Predicting Ecological Risks of Alexandrium spp. Under Climate Change: An Ensemble Modeling Approach
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Species Distribution Records
2.2. Environmental Variables
2.3. Ensemble Model Construction
2.4. Ecological Niche Analysis
2.5. Centroid Migration Analysis
3. Results
3.1. Model Accuracy
3.2. Environmental Drivers of Distribution
3.3. Potential Geographical Distribution of Alexandrium spp. Under Current Climatic Conditions
3.4. Prediction of the Impact of Climate Change on the Potential Geographic Distribution of Alexandrium spp.
3.5. Centroid Shift Analysis of Potential Suitable Habitats
4. Discussion
4.1. Accuracy of Ensemble Modeling and Reliability of Niche Prediction
4.2. Salinity-Driven Niche Constraints
4.3. Climate-Driven Southward Shift and Regional Risk Restructuring
4.4. From Reactive Governance to Proactive Prevention
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moore, S.K.; Trainer, V.L.; Mantua, N.J.; Parker, M.S.; Laws, E.A.; Backer, L.C.; Fleming, L.E. Impacts of Climate Variability and Future Climate Change on Harmful Algal Blooms and Human Health. Environ. Health 2008, 7, S4. [Google Scholar] [CrossRef]
- Wells, M.L.; Trainer, V.L.; Smayda, T.J.; Karlson, B.S.O.; Trick, C.G.; Kudela, R.M.; Ishikawa, A.; Bernard, S.; Wulff, A.; Anderson, D.M.; et al. Harmful Algal Blooms and Climate Change: Learning from the Past and Present to Forecast the Future. Harmful Algae 2015, 49, 68–93. [Google Scholar] [CrossRef]
- Hu, W.; Su, S.; Mohamed, H.F.; Xiao, J.; Kang, J.; Krock, B.; Xie, B.; Luo, Z.; Chen, B. Assessing the Global Distribution and Risk of Harmful Microalgae: A Focus on Three Toxic Alexandrium Dinoflagellates. Sci. Total Environ. 2024, 948, 174767. [Google Scholar] [CrossRef]
- Heisler, J.; Glibert, P.M.; Burkholder, J.M.; Anderson, D.M.; Cochlan, W.; Dennison, W.C.; Dortch, Q.; Gobler, C.J.; Heil, C.A.; Humphries, E.; et al. Eutrophication and Harmful Algal Blooms: A Scientific Consensus. Harmful Algae 2008, 8, 3–13. [Google Scholar] [CrossRef]
- Anderson, D.M.; Cembella, A.D.; Hallegraeff, G.M. Progress in Understanding Harmful Algal Blooms: Paradigm Shifts and New Technologies for Research, Monitoring, and Management. Annu. Rev. Mar. Sci. 2012, 4, 143–176. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Hamilton, D.P.; O’Brien, K.R.; Adams, M.P.; Willis, A.; Burford, M.A. Are Laboratory Growth Rate Experiments Relevant to Explaining Bloom-Forming Cyanobacteria Distributions at Global Scale? Harmful Algae 2020, 92, 101732. [Google Scholar] [CrossRef]
- Toldrà, A.; Alcaraz, C.; Andree, K.B.; Fernández-Tejedor, M.; Diogène, J.; Katakis, I.; O’Sullivan, C.K.; Campàs, M. Colorimetric DNA-Based Assay for the Specific Detection and Quantification of Ostreopsis cf. ovata and Ostreopsis cf. siamensis in the Marine Environment. Harmful Algae 2019, 84, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Litchman, E. Understanding and Predicting Harmful Algal Blooms in a Changing Climate: A Trait—Based Framework. Limnol. Oceanogr. Lett. 2023, 8, 229–246. [Google Scholar] [CrossRef]
- Silva, E.; Counillon, F.; Brajard, J.; Davy, R.; Outten, S.; Pettersson, L.H.; Keenlyside, N. Warming and Freshening Coastal Waters Impact Harmful Algal Bloom Frequency in High Latitudes. Commun. Earth Environ. 2025, 6, 445. [Google Scholar] [CrossRef]
- Marmion, M.; Parviainen, M.; Luoto, M.; Heikkinen, R.K.; Thuiller, W. Evaluation of Consensus Methods in Predictive Species Distribution Modelling. Divers. Distrib. 2009, 15, 59–69. [Google Scholar] [CrossRef]
