Reproductive Biology and Early Life History of the Apodid Sea Cucumber Chiridota laevis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection and Holding
2.2. Gonad Phenotype
2.3. Gametogenesis
2.4. Spawning and Realized Fecundity
2.5. Role of Environmental Factors on Gametogenesis and Spawning
2.6. Development
2.7. Early Growth
2.8. Growth Rate
3. Results
3.1. Gonad Phenotype
3.2. Sexuality
3.3. Reproductive Cycle
3.3.1. Oogenesis and Ovarian Maturation
3.3.2. Spermatogenesis and Testis Maturation
3.4. Spawning
3.5. Correlation of Reproductive Cycle with Environmental Factors
3.6. Development
3.7. Juvenile Growth
3.8. Ossicle and Tentacle Development
4. Discussion
4.1. Sexuality
4.2. Gametogenesis
4.3. Spawning
4.4. Development
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pierrat, J.; Bédier, A.; Eeckhaut, I.; Magalon, H.; Frouin, P. Sophistication in a seemingly simple creature: A review of wild holothurian nutrition in marine ecosystems. Biol. Rev. 2022, 97, 273–298. [Google Scholar] [CrossRef]
- Mercier, A.; Gebruk, A.; Kremenetskaia, A.; Hamel, J.-F. An overview of taxonomic and morphological diversity in sea cucumbers (Holothuroidea: Echinodermata). In The World of Sea Cucumbers; Mercier, A., Hamel, J.-F., Suhrbier, A.D., Pearce, C.M., Eds.; Academic Press: Cambridge, MA, USA, 2024; Chapter 1; pp. 3–15. [Google Scholar]
- Miller, A.K.; Kerr, A.M.; Paulay, G.; Reich, M.; Wilson, N.G.; Carvajal, J.I.; Rouse, G.W. Molecular phylogeny of extant Holothuroidea (Echinodermata). Mol. Phylogenet. Evol. 2017, 111, 110–131. [Google Scholar] [CrossRef]
- Ayranci, K.; Dashtgard, S.E. Infaunal holothurian distributions and their traces in the Fraser River delta front and prodelta, British Columbia, Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 392, 232–246. [Google Scholar] [CrossRef]
- Reich, M.; Wiese, F. Apodid sea cucumbers (Echinodermata: Holothuroidea) from the Upper Turonian of the Isle of Wolin, NW Poland. Cretac. Res. 2010, 31, 350–363. [Google Scholar] [CrossRef]
- Reich, M. Different pathways in early evolution of the holothurian calcareous ring. Prog. Echino. Palaeo. 2015, 19, 137–145. [Google Scholar]
- Pawson, D.L.; Fell, H.B. A revised classification of the dendrochirote holothurians. Breviora 1965, 214, 1–7. [Google Scholar]
- Zhang, L.; He, J.; Tan, P.; Gong, Z.; Qian, S.; Miao, Y.; Zhang, H.-Y.; Tu, G.; Chen, Q.; Zhong, Q.; et al. The genome of an apodid holothuroid (Chiridota heheva) provides insights into its adaptation to a deep-sea reducing environment. Commun. Biol. 2022, 5, 224. [Google Scholar] [CrossRef]
- Yamana, Y.; Tanaka, H. A new species of Chiridota (Echinodermata: Holothuroidea: Apodida: Chiridotidae) from Japan, and first record of C. rigida from Japan. Zootaxa 2017, 4341, 243. [Google Scholar] [CrossRef] [PubMed]
- O’Loughlin, P.; VandenSpiegel, D. A revision of Antarctic and some Indo-Pacific apodid sea cucumbers (Echinodermata: Holothuroidea: Apodida). Mem. Mus. Vic. 2010, 67, 61–95. [Google Scholar] [CrossRef]
- Woo, S.P.; Tan, S.H.; Nooraini, I.; Jaya-Ram, A.; Fujita, T. A review on knowledge and research of interstitial sea cucumber. Paleontol. J. 2021, 55, 1063–1071. [Google Scholar] [CrossRef]
- Eckelbarger, K.J.; Riser, N.W. Derived sperm morphology in the interstitial sea cucumber Rhabdomolgus ruber, with observations on oogenesis and spawning behavior. Invertebr. Biol. 2013, 132, 270–281. [Google Scholar] [CrossRef]
- Mercier, A.; Hamel, J.-F. Endogenous and exogenous control of gametogenesis and spawning in echinoderms. Adv. Mar. Biol. 2009, 55, 1–6. [Google Scholar] [CrossRef]
