Therapeutic Potential of Winged Bean (Psophocarpus tetragonolobus) Pod Extract: Apoptosis Induction and Anti-Inflammatory Action in Colorectal Cancer Cells
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material and Extraction
2.3. Cell Lines and Culture Conditions
2.4. Determination of Chemical Compositions of WBE
2.4.1. Determination of Total Phenolic Content Using Folin–Ciocalteu Method
2.4.2. Determination of Total Flavonoid Content Using Aluminum Chloride Method
2.4.3. High-Performance Liquid Chromatography with Diode Array Detection (HPLC–DAD)
2.5. Determination of Cytotoxic Effects Through Cell Viability and Proliferation Assays
2.6. Determination of Apoptosis Induction
2.6.1. Apoptotic Morphological Analysis
2.6.2. DNA Fragmentation Analysis
2.7. Determination of Anti-Inflammatory Effects
2.8. Statistical Analysis
3. Results
3.1. Phytochemical Composition of WBE
3.2. Cytotoxic Effects of WBE
3.3. Apoptosis Induction of WBE
3.4. Anti-Inflammatory Effects of WBE
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| °C | Degree Celsius |
| AO | Acridine Orange |
| ANOVA | Analysis of Variance |
| AP-1 | Activator protein-1 |
| ATCC | American Type Culture Collection |
| DMEM | Dulbecco’s Modified Eagle Medium |
| DMSO | Dimethyl sulfoxide |
| DNA | Deoxyribo Nucleic Acid |
| DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
| EB | Ethedium Bromide |
| EDTA | Ethylenediamine Tetra Acetic acid |
| ELISA | Enzyme-Linked Immunosorbent Assay |
| ERK | Extracellular signal-regulated kinase |
| FBS | Fetal Bovine Serum |
| g | Gram |
| GAE | Gallic Acid Equivalent |
| h | Hour |
| HPLC | High-Performance Liquid Chromatography |
| HT-29 | Human Colorectal Adenocarcinoma cell |
| IC50 | Half maximal inhibitory concentration |
| IL-1β | Interleukin-1 Beta |
| IL-6 | InterLeukin-6 |
| JNK | c-Jun N-terminal kinase |
| LPS | Lipopolysaccharides |
| M | Molar |
| MAPK | Mitogen-activated protein kinase |
| mg | Milligram |
| min | Minute |
| mL | Millilitre |
| MTT | 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide |
| NF-κB | Nuclear Factor κB |
| µM | Micro Molar |
| μg | Microgram |
| μL | Microlitre |
| nm | Nanometre |
| p38 MAPK | p38 Mitogen-activated protein kinase |
| PBS | phosphate-buffered saline |
| pg | Pico Gram |
| QE | Quercetin Equivalent |
| RAW-264.7 | Murine macrophage cell line |
| RNase A | Ribonuclease-A |
| SD | Standard Deviation |
| TFC | Total Flavonoid Content |
| TNF-α | Tumor Necrosis Factor-Alpha |
| TPC | Total Phenolic Content |
| U/mL | Unit per Millilitre |
| UV | Ultra Violet |
| WBE | Winged Bean Pods Ethanolic Extract |
References
- Gandomani, H.S.; Aghajani, M.; Mohammadian-Hafshejani, A.; Tarazoj, A.A.; Pouyesh, V.; Salehiniya, H. Colorectal cancer in the world: Incidence, mortality and risk factors. Biomed. Res. Ther. 2017, 4, 1656–1675. [Google Scholar] [CrossRef]
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 2023, 72, 338–344. [Google Scholar] [CrossRef]
- Mariani, F.; Sena, P.; Roncucci, L. Inflammatory pathways in the early steps of colorectal cancer development. World J. Gastroenterol. 2014, 20, 9716. [Google Scholar] [CrossRef]
