Evaluation of Marker Gene-Based In Silico Antimicrobial Resistance Prediction Tools
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Phenotypic Antimicrobial Susceptibility Testing
2.2. DNA Extraction
2.3. DNA Sequencing
2.3.1. 16S rRNA Gene Sequencing
2.3.2. WGS
2.4. Bioinformatic Analysis
2.4.1. 16S rRNA Gene Sequencing Data Analysis
PICRUSt2
Tax4Fun
MicFunPred
2.4.2. WGS Data Analysis
2.5. Statistical Analysis
3. Results
3.1. Phenotype Characteristics of E. coli Isolates
3.2. Genotype Characteristics of E. coli Isolates
3.3. Predictive Function Result of PICRUStt2
3.4. Predictive Function Result of Tax4Fun
3.5. Predictive Function Result of MicFunPred
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; WHO Press: Geneva, Switzerland, 2014. [Google Scholar]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; The Review on Antimicrobial Resistance: London, UK, 2016. [Google Scholar]
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2019; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019. [Google Scholar]
- Bastiani, D.C.d.; Silva, C.V.; Christoff, A.P.; Cruz, G.N.F.; Tavares, L.D.; Araújo, L.S.R.d.; Tomazini, B.M.; Arns, B.; Piastrelli, F.T.; Cavalcanti, A.B.; et al. 16S rRNA Amplicon Sequencing and Antimicrobial Resistance Profile of Intensive Care Units Environment in 41 Brazilian Hospitals. Front. Public Health 2024, 12, 1378413. [Google Scholar] [CrossRef]
- Zomosa-Signoret, E.; Cruz, A.S.; Montero-Pérez, J.; Castillo-Ruiz, O.; Arciniega-Ramos, M.E. Antimicrobial Resistance: The Impact from and on Society According to One Health Approach. Healthcare 2024, 14, 187. [Google Scholar]
- EUCAST. Breakpoints Tables for Interpretation of MICs and Zone Diameters. Available online: https://www.eucast.org/ (accessed on 3 September 2025).
- Ahmad, S.; Lohiya, S.; Taksande, A.; Meshram, R.J.; Varma, A.; Vagha, K. A Comprehensive Review of Innovative Paradigms in Microbial Detection and Antimicrobial Resistance: Beyond Traditional Cultural Methods. Cureus 2024, 16, e61476. [Google Scholar] [CrossRef]
- Escudero, J.A.; González-Sanz, I.; de-Lacerda, R.M.C.N.; de-Lacerda, M.P.L.H.P.; da Silva, R.A.L.P.; da-Silva, J.G.S. Metagenomic Approaches to Analyze Antimicrobial Resistance: An Overview. Front. Genet. 2020, 11, 575592. [Google Scholar]
- Gibson, M.K.; De L’Isle, S.W.M.; Van Der Meer, M.J.W.; Van Der Meer, J.M.; Van Der Meer, B.R.J.; Van Der Meer, A.M.; Van Der Meer, A.A.R.; Van Der Meer, A.L. Resistome of the human gut microbiome. Nat. Microbiol. 2015, 1, 16035. [Google Scholar]
- Munk, P.; Aarestrup, F.M.V.; de L’Isle, S.W.M.; van der Meer, M.J.W.; van der Meer, J.M.; van der Meer, B.R.J.; van der Meer, A.M.; van der Meer, A.A.R.; van der Meer, A.L. Abundance and diversity of antimicrobial resistance genes in raw sewage from 79 countries. Nat. Commun. 2017, 8, 1458. [Google Scholar]
- Olsen, N.S.; Riber, L. Metagenomics as a Transformative Tool for Antibiotic Resistance Surveillance: Highlighting the Impact of Mobile Genetic Elements with a Focus on the Complex Role of Phages. Antibiotics 2025, 14, 296. [Google Scholar] [CrossRef]
- Bloemen, B.; Gand, M.; Ringenier, M.; Bogaerts, B.; Vanneste, K.; Marchal, K.; Roosens, N.H.C.; Dewulf, J.; Boyen, F.; De Keersmaecker, S.C.J. Overcoming Challenges in Metagenomic AMR Surveillance with Nanopore Sequencing: A Case Study on Fluoroquinolone Resistance. Front. Microbiol. 2025, 16, 1614301. [Google Scholar] [CrossRef]
- Hendriksen, R.S.; Munk, P.; Njage, P.; Bunnik, B.V.; McNally, L.; Lukjancenko, O.; Röder, T.; Nieuwenhuijse, D.; Hasan, R.; Shakoor, S.; et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 2019, 10, 1124. [Google Scholar] [CrossRef]