- Chao, S.M.; Chen, C.P.; Alexander, P.S. Reproductive cycles of tropical sea cucumbers (Echinodermata: Holothuroidea) in southern Taiwan. Mar. Biol. 1995, 122, 289–295. [Google Scholar] [CrossRef]
- Kubota, T.; Tomari, M. Reproduction in the apodid sea sucumber Polycheira rufescens: Semilunar spawning rhythm and sex change. J. Mar. Biol. Assoc. UK 1998, 78, 249–267. [Google Scholar] [CrossRef]
- Smiley, S.; McEuen, F.S.; Chaffee, C.; Krishnan, S. Echinodermata: Holothuroidea. In Reproduction of Marine Invertebrates; Giese, A.C., Pearse, J.S., Pearse, V.B., Eds.; Boxwood Press: Pacific Grove, CA, USA, 1991; Volume 6, pp. 633–750. [Google Scholar]
- Sewell, M.A.; Chia, F.S. Reproduction of the intraovarian brooding apodid Leptosynapta clarki (Echinodermata: Holothuroidea) in British Columbia. Mar. Biol. 1994, 121, 285–300. [Google Scholar] [CrossRef]
- Sewell, M.A. Birth, recruitment and juvenile growth in the intraovarian brooding sea cucumber Leptosynapta clarki. Mar. Ecol. Prog. Ser. 1994, 114, 149–156. [Google Scholar] [CrossRef]
- Arakaki, S.; Yamahira, K.; Tokeshi, M. Sex change and spatial distribution pattern in an intertidal holothurian Polycheira rufescens in the reproductive season. Res. Pop. Ecol. 1999, 41, 235–242. [Google Scholar] [CrossRef]
- Kubota, T. Reproduction in the apodid sea cucumber Patinapta ooplax: Semilunar spawning cycle and sex change. Zool. Sci. 2000, 17, 75–81. [Google Scholar] [CrossRef]
- Sewell, M.A. Small size, brooding, and protandry in the apodid sea cucumber Leptosynapta clarki. Biol. Bull. 1994, 187, 112–123. [Google Scholar] [CrossRef]
- Green, J.D. The annual reproductive cycle of an apodous holothurian, Leptosynapta tenuis: A bimodal breeding season. Biol. Bull. 1978, 154, 68–78. [Google Scholar] [CrossRef]
- Ezhova, O.V.; Ershova, N.A.; Malakhov, V.V. Microscopic anatomy of the axial complex and associated structures in the sea cucumber Chiridota laevis Fabricius, 1780 (Echinodermata, Holothuroidea). Zoomorph 2017, 136, 205–217. [Google Scholar] [CrossRef]
- O’Loughlin, P.; VandenSpiegel, D. New apodid species from southern Australia (Echinodermata: Holothuroidea: Apodida). Mem. Mus. Vic. 2007, 64, 53–70. [Google Scholar] [CrossRef]
- Gotto, D.M.; Gotto, R.V. Labidoplax media Oestergren: A sea-cucumber new to British and Irish waters, with observational notes. Ir. Nat. J. 1972, 17, 250–252. [Google Scholar]
- Atwood, D.G. Ultrastructure of the gonadal wall of the sea cucumber Leptosynapta clarki (Echinodermata: Holothuroidea). Z. Zellforsch. Mikrosk. Anat. 1973, 141, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Menker, D. Lebenszyklus, jugendentwicklung und geschlechtsorgane von Rhabdomolgus ruber (Holothuroidea: Apoda). Mar. Biol. 1970, 6, 167–186. [Google Scholar] [CrossRef]
- Sewell, M.A. Mortality of pentactulae during intraovarian brooding in the apodid sea cucumber Leptosynapta clarki. Biol. Bull. 1996, 190, 188–194. [Google Scholar] [CrossRef]
- Frick, J. Reproductive Biology, Gonadal Microanatomy, and Parental-Embryonic Interactions in the Viviparious Holothurian Echinoderm Synaptula hydriformis. Ph.D. Thesis, Clemson University, Clemson, SC, USA, 1995. [Google Scholar]
- Hamel, J.-F.; Himmelman, J.H.; Dufresne, L. Gametogenesis and spawning of the sea cucumber Psolus fabricii (Duben and Koren). Biol. Bull. 1993, 184, 125–143. [Google Scholar] [CrossRef]