- Simpson, J.; Scholefield, J.H. Treatment of colorectal cancer: Surgery, chemotherapy and radiotherapy. Surgery 2008, 26, 329–333. [Google Scholar] [CrossRef]
- Banti, M.; Bajo, W. Review on nutritional importance and anti-nutritional factors of legumes. Int. J. Food Sci. Nutr. 2020, 9, 8–49. [Google Scholar] [CrossRef]
- Vijayakumar, V.; M, H. Nutraceutical legumes: A brief review on the nutritional and medicinal values of legumes. Sustain. Agric. Rev. 2021, 51, 1–28. [Google Scholar] [CrossRef]
- Iqubal, M.K.; Chaudhuri, A.; Iqubal, A.; Saleem, S.; Gupta, M.M.; Ahuja, A.; Ali, J.; Baboota, S. Targeted delivery of natural bioactives and lipid-nanocargos against signaling pathways involved in skin cancer. Curr. Med. Chem. 2021, 28, 8003–8035. [Google Scholar] [CrossRef] [PubMed]
- Soni, J.K.; Kumar, A.; Bora, J.; Kaur, S.; Lalramhlimi, B.; Singson, L.; Doley, S.; Mishra, V.K. Revealing genetic diversity, population structure and stability in underutilized wonder legume winged bean (Psophocarpus tetragonolobus (L.) DC.) genotypes of North Eastern Himalayan region. Genet. Resour. Crop Evol. 2025, 72, 7149–7170. [Google Scholar] [CrossRef]
- Rakvong, T.; Monkham, T.; Sanitchon, J.; Chankaew, S. Tuber development and tuber yield potential of winged bean (Psophocarpus tetragonolobus (L.) DC.), an alternative crop for animal feed. Agronomy 2024, 14, 1433. [Google Scholar] [CrossRef]
- Sriwichai, S.; Monkham, T.; Sanitchon, J.; Jogloy, S.; Chankaew, S. Dual-purpose of the winged bean (Psophocarpus tetragonolobus (L.) DC.), the neglected tropical legume, based on pod and tuber yields. Plants 2021, 10, 1746. [Google Scholar] [CrossRef]
- Kadam, S.S.; Salunkhe, D.K.; Luh, B.S. Winged bean in human nutrition. Crit. Rev. Food Sci. Nutr. 1984, 21, 1–40. [Google Scholar] [CrossRef]
- Kortt, A.A.; Caldwell, J.B. Characteristics of the proteins of the tubers of winged bean (Psophocarpus tetragonolobus (L.) DC). J. Sci. Food Agric. 1984, 35, 304–313. [Google Scholar] [CrossRef]
- Bepary, R.H.; Roy, A.; Pathak, K.; Deka, S.C. Biochemical composition, bioactivity, processing, and food applications of winged bean (Psophocarpus tetragonolobus): A review. Legume Sci. 2023, 5, e187. [Google Scholar] [CrossRef]
- De, L.C.; De, T. Nutrient rich foods in human diet as immunity boosters. J. Pharmacogn. Phytochem. 2021, 10, 197–206. [Google Scholar]
- Sasidharan, S.; Zakaria, Z.; Lachimanan, Y.; Sangetha, S.; Suryani, S. Antimicrobial activities of Psophocarpus tetragonolobus (L.) DC extracts. Foodborne Pathog. Dis. 2008, 5, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Sasidharan, S.; Zakaria, Z.; Lachimanan, Y.; Suryani, S. Fungicidal effect and oral acute toxicity of Psophocarpus tetragonolobus root extract. Pharm. Biol. 2008, 46, 261–265. [Google Scholar] [CrossRef]
- Bassal, H.; Hijazi, A.; Farhan, H.; Trabolsi, C.; Ahmad, B.S.; Khalil, A.; Maresca, M.; El Omar, F. Study of the antioxidant and anti-inflammatory properties of the biological extracts of Psophocarpus tetragonolobus using two extraction methods. Molecules 2021, 26, 4435. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar] [CrossRef]
