Modeling the Habitat Suitability and Range Shift of Daphniphyllum macropodum in China Under Climate Change Using an Optimized MaxEnt Model
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Occurrence Data Acquisition and Processing
2.2. Acquisition and Processing of Environmental Variables
2.3. MaxEnt Model Optimization and Prediction
2.3.1. MaxEnt Model Optimization
2.3.2. Parameter Configuration of the MaxEnt Model
2.3.3. Accuracy Assessment of the Optimized Model Predictions
2.4. Classification of Potentially Suitable Areas for the Species
2.5. Spatial Pattern Changes in the Suitable Habitat for D. macropodum
2.6. Centroid Shift in Suitable Habitat for D. macropodum
3. Results
3.1. Optimization and Accuracy Evaluation of the MaxEnt Model
3.2. Factors Influencing the Distribution of D. macropodum in China
3.3. Potential Suitable Distribution of D. macropodum Under Current Climatic Conditions in China
3.4. Projected Distribution of D. macropodum in China Under Future Climate Scenarios
3.5. Changes in Suitable Habitat Area for D. macropodum Under Future Climate Scenarios
3.6. Centroid Shift for D. macropodum Suitable Habitat Under Multiple Climate Scenarios
4. Discussion
4.1. Optimization of the MaxEnt Model and Validation of Prediction Accuracy
4.2. Mechanisms of Dominant Environmental Variables in Driving the Suitable Habitat of D. macropodum
4.3. Assessment of the Potential Distribution Dynamics of D. macropodum Under Climate Change Scenarios
4.4. Limitations of This Study and Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, S.K.; Shin, J.; An, S.I.; Kim, H.J.; Im, N.; Xie, S.P.; Kug, J.S.; Yeh, S.W. Widespread irreversible changes in surface temperature and precipitation in response to CO2 forcing. Nat. Clim. Change 2022, 12, 834–840. [Google Scholar] [CrossRef]
- Shivanna, K.R. Climate change and its impact on biodiversity and human welfare. Proc. Indian Natl. Sci. Acad. 2022, 88, 160–171. [Google Scholar] [CrossRef]
- Trew, B.T.; Maclean, I.M.D. Vulnerability of global biodiversity hotspots to climate change. Glob. Ecol. Biogeogr. 2021, 30, 768–783. [Google Scholar] [CrossRef]
- Li, H.L.; Ali, A.; Luo, X.; Liao, K.; Sun, N.; Xu, M.S.; Sha, L.B.; He, D.; Du, Y.J.; Sun, W.W. China’s subtropical deciduous plants are more sensitive to climate change than evergreen plants by flowering phenology. Glob. Change Biol. 2024, 30, e17168. [Google Scholar] [CrossRef]
- Zhou, S.; Yu, B.; Zhang, Y. Global concurrent climate extremes exacerbated by anthropogenic climate change. Sci. Adv. 2023, 9, eabo1638. [Google Scholar] [CrossRef]
- Yin, J.; Gentine, P.; Slater, L.; Gu, L.; Pokhrel, Y.; Hanasaki, N.; Guo, S.; Xiong, L.; Schlenker, W. Future socio-ecosystem productivity threatened by compound drought–heatwave events. Nat. Sustain. 2023, 6, 259–272. [Google Scholar] [CrossRef]
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.C.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengård, B.; et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017, 355, eaai9214. [Google Scholar] [CrossRef]
- Chen, I.C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef]
- Mi, X.; Feng, G.; Hu, Y.; Zhang, J.; Chen, L.; Corlett, R.T.; Hughes, A.C.; Pimm, S.; Schmid, B.; Shi, S.; et al. The global significance of biodiversity science in China: An overview. Natl. Sci. Rev. 2021, 8, nwab032. [Google Scholar] [CrossRef]
- Li, D.; Wu, S.; Liu, L.; Zhang, Y.; Li, S. Vulnerability of the global terrestrial ecosystems to climate change. Glob. Change Biol. 2018, 24, 4095–4106. [Google Scholar] [CrossRef]
- Lian, X.; Jiao, L.; Hu, Y.; Liu, Z. Future climate imposes pressure on vulnerable ecological regions in China. Sci. Total Environ. 2023, 858, 159995. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Hu, Y.; Bai, Y. Construction of ecological security pattern in national land space from the perspective of the community of life in mountain, water, forest, field, lake and grass: A case study in Guangxi Hechi, China. Ecol. Indic. 2022, 139, 108867. [Google Scholar] [CrossRef]