- Yamin, D.; Uskoković, V.; Wakil, A.M.; Goni, M.D.; Shamsuddin, S.H.; Mustafa, F.H.; Alfouzan, W.A.; Alissa, M.; Alshengeti, A.; Almaghrabi, R.H.; et al. Current and Future Technologies for the Detection of Antibiotic-Resistant Bacteria. Diagnostics 2023, 13, 3246. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiao, R.; Liu, G.-H.; Zhang, B.-K.; Yang, W.-J.; Li, J.-Q.; Liu, Y.-F.; Ma, Y.-J.; Feng, X.-Q.; Wu, W.; Xu, S.-J.; et al. Comparison of 16S rRNA gene amplicon sequencing and shotgun metagenomic sequencing for the analysis of bacterial communities. Front. Microbiol. 2020, 11, 599720. [Google Scholar]
- Langille, M.G.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Vega Thurber, R.L.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef]
- Aßhauer, K.P.; Wemheuer, B.; Daniel, R.; Meinicke, P. Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 2015, 31, 2882–2884. [Google Scholar]
- Mongad, D.S.; Chavan, N.S.; Narwade, N.P.; Dixit, K.; Shouche, Y.S.; Dhotre, D.P. MicFunPred: A conserved approach to predict functional profiles from 16S rRNA gene sequence data. Genomics 2021, 113, 3635–3643. [Google Scholar] [CrossRef]
- Su, Z.; Huang, B.; Mu, Q.; Wen, D. Evaluating the Potential Antibiotic Resistance Status in Environment Based on the Trait of Microbial Community. Front. Microbiol. 2020, 11, 575707. [Google Scholar] [CrossRef]
- Sevigny, J.L.; Rothenheber, D.; Diaz, K.S.; Zhang, Y.; Agustsson, K.; Bergeron, R.D.; Thomas, W.K. Marker genes as predictors of shared genomic function. BMC Genom. 2019, 20, 268. [Google Scholar] [CrossRef]
- Deshpande, S.P.; Sujith, S.; Jobby, R.; Rajasekharan, S.K.; Ravichandran, V.; Solomon, A.P. The Gut Microbiome: An Emerging Epicenter of Antimicrobial Resistance? Front. Microbiol. 2025, 16, 1593065. [Google Scholar] [CrossRef] [PubMed]
- Beghini, F.; McIver, L.J.; Blanco-Míguez, A.; Dubois, L.; Asnicar, F.; Maharjan, S.; Mailyan, A.; Manghi, P.; Scholz, M.; Thomas, A.M.; et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Nat. Biotechnol. 2021, 39, 944–952. [Google Scholar] [CrossRef] [PubMed]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.-H.; McDermott, P.F.; et al. Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates. Antimicrob. Agents Chemother. 2019, 63, e00483-19. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 35th ed.; M100-Ed35; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2025. [Google Scholar]
- Woese, C.R.; Fox, G.E. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc. Natl. Acad. Sci. USA 1977, 74, 5088–5090. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and Model-Centric Curation of the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef] [PubMed]
ABX | Name | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | N1 | N2 | N3 | N4 | N5 | N6 | N7 | N8 | N9 | N10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BL | Amoxicillin/CA | R | R | R | R | R | R | R | R | R | R | S | S | S | S | S | S | S | S | S | S |
Ampicillin | R | R | R | R | R | R | R | R | R | R | S | S | S | S | S | S | S | S | S | S | |
Aztreonam | R | R | R | R | R | R | R | R | R | R | S | S | S | S | S | S | S | S | S | S | |
Cefazolin | R | R | R | R | R | R | R | R | R | R | S | S | S | S | S | S | S | S | S | S | |
Cefepime | I | S | I | I | R | R | I | S | R | S | S | S | S | S | S | S | S | S | S | S | |
Cefotaxime | R | R | R | R | R | R | R | R | R | R | S | S | S | S | S | S | S | S | S | S | |
Cefoxitin | R | S | R | R | I | R | R | I | I | S | S | S | S | S | S | S | S | S | S | S | |
Ceftazidime | R | S | R | R | R | R | R | S | R | S | S | S | S | S | S | S | S | S | S | S | |
Ciprofloxacin | R | S | R | R | R | R | R | R | R | R | S | S | S | S | S | S | S | R | S | S | |
ESBL | P | P | P | P | P | P | P | P | P | P | N | N | N | N | N | N | N | N | N | N | |
Ertapenem | R | R | R | R | R | R | R | R | R | R | S | S | S | S | S | S | S | S | S | S | |
Imipenem | I | R | R | R | R | R | I | R | R | R | S | S | S | S | S | S | S | S | S | S | |
Piperacillin/ tazobactam | R | R | R | R | R | R | R | R | R | R | S | S | S | S | S | S | S | S | S | S | |
AM | Amikacin | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | R | S | R | R | R |