- Elin Novia, S.; Berna, E.; Rani, S. Phytochemical screening, total flavonoid and total phenolic content and antioxidant activity of different parts of Caesalpinia bonduc (L.) Roxb. Phcog. J. 2018, 10, 123–127. [Google Scholar] [CrossRef]
- Dhumtanom, P.; Wongta, A.; Chaiyana, W. The apoptosis induction and immunomodulating activities of Nga-Kee-Mon (Perilla frutescens) seed extract. Foods 2025, 14, 3685. [Google Scholar] [CrossRef]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Liu, P.C.; Liu, R.; Wu, X. Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med. Sci. Monit. Basic Res. 2015, 21, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.Y.; Yi, G.; Bae, H.H.; Go, Y.S.; Kim, Y.J.; Lee, K.M.; Hong, C.O.; Kim, K.K. Isolation, identification, and apoptosis activity of the photosensitizer methyl pheophorbide A from Perilla frutescens leaves. Appl. Biol. Chem. 2022, 65, 52. [Google Scholar] [CrossRef]
- Matuszewski, B.K. Standard line slopes as a measure of a relative matrix effect in quantitative HPLC–MS bioanalysis. J. Chromatogr. B 2006, 830, 293–300. [Google Scholar] [CrossRef]
- Bertoldi, D.; Santato, A.; Paolini, M.; Barbero, A.; Camin, F.; Nicolini, G.; Larcher, R. Botanical traceability of commercial tannins using the mineral profile and stable isotopes. J. Mass Spectrom. 2014, 49, 792–801. [Google Scholar] [CrossRef] [PubMed]
- Ravizza, R.; Gariboldi, M.B.; Passarelli, L.; Monti, E. Role of the p53/p21 system in the response of human colon carcinoma cells to Doxorubicin. BMC Cancer 2004, 4, 92. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Sarkar, S.; Scott, L.; Danelisen, I.; Trush, M.A.; Jia, Z.; Li, Y.R. Doxorubicin redox biology: Redox cycling, topoisomerase inhibition, and oxidative stress. React. Ox. Species 2016, 1, 189. [Google Scholar] [CrossRef]
- Chaachouay, N. Synergy, additive effects, and antagonism of drugs with plant bioactive compounds. Drugs Drug Candidates 2025, 4, 4. [Google Scholar] [CrossRef]
- Pezzani, R.; Salehi, B.; Vitalini, S.; Iriti, M.; Zuñiga, F.A.; Sharifi-Rad, J.; Martorell, M.; Martins, N. Synergistic effects of plant derivatives and conventional chemotherapeutic agents: An update on the cancer perspective. Medicina 2019, 55, 110. [Google Scholar] [CrossRef]
- Calvindi, J.; Syukur, M.; Nurcholis, W. Investigation of biochemical characters and antioxidant properties of different winged bean (Psophocarpus tetragonolobus) genotypes grown in Indonesia. Biodivers. J. Biol. Divers. 2020, 21, 6. [Google Scholar] [CrossRef]
- Darmoul, D.; Lacasa, M.; Baricault, L.; Marguet, D.; Sapin, C.; Trotot, P.; Barbat, A.; Trugnan, G. Dipeptidyl peptidase IV (CD 26) gene expression in enterocyte-like colon cancer cell lines HT-29 and Caco-2. Cloning of the complete human coding sequence and changes of dipeptidyl peptidase IV mRNA levels during cell differentiation. J. Biol. Chem. 1992, 267, 4824–4833. [Google Scholar] [CrossRef]