- Liu, D.; Chang, Q. Ecological security research progress in China. Acta Ecol. Sin. 2015, 35, 111–121. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, B.; Jiang, W.; Qiu, H. Construction of ecological security pattern based on ecological carrying capacity assessment 1990–2040: A case study of the Southwest Guangxi Karst-Beibu Gulf. Ecol. Model 2023, 479, 110322. [Google Scholar] [CrossRef]
- Lyu, L.; Wang, J.; Wu, H.; Wang, S.; Zhou, T.; Xu, Y.; Wei, X.; Jiang, M. Species composition and community structure of a mixed broadleaf-conifer forest dominated by Liriodendron chinense in the Jiugong Mountain, central China. Chin. J. Ecol. 2022, 41, 435–443, (In Chinese with English abstract). [Google Scholar]
- Wang, L.; Ouyang, M.; Song, S.; Zeng, X.; Song, Q.; Liu, J.; Fang, X.; Luan, F.; Yang, Q. Response of N and P stoichiometric characteristics of evergreen broad-leaved forest plant leaf to Phyllostachys edulis expansion. Guihaia 2023, 43, 1737–1746, (In Chinese with English abstract). [Google Scholar]
- Chen, Z.; Li, Q.; Jiang, Z.; Yan, P.; Arif, M. Leaf functional traits of Daphniphyllum macropodum across different altitudes in Mao’er Mountain in Southern China. Front. For. Glob. Change 2024, 7, 1359361. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, T.; Jiang, X.; Shen, W.; Ye, J. Altitudinal Variation Pattern in Daphniphyllum macropodum Leaf Traits and Influencing Environmental Factors in Mao’er Mountain, China. Chin. J. Appl. Ecol. 2023, 34, 3223–3231, (In Chinese with English abstract). [Google Scholar]
- Xu, L.L.; Niu, Z.P.; Chen, D.Z.; Zhang, Y.; Zhao, Q.; Liang, H.; Li, S.; Li, J.L.; Ding, X.; Yang, C.L.; et al. Daphmacrimines A−K, Daphniphyllum alkaloids from Daphniphyllum macropodum Miq. Phytochemistry 2024, 223, 114106. [Google Scholar] [CrossRef]
- Yao, L.; Ai, X.; Yi, Y.; Lu, X. Study on the Population Characteristics of Ornamental Plant Daphniphyllum macropodum Miq. in Xingdoushan Nature Reserve. J. Hubei Univ. Natl. (Nat. Sci. Ed.) 2015, 33, 165–169, (In Chinese with English abstract). [Google Scholar]
- Zhao, M.; Pang, C.; Yang, S.; Luo, Y.; Yu, S. Spatial patterns of Daphniphyllum macropodum in Tianmu Mountain, Zhejiang Province. J. Zhejiang Univ. (Sci. Ed.) 2015, 42, 47–53, (In Chinese with English abstract). [Google Scholar]
- Chen, Z.; Jiang, Z.; Li, Q.; Tan, Y.; Yan, P.; Arif, M. Examining the stoichiometry of C:N:P:K in the dynamics of foliar-litter-soil within dominant tree species across different altitudes in southern China. Glob. Ecol. Conserv. 2024, 51, e02885. [Google Scholar] [CrossRef]
- Choi, Y.-G.; Park, J.-H.; Yoichi, W.; Oh, S.-H. Hybridization and introgression in Daphniphyllum macropodum (Daphniphyllaceae) on Ulleungdo Island. J. Plant Biol. 2024, 67, 437–447. [Google Scholar] [CrossRef]
- Abe, H.; Matsuki, R.; Ueno, S.; Nashimoto, M.; Hasegawa, M. Dispersal of Camellia japonica seeds by Apodemus speciosus revealed by maternity analysis of plants and behavioral observation of animal vectors. Ecol. Res. 2006, 21, 732–740. [Google Scholar] [CrossRef]
- Eljounaidi, K.; Radzikowska, B.A.; Whitehead, C.B.; Taylor, D.J.; Conde, S.; Davis, W.; Dowle, A.A.; Langer, S.; James, S.; Unsworth, W.P. Variation of terpene alkaloids in Daphniphyllum macropodum across plants and tissues. New Phytol. 2024, 243, 15. [Google Scholar] [CrossRef] [PubMed]
- Yoichi, W.; Matsuzawa, S.; Tamaki, I.; Nagano, A.J.; Oh, S.-H. Genetic differentiation and evolution of broad-leaved evergreen shrub and tree varieties of Daphniphyllum macropodum (Daphniphyllaceae). Heredity 2023, 131, 211–220. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Elith, J.H.; Graham, C.P.; Anderson, R.; Dudík, M.; Ferrier, S.; Guisan, A.J.; Hijmans, R.; Huettmann, F.R.; Leathwick, J.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Anderson, R.P.; Gonzalez, I. Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecol. Model. 2011, 222, 2796–2811. [Google Scholar] [CrossRef]