- Bill, B.D.; Moore, S.K.; Hay, L.R.; Anderson, D.M.; Trainer, V.L. Effects of Temperature and Salinity on the Growth of Alexandrium (Dinophyceae) Isolates from the Salish Sea. J. Phycol. 2016, 52, 230–238. [Google Scholar] [CrossRef]
- Liu, C.; Wolter, C.; Courchamp, F.; Roura-Pascual, N.; Jeschke, J.M. Biological Invasions Reveal How Niche Change Affects the Transferability of Species Distribution Models. Ecology 2022, 103, e3719. [Google Scholar] [CrossRef]
- Liu, S.; Li, T.; Cong, B.; Yang, L.; Zhang, Z.; Zhao, L. Unveiling the Suitable Habitats and Future Conservation Strategies of Tridacna Maxima in the Indo-Pacific Core Area Based on Species Distribution Model. Ecol. Evol. 2024, 14, e70187. [Google Scholar] [CrossRef]
- Provencher Langlois, G.; Buch, J.; Darbon, J. Efficient First-Order Algorithms for Large-Scale, Non-Smooth Maximum Entropy Models with Application to Wildfire Science. Entropy 2024, 26, 691. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhang, Y.; Chen, Z.; Bai, G.; Dong, X.; Zhang, Y.; Hou, G. An Entire-Process MaxEnt Framework for Habitat Suitability Modeling on Google Earth Engine: A Case Study of the Oriental White Stork in Eastern Mainland China. J. Environ. Manag. 2025, 386, 125715. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jia, H.; Hua, Q. Predicting Suitable Habitats of Parasitic Desert Species Based on Biomod2 Ensemble Model: Cynomorium songaricum Rupr and Its Host Plants as an Example. BMC Plant Biol. 2025, 25, 351. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Shao, W.; Li, Y.; Wang, L.; Lin, Z.; Guo, L.; Wei, L. Biomod2 Modeling for Predicting Suitable Distribution of Bamboo Bat (Tylonycteris pachypus) Under Climate Change. Animals 2025, 15, 1164. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, J.; Wang, Q.; Huang, R.; Nie, W.; Yang, S.; Cheng, X.; Li, M. Occurrence Data Sources Matter for Species Distribution Modeling: A Case Study of Quercus variabilis Based on Biomod2. Ecol. Evol. 2025, 15, e71390. [Google Scholar] [CrossRef]
- Lan, R.; Chen, R.; Lin, H.; Huang, Y.; Wang, R. Suitable Area of Invasive Species Alexandrium under Climate Change Scenariosin China Sea Areas. Pol. J. Environ. Stud. 2023, 32, 1199–1217. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, S.; Chen, S. Predicting the Potential Habitat Suitability of Saussurea Species in China under Future Climate Scenarios Using the Optimized Maximum Entropy (MaxEnt) Model. J. Clean. Prod. 2024, 474, 143552. [Google Scholar] [CrossRef]
- Pasha, S.V.; Reddy, C.S. Global Spatial Distribution of Prosopis juliflora—One of the World’s Worst 100 Invasive Alien Species under Changing Climate Using Multiple Machine Learning Models. Environ. Monit. Assess. 2024, 196, 196. [Google Scholar] [CrossRef]
- Guan, L.; Yang, Y.; Jiang, P.; Mou, Q.; Gou, Y.; Zhu, X.; Xu, Y.W.; Wang, R. Potential Distribution of Blumea balsamifera in China Using MaxEnt and the Ex Situ Conservation Based on Its Effective Components and Fresh Leaf Yield. Environ. Sci. Pollut. Res. 2022, 29, 44003–44019. [Google Scholar] [CrossRef]
- Yang, J.; Huang, Y.; Jiang, X.; Chen, H.; Liu, M.; Wang, R. Potential Geographical Distribution of the Edangred Plant Isoetes under Human Activities Using MaxEnt and GARP. Glob. Ecol. Conserv. 2022, 38, e02186. [Google Scholar] [CrossRef]
- Thuiller, W.; Lafourcade, B.; Engler, R.; Araújo, M.B. BIOMOD—A Platform for Ensemble Forecasting of Species Distributions. Ecography 2009, 32, 369–373. [Google Scholar] [CrossRef]
- Hesselbarth, M.; Munsterman, K.; Actions-User. Allgeier-Lab/arrR: Accepted Model Version for Publication (Hotfix). 2022. Available online: https://zenodo.org/records/5910977 (accessed on 15 July 2025).