Gentamicin | S | S | S | R | S | R | R | S | R | S | S | S | S | S | S | R | R | R | S | S | |
TM | Trimethoprim/ Sulfamethoxazole | S | R | S | S | R | S | S | R | S | S | S | R | S | S | S | S | S | S | S | S |
TC | Tigecycline | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S |
ABX | Gene Symbol | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | N1 | N2 | N3 | N4 | N5 | N6 | N7 | N8 | N9 | N10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BL | blaOXA | N | N | N | N | P | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
blaOXA-1 | P | N | P | P | P | P | P | P | P | N | N | N | N | N | N | N | N | N | N | N | |
blaOXA-181 | P | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
blaCMY-2 | P | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
blaSHV-11 | N | P | N | N | N | N | N | P | P | P | N | N | N | N | N | N | N | N | N | N | |
blaSHV-12 | N | N | N | N | N | N | P | N | N | N | N | N | N | N | N | N | N | N | N | N | |
blaKPC-2 | N | P | P | P | P | P | P | P | P | P | N | N | N | N | N | N | N | N | N | N | |
blaCTX-M-27 | N | P | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
blaCTX-M-15 | N | N | P | P | P | P | N | N | P | N | N | N | N | N | N | N | N | N | N | N | |
blaCTX-M-14 | N | N | P | P | N | P | P | N | P | N | N | N | N | N | N | N | N | N | N | N | |
blaCTX-M-65 | N | N | N | N | N | N | N | P | N | N | N | N | N | N | N | N | N | N | N | N | |
blaTEM-1 | N | P | P | P | P | P | N | P | N | N | N | N | N | N | N | P | N | P | P | P | |
AM | aadA1 | N | N | N | N | N | N | N | N | N | N | N | P | N | N | N | N | N | N | N | N |
aadA2 | N | N | N | N | N | N | N | P | N | N | N | N | N | N | N | N | N | N | N | N | |
aadA5 | N | P | N | N | P | N | N | N | N | N | N | N | N | N | N | P | P | N | N | N | |
aac(3)-lld | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | P | P | P | P | N | |
aac(3)-lle | N | N | N | P | N | P | P | N | P | N | N | N | N | N | N | N | N | N | N | N | |
aph(3”)-lb | N | N | N | N | N | N | N | P | N | N | N | N | N | N | N | P | N | N | N | N | |
aph(6)-ld | N | N | N | N | N | N | N | P | N | N | N | N | N | N | N | P | N | N | N | N | |
AM-QN | aac(6′)-lb-cr5 | P | N | P | P | P | P | P | P | P | N | N | N | N | N | N | N | N | N | N | N |
LMS | erm(B) | N | N | N | N | N | N | N | N | N | N | N | N | N | P | N | N | N | N | N | N |
QN | qnrS1 | P | N | P | P | N | P | N | P | N | N | N | N | N | N | N | N | N | N | N | N |
qnrS2 | N | N | N | N | N | N | N | P | N | N | N | N | N | N | N | N | N | N | N | N | |
qnrS13 | N | N | N | N | N | N | N | N | N | N | N | N | N | P | N | N | N | N | N | N | |
MA | mph(A) | N | P | N | P | N | P | N | N | N | N | N | P | N | P | N | P | N | N | N | N |
TM | dfrA1 | N | N | N | N | N | N | N | N | N | N | N | P | N | N | N | N | N | N | N | N |
dfrA5 | N | N | N | N | N | N | N | N | N | N | N | N | N | P | N | N | N | N | N | N | |
dfrA14 | N | N | N | N | N | N | N | P | N | N | N | N | N | N | N | N | N | N | N | N | |
dfrA17 | N | P | N | N | P | N | N | N | N | N | N | N | N | N | N | P | P | N | N | N | |
TC | tet(A) | N | N | N | N | N | N | P | P | P | N | N | P | N | P | N | P | N | N | N | N |
tet(B) | N | P | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
SU | sul1 | N | P | N | N | P | N | N | N | N | N | N | P | N | P | N | P | P | N | N | N |
sul2 | N | N | N | N | N | N | N | P | N | N | N | N | N | N | N | P | N | N | N | N | |
QA | qacE∆1 | N | P | N | N | P | N | N | P | N | N | N | P | N | P | N | P | P | N | N | N |
PN | catB3 | P | N | P | P | P | P | P | P | P | N | N | N | N | N | N | N | N | N | N | N |
floR | N | N | N | N | N | N | N | P | N | N | N | N | N | N | N | N | N | N | N | N | |
LA | lnu(F) | N | N | N | N | N | N | N | P | N | N | N | N | N | N | N | N | N | N | N | N |
RM | arr-3 | N | N | N | N | N | N | N | P | N | N | N | N | N | N | N | N | N | N | N | N |