- Frick, J.E.; Ruppert, E.E.; Wourms, J.P. Morphology of the ovotestis of Synaptula hydriformis (Holothuroidea, Apoda): An evolutionary model of oogenesis and the origin of egg polarity in echinoderms. Invertebr. Biol. 1996, 115, 46–66. [Google Scholar] [CrossRef]
- Jobson, S.; Hamel, J.-F.; Mercier, A. A rare case of intra-ovarian oocyte maturation. Zygote 2024, 32, 256–260. [Google Scholar] [CrossRef]
- Burke, R.D.; Bouland, C. Pigmented follicle cells and the maturation of oocytes in the sand dollar Dendraster excentricus. Dev. Growth Differ. 1989, 31, 431–437. [Google Scholar] [CrossRef]
- Smiley, S. A review of echinoderm oogenesis. Electron. Microsc. Tech. 1990, 16, 93–114. [Google Scholar] [CrossRef]
- Clark, H.L. The development of an apodous holothurian (Chiridota rotifera). J. Exp. Zool. 1910, 9, 497–516. [Google Scholar] [CrossRef]
- Frick, J.E. Evidence of matrotrophy in the viviparous holothuroid echinoderm Synaptula hydriformis. Invertebr. Biol. 1998, 117, 169–179. [Google Scholar] [CrossRef]
- Byrne, M.; Sewell, M.A.; Selvakumaraswamy, P.; Prowse, T.A.A. The larval apical organ in the holothuroid Chiridota gigas (Apodida): Inferences on evolution of the ambulacrarian larval nervous system. Biol. Bull. 2006, 211, 95–100. [Google Scholar] [CrossRef]
- Sewell, M.; Prowse, T.; Selvakumaraswamy, P.; Byrne, M. Larval development in the apodid sea cucumber Chiridota gigas, with a focus on coelom development and the serotonergic nervous system during metamorphosis. Invertebr. Biol. 2024, 143, e12433. [Google Scholar] [CrossRef]
- Lawrence, J.; Herrera, J. Stress and deviant reproduction in echinoderms. Zool. Stud. 2000, 39, 151–171. [Google Scholar]
- Sewell, M.A.; Koss, R.O.N.; Turner, A.; Chia, F.-S. Evidence for matrotrophy in the viviparous sea cucumber Leptosynapta clarki: A role for the genital haemal sinus? Invertebr. Reprod. Dev. 2006, 49, 225–236. [Google Scholar] [CrossRef]
- Sewell, M.A.; Chia, F.-S.; Thandar, A.S. A redescription of Leptosynapta clarki Heding (Echinodermata: Holothuroidea) from the northeast Pacific, with notes on changes in spicule form and size with age. Can. J. Zool. 1994, 73, 469–485. [Google Scholar] [CrossRef]
- Everingham, J.W. The Intra-Ovarian Embryology of Leptosynapta clarki. Master’s Thesis, University of Washington Seattle, Seattle, WA, USA, 1961. [Google Scholar]
- Turner, R. Release mechanisms for gametes and juveniles of the hermaphroditic coelom-brooder Synaptula hydriformis (Echinodermata: Holothuroidea). Am. Zoool. 1973, 13, 1337–1338. [Google Scholar]
- Curtis, M.D.; Turner, R.L. Development and morphology of ciliary urns in the sea cucumber Synaptula hydriformis (Echinodermata: Holothuroidea). Invertebr. Biol. 2019, 138, e12264. [Google Scholar] [CrossRef]
- Clark, H.L. The Apodous Holothurians: A Monograph of the Synaptidæ and Molpadiidæ; Smithsonian Institution: Washington, DC, USA, 1907; Volume 35. [Google Scholar]
- Edwards, C.L. The holothurians of the North Pacific coast of North America collected by the Albatross in 1903. Proc. US Natl. Mus. 1907, 33, 49–68. [Google Scholar] [CrossRef]
- Kerr, A.M.; Kim, J. Phylogeny of Holothuroidea (Echinodermata) inferred from morphology. Zool. J. Linn. Soc. 2001, 133, 63–81. [Google Scholar] [CrossRef]
- Lacey, K.M.J.; McCormack, G.P.; Keegan, B.F.; Powell, R. Phylogenetic relationships within the class holothuroidea, inferred from 18S rRNA gene data. Mar. Biol. 2005, 147, 1149–1154. [Google Scholar] [CrossRef]
- Smirnov, A.V. Sea cucumbers symmetry (Echinodermata: Holothuroidea). Paleontol. J. 2014, 48, 1215–1236. [Google Scholar] [CrossRef]