- Huang, Y.; Yang, J.; Zhao, G.; Shama, Z.; Ge, Q.; Yang, Y.; Yang, J. Modeling the Future of a Wild Edible Fern Under Climate Change: Distribution and Cultivation Zones of Pteridium aquilinum var. latiusculum in the Dadu–Min River Region. Plants 2025, 14, 2123. [Google Scholar] [CrossRef]
- Gebremedhn, H.; Gebrewahid, Y.; Hadgu, G.; De Graaf, D.C. Projecting the Impacts of Climate Change on Habitat Distribution of Varroa Destructor in Ethiopia Using MaxEnt Ecological Modeling. Sci. Total Environ. 2025, 968, 178904. [Google Scholar] [CrossRef]
- Chen, J.; Li, D.; Jin, H.; Jiang, Z.; Wang, B.; Wu, B.; Hao, Q.; Sun, X. Changing Nutrients, Oxygen and Phytoplankton in the East China Sea. In Changing Asia-Pacific Marginal Seas; Chen, C.-T.A., Guo, X., Eds.; Atmosphere, Earth, Ocean & Space; Springer: Singapore, 2020; pp. 155–178. ISBN 978-981-15-4885-7. [Google Scholar]
- Wu, H.-Y.; Dong, C.-F.; Zheng, G.-C.; Zhang, Z.-H.; Zhang, Y.-Y.; Tan, Z.-J.; Gu, H.-F. Formation Mechanism and Environmental Drivers of Alexandrium catenella Bloom Events in the Coastal Waters of Qinhuangdao, China. Environ. Pollut. 2022, 313, 120241. [Google Scholar] [CrossRef]
- Qiao, Y.; Feng, J.; Cui, S.; Zhu, L. Long-Term Changes in Nutrients, Chlorophyll a and Their Relationships in a Semi-Enclosed Eutrophic Ecosystem, Bohai Bay, China. Mar. Pollut. Bull. 2017, 117, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Lao, Q.; Wu, J.; Chen, F.; Zhou, X.; Li, Z.; Chen, C.; Zhu, Q.; Deng, Z.; Li, J. Increasing Intrusion of High Salinity Water Alters the Mariculture Activities in Zhanjiang Bay during the Past Two Decades Identified by Dual Water Isotopes. J. Environ. Manag. 2022, 320, 115815. [Google Scholar] [CrossRef] [PubMed]
- Meriggi, C.; Mehrshad, M.; Johnson, R.K.; Laugen, A.T.; Drakare, S. Challenges in Supplying Empirical Proof for Predictions Derived from Species Distribution Models (SDMs): The Case of an Invasive Cyanobacterium. ISME Commun. 2023, 3, 56. [Google Scholar] [CrossRef] [PubMed]
- Peterson, A.T.; Papeş, M.; Soberón, J. Rethinking Receiver Operating Characteristic Analysis Applications in Ecological Niche Modeling. Ecol. Model. 2008, 213, 63–72. [Google Scholar] [CrossRef]
- Kerlin, D.H.; Thirgood, S.J.; Miller, D.R.; Aebischer, N.J.; Smith, A.A.; Haydon, D.T. State—Dependent Dynamics of Cycles in Red Grouse Abundance. Ecography 2010, 33, 896–905. [Google Scholar] [CrossRef]
- Willem, T.; Shitov, V.A.; Luecken, M.D.; Kilbertus, N.; Bauer, S.; Piraud, M.; Buyx, A.; Theis, F.J. Biases in Machine-Learning Models of Human Single-Cell Data. Nat. Cell Biol. 2025, 27, 384–392. [Google Scholar] [CrossRef]