ABX | KO ID | Gene Symbol | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | N1 | N2 | N3 | N4 | N5 | N6 | N7 | N8 | N9 | N10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BL | K18790 | blaOXA-1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
K18976 | blaOXA-48 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
K19096 | blaCMY-2 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
K18699 | blaSHV | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
K18768 | blaKPC | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
K18767 | blaCTX-M | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
K18698 | blaTEM | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
AM | K00984 | aadA | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
K19275 | aac(3)-ll | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
K19278 | aac6-Ib | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
K04343 | aph(6)-Ic/Id | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | |
K10673 | strA | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | |
LMS | K00561 | erm(A/B/C) | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
MA | K06979 | mph | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
TM | K18589 | dfrA1 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
TC | K08151 | tet(A) | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P |
SU | K18974 | sul1 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
K18824 | sul2 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
QA | K18975 | qacEΔ1 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
QN | K18552 | cmlA | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
PN | K00638 | catB | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
LA | K18236 | lnuB_F | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
RM | K21288 | arr-2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
ABX | KO ID | Gene Symbol | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | N1 | N2 | N3 | N4 | N5 | N6 | N7 | N8 | N9 | N10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BL | K18790 | blaOXA-1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
K18976 | blaOXA-48 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
K19096 | blaCMY-2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
K18699 | blaSHV | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
K18768 | blaKPC | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
K18767 | blaCTX-M | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
K18698 | blaTEM | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
AM | K00984 | aadA | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P |
K19275 | aac(3)-ll | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
K19278 | aac6-Ib | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
K04343 | aph(6)-Ic/Id | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
K10673 | strA | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | |
LMS | K00561 | erm(A/B/C) | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
MA | K06979 | mph | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
TM | K18589 | dfrA1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
TC | K08151 | tet(A) | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P |
SU | K18974 | sul1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
K18824 | sul2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
QA | K18975 | qacEΔ1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
QN | K18552 | cmlA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
PN | K00638 | catB | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P |
LA | K18236 | lnuB_F | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
RM | K21288 | arr-2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
ABX | KO ID | Gene Symbol | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | N1 | N2 | N3 | N4 | N5 | N6 | N7 | N8 | N9 | N10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BL | K18790 | blaOXA-1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