- Gao, F.; Yang, H. Anatomy. In The Sea Cucumber Apostichopus japonicus: History, Biology and Aquaculture; Yang, H., Hamel, J.-F., Mercier, A., Eds.; Academic Press: Cambridge, MA, USA, 2015; Chapter 4; Volume 39, pp. 53–76. [Google Scholar]
- Ferguson, J.C. Madreporite function and fluid volume relationships in sea urchins. Biol. Bull. 1996, 191, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, J.C. The function of the madreporite in body fluid volume maintenance by an intertidal starfish, Pisaster ochraceus. Biol. Bull. 1992, 183, 482–489. [Google Scholar] [CrossRef]
- Jobson, S.; Penney, H.D.; Hamel, J.-F.; Mercier, A. Split personality. Front. Ecol. Environ. 2020, 18, 557. [Google Scholar] [CrossRef]
- Sewell, M.A.; Hamel, J.-F.; Mercier, A. Morphological diversity, development, and biology of sea cucumber larvae. In The World of Sea Cucumbers; Mercier, A., Hamel, J.-F., Suhrbier, A.D., Pearce, C.M., Eds.; Academic Press: Cambridge, MA, USA, 2024; Chapter 16; Volume 1, pp. 237–256. [Google Scholar]
- Sun, J.; Hamel, J.-F.; Gianasi, B.L.; Mercier, A. Age determination in echinoderms: First evidence of annual growth rings in holothuroids. Proc. R. Soc. B 2019, 286, 20190858. [Google Scholar] [CrossRef]
- Hamel, J.-F.; Sun, Z.; Mercier, A. Influence of size and seasonal factors on the growth of the deep-sea coral Flabellum alabastrum in mesocosm. Coral Reefs 2010, 29, 521–525. [Google Scholar] [CrossRef]
- Morgan, A. Use of a growth model to estimate size at age in the temperate sea cucumber Australostichopus mollis. SPC Beche-de-mer Inf. Bull. 2012, 32, 24–32. [Google Scholar]
- Watanabe, S.; Sumbing, J.; Lebata, J. Growth pattern of the tropical sea cucumber, Holothuria scabra, under captivity. JARQ 2014, 48, 457–464. [Google Scholar] [CrossRef]
- Ghiselin, M.T. The evolution of hermaphroditism among animals. Q. Rev. Biol. 1969, 44, 189–208. [Google Scholar] [CrossRef]
- Brockington, S.; Clarke, A. The relative influence of temperature and food on the metabolism of a marine invertebrate. J. Exp. Mar. Biol. Ecol. 2001, 258, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Ru, X.; Zhang, L.; Liu, S.; Sun, J.; Yang, H. Energy budget adjustment of sea cucumber Apostichopus japonicus during breeding period. Aquac. Res. 2018, 49, 1657–1663. [Google Scholar] [CrossRef]
- Dobson, W.E.; Stancyk, S.E.; Clements, L.A.; Showman, R.M. Nutrient translocation during early disc regeneration in the brittlestar Microphiopholis gracillima (Stimpson) (Echinodermata: Ophiuroidea). Biol. Bull. 1991, 180, 167–184. [Google Scholar] [CrossRef] [PubMed]
- Hamel, J.-F.; Mercier, A. Gonad morphology and gametogenesis of the sea cucumber Cucumaria frondosa. Beche-de-mer Info Bull. 1996, 8, 22–33. [Google Scholar]
- Shanks, A.L.; Rasmuson, L.K.; Valley, J.R.; Jarvis, M.A.; Salant, C.; Sutherland, D.A.; Lamont, E.I.; Hainey, M.A.H.; Emlet, R.B. Marine heat waves, climate change, and failed spawning by coastal invertebrates. Limnol. Oceanogr. 2020, 65, 627–636. [Google Scholar] [CrossRef]
- Mercier, A.; Hamel, J.-F. Depth-related shift in life history strategies of a brooding and broadcasting deep-sea asteroid. Mar. Biol. 2008, 156, 205–223. [Google Scholar] [CrossRef]
- McEuen, F.S. Spawning behaviors of northeast Pacific sea cucumbers (Holothuroidea: Echinodermata). Mar. Biol. 1988, 98, 565–585. [Google Scholar] [CrossRef]
- Rogers, A.; Hamel, J.-F.; Quetzal, J.; Mercier, A. Unique reproductive biology of the broadcasting sea cucumber Holothuria floridana: Facultative recruitment on adults inside nursery grounds. Invertebr. Reprod. Dev. 2021, 65, 141–153. [Google Scholar] [CrossRef]