- Atale, N.; Gupta, S.; Yadav, U.C.S.; Rani, V. Cell-death assessment by fluorescent and nonfluorescent cytosolic and nuclear staining techniques. J. Microsc. 2014, 255, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Chan, L.L.; Wilkinson, A.R.; Paradis, B.D.; Lai, N. Rapid image-based cytometry for comparison of fluorescent viability staining methods. J. Fluoresc. 2012, 22, 1301–1311. [Google Scholar] [CrossRef]
- Doonan, F.; Cotter, T.G. Morphological assessment of apoptosis. Methods 2008, 44, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, M.; Ahmad, R.; Tantry, I.Q.; Ahmad, W.; Siddiqui, S.; Alam, M.; Abbas, K.; Moinuddin; Hassan, M.I.; Habib, S.; et al. Apoptosis: A comprehensive overview of signaling pathways, morphological changes, and physiological significance and therapeutic implications. Cells 2024, 13, 1838. [Google Scholar] [CrossRef]
- O’Brien, M.A.; Kirby, R. Apoptosis: A review of pro-apoptotic and anti-apoptotic pathways and dysregulation in disease. J. Vet. Emerg. Crit. Care 2008, 18, 572–585. [Google Scholar] [CrossRef]
- Mikeš, J.; Kleban, J.; Sačková, V.; Horváth, V.; Jamborová, E.; Vaculová, A.; Kozubík, A.; Hofmanová, J.; Fedoročko, P. Necrosis predominates in the cell death of human colon adenocarcinoma HT-29 cells treated under variable conditions of photodynamic therapy with hypericin. Photochem. Photobiol. Sci. 2007, 6, 758–766. [Google Scholar] [CrossRef]
- Florescu, D.N.; Boldeanu, M.V.; Șerban, R.E.; Florescu, L.M.; Serbanescu, M.S.; Ionescu, M.; Streba, L.; Constantin, C.; Vere, C.C. Correlation of the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, inflammatory markers, and tumor markers with the diagnosis and prognosis of colorectal cancer. Life 2023, 13, 2261. [Google Scholar] [CrossRef] [PubMed]
- Richmond, A. NF-κB, chemokine gene transcription and tumour growth. Nat. Rev. Immunol. 2002, 2, 664–674. [Google Scholar] [CrossRef]
- Guo, Q.; Jin, Y.; Chen, X.; Ye, X.; Shen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct. Target. Ther. 2024, 9, 53. [Google Scholar] [CrossRef]
- Chen, C.C. Signal transduction pathways of inflammatory gene expressions and therapeutic implications. Curr. Pharm. Des. 2006, 12, 3497–3508. [Google Scholar] [CrossRef]
- Yeung, Y.T.; Aziz, F.; Guerrero-Castilla, A.; Arguelles, S. Signaling pathways in inflammation and anti-inflammatory therapies. Curr. Pharm. Des. 2018, 24, 1449–1484. [Google Scholar] [CrossRef]
- An, S.J.; Pae, H.O.; Oh, G.S.; Choi, B.M.; Jeong, S.; Jang, S.I.; Oh, H.; Kwon, T.O.; Song, C.E.; Chung, H.T. Inhibition of TNF-α, IL-1β, and IL-6 productions and NF-κB activation in lipopolysaccharide-activated RAW 264.7 macrophages by catalposide, an iridoid glycoside isolated from Catalpa ovata G. Don (Bignoniaceae). Int. Immunopharmacol. 2002, 2, 1173–1181. [Google Scholar] [CrossRef]
- Park, J.Y.; Chung, T.W.; Jeong, Y.J.; Kwak, C.H.; Ha, S.H.; Kwon, K.M.; Fukushi, A.; Abekura, S.; Cho, S.H.; Lee, Y.C.; et al. Ascofuranone inhibits lipopolysaccharide–induced inflammatory response via NF-κB and AP-1, p-ERK, TNF-α, IL-6, and IL-1β in RAW 264.7 macrophages. PLoS ONE 2017, 12, e0171322. [Google Scholar] [CrossRef]