- Ni, J.; Xu, J.; Zhang, M. Constructed Wetland Modelling for Watershed Ecosystem Protection under a Certain Economic Load: A Case Study at the Chaohu Lake Watershed, China. Ecol. Model. 2018, 368, 180–190. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, S.; Sun, P.; Wang, T.; Wang, G.; Zhang, X.; Wang, L. Consensus Forecasting of Species Distributions: The Effects of Niche Model Performance and Niche Properties. PLoS ONE 2015, 10, e0120056. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.; Carrasco, N.K.; Perissinotto, R.; Vosloo, A. Association of the Epibiont Epistylis sp. with a Calanoid Copepod in the St Lucia Estuary, South Africa. J. Plankton Res. 2016, 38, 1404–1411. [Google Scholar] [CrossRef]
- Tulatz, S.; Krock, B.; Tillmann, U.; Meunier, C.L. Effects of Temperature, Salinity and CO2 Concentration on Growth and Toxin Production of the Harmful Algal Bloom Species Alexandrium pseudogonyaulax (Dinophyceae) from the Danish Limfjord. Harmful Algae 2024, 140, 102756. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, T.; Zhou, J. Historical Occurrence of Algal Blooms in the Northern Beibu Gulf of China and Implications for Future Trends. Front. Microbiol. 2019, 10, 451. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; He, R.; McGillicuddy, D.J.; Anderson, D.M.; Keafer, B.A. Investigation of the 2006 Alexandrium Fundyense Bloom in the Gulf of Maine: In-Situ Observations and Numerical Modeling. Cont. Shelf Res. 2009, 29, 2069–2082. [Google Scholar] [CrossRef] [PubMed]
- Davidson, K.; Anderson, D.M.; Mateus, M.; Reguera, B.; Silke, J.; Sourisseau, M.; Maguire, J. Forecasting the Risk of Harmful Algal Blooms. Harmful Algae 2016, 53, 1–7. [Google Scholar] [CrossRef]









| Abbreviation | Environment Variable | Unit |
|---|---|---|
| bio1 | Maximum monthly mean current velocity | m/s |
| bio2 | Minimum monthly mean current velocity | m/s |
| bio3 | Maximum current velocity | m/s |
| bio4 | Annual mean current velocity | m/s |
| bio5 | Minimum current velocity | m/s |
| bio6 | Annual current velocity range | m/s |
| bio7 | Maximum monthly mean ice thickness | m |
| bio8 | Minimum monthly mean ice thickness | m |
| bio9 | Maximum ice thickness | m |
| bio10 | Annual mean ice thickness | m |
| bio11 | Minimum ice thickness | m |
| bio12 | Annual ice thickness range | m |
| bio13 | Maximum monthly mean salinity | PSU |
| bio14 | Minimum monthly mean salinity | PSU |
| bio15 | Maximum salinity | PSU |
| bio16 | Annual mean salinity | PSU |
| bio17 | Minimum salinity | PSU |
| bio18 | Annual salinity range | PSU |