- MacIntosh, H.; de Nys, R.; Whalan, S. Contrasting life histories in shipworms: Growth, reproductive development and fecundity. J. Exp. Mar. Biol. Ecol. 2014, 459, 80–86. [Google Scholar] [CrossRef]
- Pawson, D.L.; Gage, J.D.; Belyaev, G.M.; Mironov, A.N.; Smirnov, A.V. The deep sea synaptid Protankyra brychia (Echinodermata: Holothuroidea) and its near-surface dwelling planktotrophic larva, Auricularia nudibranchiata. Sarsia 2003, 88, 159–174. [Google Scholar] [CrossRef]
- Peters-Didier, J.; Sewell, M.A. Maternal investment and nutrient utilization during early larval development of the sea cucumber Australostichopus mollis. Mar. Biol. 2017, 164, 178. [Google Scholar] [CrossRef]
- Semon, R. Die Entwickelung der Synapta digitata und ihre bedeutung für die phylogenie der Echinodermen. Jenaische Z. Naturwissenschaft 1888, 22, 175–309. [Google Scholar]
- Engstrom, N.A. Development, natural history and interstitial habits of the apodous holothurian Chiridota rotifera (Pourtales, 1851) (Echinodermata: Holothuroidea). Brenesia. San Jose 1980, 17, 85–96. [Google Scholar]
Developmental Marker | Time | Size (mm) |
---|---|---|
Fertilized ootids | 0 | 0.3 |
Cells 1–4 | <12 h | 0.3 |
Cells 8–32 | 24 h | 0.3 |
Cells 32–128 | 48 h | 0.3 |
Degradation of unfertilized ootids | 4 d | 0.3 |
Blastopore development | 7 d | 0.3 |
Gastrulation (appearance of the archenteron) | 8–40 d | 0.3 |
First appearance of pentaradial symmetry | 43 d | 0.3 |
Appearance of the first 5 tentacles | 45 d | 0.3 |
Presence of the calcareous ring | 45 d | 0.3 |
Hatching/pentactula | 49 d | 0.3 |
Burrowing | 49 d | 0.3 |
Intestine development | 50–68 d | 0.3 |
First tentacle ramification | 68 d | 0.3 |
First feeding | 75 d | 0.74 |
First sign of the Polian vesicle | 75 d | 0.74 |
First sign of posterior ossicle development (1st aggregate) | 6 mo | 1.52–2.87 |
Second tentacle ramification (4 digits) | 6 mo | 1.52–2.87 |
Development of 6th tentacle | 6 mo | 1.52–2.87 |
First sign of anterior ossicle (2nd aggregate) | 6 mo | 1.52–2.87 |
Development of ossicle aggregates 4–7 | 12 mo | 2.35–3.60 |
Development of tentacles 7–8 | 12 mo | 2.35–3.60 |
Development of ossicle aggregates 5–8 | 14 mo | 2.35–4.1 |
Development of tentacles 9–10 | 1.5 y | 2.35–4.1 |
Development of ossicle aggregates 5–8 | 1.5 y | 5.80–6.23 |
Third tentacle ramification (6 digits) | 1.5 y | 5.80–6.23 |
First sign of gonopore (or pore canal) | 1.5 y | 5.80–6.23 |
Development of ossicle aggregates 8–16 | 2 y | 6.23–10.10 |
Development of ossicle aggregates 16–21 | 2.5 y | 12.21–20.10 |
Development of tentacles 10–12 | 2.5 y | 12.21–20.10 |
Fourth tentacle ramification (8 digits) | 2.5 y | 12.21–20.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jobson, S.; Hamel, J.-F.; Mercier, A. Reproductive Biology and Early Life History of the Apodid Sea Cucumber Chiridota laevis. Biology 2025, 14, 1471. https://doi.org/10.3390/biology14111471
Jobson S, Hamel J-F, Mercier A. Reproductive Biology and Early Life History of the Apodid Sea Cucumber Chiridota laevis. Biology. 2025; 14(11):1471. https://doi.org/10.3390/biology14111471
Chicago/Turabian StyleJobson, Sara, Jean-François Hamel, and Annie Mercier. 2025. "Reproductive Biology and Early Life History of the Apodid Sea Cucumber Chiridota laevis" Biology 14, no. 11: 1471. https://doi.org/10.3390/biology14111471
APA StyleJobson, S., Hamel, J.-F., & Mercier, A. (2025). Reproductive Biology and Early Life History of the Apodid Sea Cucumber Chiridota laevis. Biology, 14(11), 1471. https://doi.org/10.3390/biology14111471