- Cassim, S.; Pouyssegur, J. Tumor microenvironment: A metabolic player that shapes the immune response. Int. J. Mol. Sci. 2019, 21, 157. [Google Scholar] [CrossRef] [PubMed]
- Keibel, A.; Singh, V.; Sharma, M.C. Inflammation, microenvironment, and the immune system in cancer progression. Curr. Pharm. Des. 2009, 15, 1949–1955. [Google Scholar] [CrossRef] [PubMed]
- Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as potential anti-inflammatory molecules: A review. Molecules 2022, 27, 2901. [Google Scholar] [CrossRef]
- Hegde, M.M.; Lakshman, K. Role of polyphenols and flavonoids as anti-cancer drug candidates: A review. Phcog. Res. 2023, 15, 206–216. [Google Scholar] [CrossRef]
- Abotaleb, M.; Samuel, S.M.; Varghese, E.; Varghese, S.; Kubatka, P.; Liskova, A.; Büsselberg, D. Flavonoids in cancer and apoptosis. Cancers 2018, 11, 28. [Google Scholar] [CrossRef]
- Li, W.; Du, B.; Wang, T.; Wang, S.; Zhang, J. Kaempferol induces apoptosis in human HCT116 colon cancer cells via the ataxia-telangiectasia mutated-p53 pathway with the involvement of p53 upregulated modulator of apoptosis. Chem. Biol. Interact. 2009, 177, 121–127. [Google Scholar] [CrossRef]
- Luo, H.; Rankin, G.O.; Li, Z.; DePriest, L.; Chen, Y.C. Kaempferol induces apoptosis in ovarian cancer cells through activating p53 in the intrinsic pathway. Food Chem. 2011, 128, 513–519. [Google Scholar] [CrossRef]
- Jeong, J.C.; Kim, M.S.; Kim, T.H.; Kim, Y.K. Kaempferol induces cell death through ERK- and Akt-dependent down-regulation of XIAP and survivin in human glioma cells. Neurochem. Res. 2009, 34, 991–1001. [Google Scholar] [CrossRef]
- Kashafi, E.; Moradzadeh, M.; Mohamadkhani, A.; Erfanian, S. Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/Akt and telomerase pathways. Biomed. Pharmacother. 2017, 89, 573–577. [Google Scholar] [CrossRef]
- Luo, H.; Daddysman, M.K.; Rankin, G.O.; Jiang, B.H.; Chen, Y.C. Kaempferol enhances cisplatin’s effect on ovarian cancer cells through promoting apoptosis caused by down regulation of c-Myc. Cancer Cell Int. 2010, 10, 16. [Google Scholar] [CrossRef]
- Guo, H.; Ren, F.; Zhang, L.I.; Zhang, X.; Yang, R. Kaempferol induces apoptosis in HepG2 cells via activation of the endoplasmic reticulum stress pathway. Mol. Med. Rep. 2016, 13, 2791–2800. [Google Scholar] [CrossRef] [PubMed]
- De, S.; Paul, S.; Manna, A.; Majumder, C.; Pal, K.; Casarcia, N.; Mondal, A.; Banerjee, S.; Nelson, V.K.; Ghosh, S.; et al. Phenolic phytochemicals for prevention and treatment of colorectal cancer: A critical evaluation of in vivo studies. Cancers 2023, 15, 993. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, M.; Greten, F.R. The inflammatory pathogenesis of colorectal cancer. Nat. Rev. Immunol. 2021, 21, 653–667. [Google Scholar] [CrossRef]
- Erreni, M.; Mantovani, A.; Allavena, P. Tumor-associated macrophages (TAM) and inflammation in colorectal cancer. Cancer Microenviron. 2011, 4, 141–154. [Google Scholar] [CrossRef]