| bio19 | Maximum monthly mean temperature | °C |
| bio20 | Minimum monthly mean temperature | °C |
| bio21 | Maximum temperature | °C |
| bio22 | Annual mean temperature | °C |
| bio23 | Minimum temperature | °C |
| bio24 | Annual temperature range | °C |
| Model | KAPPA_mean | KAPPA_sd | AUC_mean | AUC_sd | TSS_mean | TSS_sd |
|---|---|---|---|---|---|---|
| GLM | 0.8168 | 0.0515 | 0.9545 | 0.0229 | 0.8223 | 0.0548 |
| GBM | 0.9452 | 0.0391 | 0.9908 | 0.0116 | 0.9460 | 0.0379 |
| GAM | 0.8656 | 0.0641 | 0.9428 | 0.0316 | 0.8699 | 0.0602 |
| CTA | 0.8997 | 0.0554 | 0.9524 | 0.0292 | 0.9026 | 0.0514 |
| ANN | 0.9135 | 0.0434 | 0.9587 | 0.0474 | 0.9146 | 0.0463 |
| SRE | 0.7040 | 0.0909 | 0.8501 | 0.0471 | 0.6999 | 0.0945 |
| MARS | 0.8969 | 0.0379 | 0.9525 | 0.0273 | 0.9023 | 0.0358 |
| RF | 0.9483 | 0.0353 | 0.9933 | 0.0079 | 0.9492 | 0.0340 |
| MAXENT | 0.7691 | 0.1129 | 0.8874 | 0.0720 | 0.7701 | 0.1175 |
| Low Habitability Area | Moderate Habitability Area | High Habitability Area | |
|---|---|---|---|
| present | 1.438 | 8.950 | 7.222 |
| 2050_RCP2.6 | 1.554 | 9.266 | 7.114 |
| 2050_RCP4.5 | 1.596 | 10.463 | 7.213 |
| 2050_RCP8.5 | 1.745 | 10.621 | 6.923 |
| 2100_RCP2.6 | 1.853 | 9.981 | 6.590 |
| 2100_RCP4.5 | 1.803 | 8.568 | 7.338 |
| 2100_RCP8.5 | 0.657 | 5.294 | 7.330 |
| Period | Contraction | Expansion | Unchanged |
|---|---|---|---|
| 2050_RCP2.6 | 2.302 | 2.626 | 15.308 |
| 2050_RCP4.5 | 1.321 | 2.983 | 16.288 |
| 2050_RCP8.5 | 1.604 | 3.283 | 16.006 |
| 2100_RCP2.6 | 1.953 | 2.767 | 15.657 |
| 2100_RCP4.5 | 2.726 | 2.826 | 14.884 |
| 2100_RCP8.5 | 7.247 | 2.917 | 10.363 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, R.; Li, L.; Chen, R.; Huang, Y.; Zhao, C.; Wang, N. Predicting Ecological Risks of Alexandrium spp. Under Climate Change: An Ensemble Modeling Approach. Biology 2025, 14, 1499. https://doi.org/10.3390/biology14111499
Lan R, Li L, Chen R, Huang Y, Zhao C, Wang N. Predicting Ecological Risks of Alexandrium spp. Under Climate Change: An Ensemble Modeling Approach. Biology. 2025; 14(11):1499. https://doi.org/10.3390/biology14111499
Chicago/Turabian StyleLan, Ru, Luning Li, Rongchang Chen, Yi Huang, Cong Zhao, and Nini Wang. 2025. "Predicting Ecological Risks of Alexandrium spp. Under Climate Change: An Ensemble Modeling Approach" Biology 14, no. 11: 1499. https://doi.org/10.3390/biology14111499
APA StyleLan, R., Li, L., Chen, R., Huang, Y., Zhao, C., & Wang, N. (2025). Predicting Ecological Risks of Alexandrium spp. Under Climate Change: An Ensemble Modeling Approach. Biology, 14(11), 1499. https://doi.org/10.3390/biology14111499