K18976 | blaOXA-48 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
K19096 | blaCMY-2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
K18699 | blaSHV | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
K18768 | blaKPC | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
K18767 | blaCTX-M | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
K18698 | blaTEM | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
AM | K00984 | aadA | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P |
K19275 | aac(3)-ll | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
K19278 | aac6-Ib | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
K04343 | aph(6)-Ic/Id | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
K10673 | strA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
LMS | K00561 | erm(A/B/C) | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
MA | K06979 | mph | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
TM | K18589 | dfrA1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
TC | K08151 | tet(A) | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
SU | K18974 | sul1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
K18824 | sul2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
QA | K18975 | qacEΔ1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
QN | K18552 | cmlA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
PN | K00638 | catB | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
LA | K18236 | lnuB_F | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
RM | K21288 | arr-2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Feature | PICRUSt2 | Tax4Fun | MicFunPred |
---|---|---|---|
F1 score in this study | 0.12 | 0.22 | 0.08 |
Expressed KO IDs in this study | 17/23 | 4/23 | 1/23 |
Version | 2.5.2 | 0.3.1 | 1.0.0 |
Prediction Method | Phylogenetic placement and hidden-state prediction. | Nearest-neighbor mapping based on sequence similarity. | Not a well-established or commonly cited tool in this field. |
Core Database | A large, curated database of reference genomes (e.g., Integrated Microbial Genomes, GTDB). | SILVA database. | Greengnes, SILVA, EZBiocloud |
Input Type | Amplicon Sequence Variants (ASVs) or OTUs. Works with any denoising algorithm. | OTUs assigned to the SILVA database. | Amplicon Sequence Variants (ASVs) or OTUs. |
Accuracy | Generally considered highly accurate, especially with its expanded database and phylogenetic approach. | Provides a good approximation; some studies have found good correlations with shotgun data. | N/A |
Flexibility | Highly flexible. Can incorporate custom reference databases. | Primarily linked to the SILVA database. | N/A |
Popularity | Very popular and widely used in the field. | Well-established and has a significant user base. | Not a mainstream or well-documented tool for this purpose. |
Country | USA | Germany | India |
References | [17] | [18] | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, W.J.; Hahm, C.; Kim, D.; Kim, D.; Seo, J.Y.; Ahn, J.Y.; Park, P.W.; Seo, Y.H.; Lee, J. Evaluation of Marker Gene-Based In Silico Antimicrobial Resistance Prediction Tools. Biology 2025, 14, 1405. https://doi.org/10.3390/biology14101405
Kim WJ, Hahm C, Kim D, Kim D, Seo JY, Ahn JY, Park PW, Seo YH, Lee J. Evaluation of Marker Gene-Based In Silico Antimicrobial Resistance Prediction Tools. Biology. 2025; 14(10):1405. https://doi.org/10.3390/biology14101405
Chicago/Turabian StyleKim, Woo Jin, Chorong Hahm, Dongin Kim, Daewon Kim, Ja Young Seo, Jeong Yeal Ahn, Pil Whan Park, Yiel Hea Seo, and Joohee Lee. 2025. "Evaluation of Marker Gene-Based In Silico Antimicrobial Resistance Prediction Tools" Biology 14, no. 10: 1405. https://doi.org/10.3390/biology14101405
APA StyleKim, W. J., Hahm, C., Kim, D., Kim, D., Seo, J. Y., Ahn, J. Y., Park, P. W., Seo, Y. H., & Lee, J. (2025). Evaluation of Marker Gene-Based In Silico Antimicrobial Resistance Prediction Tools. Biology, 14(10), 1405. https://doi.org/10.3390/biology14101405