-G. Otx1 promotes basal dendritic growth and regulates intrinsic electrophysiological and synaptic properties of layer V pyramidal neurons in mouse motor cortex. Neuroscience 2015, 285, 139–154. [Google Scholar] [CrossRef]
- Swann, J.W.; Hablitz, J.J. Cellular abnormalities and synaptic plasticity in seizure disorders of the immature nervous system. Ment. Retard. Dev. Disabil. Res. Rev. 2000, 6, 258–267. [Google Scholar] [CrossRef]
- Lin, J.J.; Salamon, N.; Lee, A.D.; Dutton, R.A.; Geaga, J.A.; Hayashi, K.M.; Luders, E.; Toga, A.W.; Engel, J.; Thompson, P.M. Reduced Neocortical Thickness and Complexity Mapped in Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis. Cereb. Cortex 2007, 17, 2007–2018. [Google Scholar] [CrossRef]
- Tae, W.S.; Kim, S.H.; Joo, E.Y.; Han, S.J.; Kim, I.Y.; Kim, S.I.; Lee, J.-M.; Hong, S.B. Cortical thickness abnormality in juvenile myoclonic epilepsy. J. Neurol. 2008, 255, 561–566. [Google Scholar] [CrossRef]
- Tosun, D.; Siddarth, P.; Levitt, J.; Caplan, R. Cortical thickness and sulcal depth: Insights on development and psychopathologyin paediatric epilepsy. BJPsych Open 2015, 1, 129–135. [Google Scholar] [CrossRef]
- Henschall, D.C.; Simon, R.P. Epilepsy and Apoptosis Pathways. J. Cereb. Blood Flow Metab. 2005, 25, 1557–1572. [Google Scholar] [CrossRef]
- Joly, O.; Rousié, D.; Jissendi, P.; Rousié, M.; Frankó, E. A new approach to corpus callosum anomalies in idiopathic scoliosis using diffusion tensor magnetic resonance imaging. Eur. Spine J. 2014, 23, 2643–2649. [Google Scholar] [CrossRef] [PubMed]
- Mauceri, D.; Hagenston, A.M.; Schramm, K.; Weiss, U.; Bading, H. Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture. J. Biol. Chem. 2015, 290, 23039–23049. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levman, J. Factors Affecting Macro-Structural Development in the Cerebral Cortex: The Potential Role of Tissue Removal Through Pruning and Apoptosis. Biology 2025, 14, 1651. https://doi.org/10.3390/biology14121651
Levman J. Factors Affecting Macro-Structural Development in the Cerebral Cortex: The Potential Role of Tissue Removal Through Pruning and Apoptosis. Biology. 2025; 14(12):1651. https://doi.org/10.3390/biology14121651
Chicago/Turabian StyleLevman, Jacob. 2025. "Factors Affecting Macro-Structural Development in the Cerebral Cortex: The Potential Role of Tissue Removal Through Pruning and Apoptosis" Biology 14, no. 12: 1651. https://doi.org/10.3390/biology14121651
APA StyleLevman, J. (2025). Factors Affecting Macro-Structural Development in the Cerebral Cortex: The Potential Role of Tissue Removal Through Pruning and Apoptosis. Biology, 14(12), 1651. https://doi.org/10.3390/biology14121651