- Yu, L.; Chen, C.; Wang, L.F.; Kuang, X.; Liu, K.; Zhang, H.; Du, J.R. Neuroprotective effect of kaempferol glycosides against brain injury and neuroinflammation by inhibiting the activation of NF-κB and STAT3 in transient focal stroke. PLoS ONE 2013, 8, e55839. [Google Scholar] [CrossRef]
- Yu, Q.; Zeng, K.; Ma, X.; Song, F.; Jiang, Y.; Tu, P.; Wang, X. Resokaempferol-mediated anti-inflammatory effects on activated macrophages via the inhibition of JAK2/STAT3, NF-κB and JNK/p38 MAPK signaling pathways. Int. Immunopharmacol. 2016, 38, 104–114. [Google Scholar] [CrossRef]
- Chojnacka, K.; Lewandowska, U. Inhibition of pro-inflammatory cytokine secretion by polyphenol-rich extracts in macrophages via NF-κB pathway. Food Rev. Int. 2023, 39, 5459–5478. [Google Scholar] [CrossRef]
- Kumar, A.; Gautam, V.; Sandhu, A.; Rawat, K.; Sharma, A.; Saha, L. Current and emerging therapeutic approaches for colorectal cancer: A comprehensive review. World J. Gastrointest. Surg. 2023, 15, 495. [Google Scholar] [CrossRef] [PubMed]
- Zafari, N.; Khosravi, F.; Rezaee, Z.; Esfandyari, S.; Bahiraei, M.; Bahramy, A.; Ferns, G.A.; Avan, A. The role of the tumor microenvironment in colorectal cancer and the potential therapeutic approaches. J. Clin. Lab. Anal. 2022, 36, e24585. [Google Scholar] [CrossRef] [PubMed]
- Maimako, R.F.; Awakan, O.J.; Olaniran, A.F.; Olasunkanmi, O.P.; Oluba, O.M. Effects of cooking on antinutrients and antioxidant properties of different accessions of winged bean (Psophocarpus tetragonolobus). Food Res. 2022, 6, 204. [Google Scholar] [CrossRef] [PubMed]





| Chemical Compositions | Concentration |
|---|---|
| Total phenolic content (mg GAE/g extract) | 237.3 ± 8.5 a |
| Total flavonoid content (mg QE/g extract) | 180.5 ± 6.3 b |
| Chemical content (µg/g dry weight) | |
| 115.0 ± 6.2 c |
| 77.5 ± 3.0 d |
| 58.4 ± 1.6 e |
| 25.5 ± 1.0 f |
| 15.8 ± 0.9 g |
| 8.2 ± 0.4 h |
| 5.6 ± 0.4 i |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhumtanom, P.; Wongta, A.; Wongwilai, W.; Okonogi, S.; Chaiyana, W. Therapeutic Potential of Winged Bean (Psophocarpus tetragonolobus) Pod Extract: Apoptosis Induction and Anti-Inflammatory Action in Colorectal Cancer Cells. Biology 2025, 14, 1646. https://doi.org/10.3390/biology14121646
Dhumtanom P, Wongta A, Wongwilai W, Okonogi S, Chaiyana W. Therapeutic Potential of Winged Bean (Psophocarpus tetragonolobus) Pod Extract: Apoptosis Induction and Anti-Inflammatory Action in Colorectal Cancer Cells. Biology. 2025; 14(12):1646. https://doi.org/10.3390/biology14121646
Chicago/Turabian StyleDhumtanom, Pongsathorn, Anurak Wongta, Wasin Wongwilai, Siriporn Okonogi, and Wantida Chaiyana. 2025. "Therapeutic Potential of Winged Bean (Psophocarpus tetragonolobus) Pod Extract: Apoptosis Induction and Anti-Inflammatory Action in Colorectal Cancer Cells" Biology 14, no. 12: 1646. https://doi.org/10.3390/biology14121646
APA StyleDhumtanom, P., Wongta, A., Wongwilai, W., Okonogi, S., & Chaiyana, W. (2025). Therapeutic Potential of Winged Bean (Psophocarpus tetragonolobus) Pod Extract: Apoptosis Induction and Anti-Inflammatory Action in Colorectal Cancer Cells. Biology, 14(12), 1646. https://doi.org/10.3390/biology14121646