- Kramer-Schadt, S.; Niedballa, J.; Pilgrim, J.D.; Schröder, B.; Lindenborn, J.; Reinfelder, V.; Stillfried, M.; Heckmann, I.; Scharf, A.K.; Augeri, D.M.; et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 2013, 19, 1366–1379. [Google Scholar] [CrossRef]
- Fang, H.Q.; Zhang, P.F.; Xu, S.W.; Xu, T.; He, B.; Wang, E.; Dong, C.W.; Yang, Q.S. The ecological suitability area of Cirsium lineare (Thunb.) Sch.-Bip. under future climate change in China based on MaxEnt modeling. Ecol. Evol. 2024, 14, e10848. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Zhao, Q.; Qin, Q.; Yu, J. Prediction of Potentially Suitable Distribution Areas for Prunus tomentosa in China Based on an Optimized MaxEnt Model. Forests 2022, 13, 381. [Google Scholar] [CrossRef]
- Dong, Z.; Jiang, H.; Zhang, W.; Wu, J.; Yang, Y.; Yang, T.; Zhao, J.; Luo, C.; Yang, X.; Li, G. Potential distribution prediction of Terminalia chebula Retz. in China under current and future climate scenarios. Ecol. Evol. 2025, 15, e70908. [Google Scholar] [CrossRef] [PubMed]
- Di Musciano, M.; Di Cecco, V.; Bartolucci, F.; Conti, F.; Frattaroli, A.R.; Di Martino, L. Dispersal ability of threatened species affects future distributions. Plant Ecol. 2020, 221, 265–281. [Google Scholar] [CrossRef]
- Weeks, T.L.; Betts, M.G.; Pfeifer, M.; Wolf, C.; Banks-Leite, C.; Barbaro, L.; Barlow, J.; Cerezo, A.; Kennedy, C.M.; Kormann, U.G.; et al. Climate-driven variation in dispersal ability predicts responses to forest fragmentation in birds. Nat. Ecol. Evol. 2023, 7, 1079–1091. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, C.; Wang, P.; Xie, G.; Wang, W. Climate change and geographic barriers exacerbate the spread and threat of Psacothea hilaris (Pascoe, 1857) in China: Insights from ensemble model, geographic barrier simulations, and niche analysis. Sci. Total Environ. 2025, 994, 180032. [Google Scholar] [CrossRef]
- Global Biodiversity Information Facility (GBIF). Available online: https://doi.org/10.15468/dl.vz8azj (accessed on 12 March 2025).
- Aiello-Lammens, M.E.; Boria, R.A.; Radosavljevic, A.; Vilela, B.; Anderson, R.P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 2015, 38, 541–545. [Google Scholar] [CrossRef]
- Varela, S.; Anderson, R.P.; García-Valdés, R.; Fernández-González, F. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 2014, 37, 1084–1091. [Google Scholar] [CrossRef]
- Didan, K. MODIS/Terra Vegetation Indices Monthly L3 Global 1km SIN Grid V006; NASA Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2015. [Google Scholar] [CrossRef]
- Mu, H.; Li, X.; Wen, Y.; Huang, J.; Du, P.; Su, W.; Miao, S.; Geng, M. A global record of annual terrestrial Human Footprint dataset from 2000 to 2018. Sci. Data 2022, 9, 176. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Qiao, L.; Wang, S.; Kong, L.; Zhang, J. Performance evaluation of surface air temperature simulated by the Beijing Climate Central Climate Model based on the climate complexity. Clim. Dyn. 2024, 62, 4331–4342. [Google Scholar] [CrossRef]
- Liao, D.; Zhou, B.; Xiao, H.; Zhang, Y.; Zhang, S.; Su, Q.; Yan, X. MaxEnt Modeling of the Impacts of Human Activities and Climate Change on the Potential Distribution of Plantago in China. Biology 2025, 14, 564. [Google Scholar] [CrossRef] [PubMed]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Kass, J.M.; Muscarella, R.; Galante, P.J.; Bohl, C.L.; Pinilla-Buitrago, G.E.; Boria, R.A.; Soley-Guardia, M.; Anderson, R.P. ENMeval 2.0: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods Ecol. Evol. 2021, 12, 1602–1608. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Shi, X.; Wang, J.; Zhang, L.; Chen, S.; Zhao, A.; Ning, X.; Fan, G.; Wu, N.; Zhang, L.; Wang, Z. Prediction of the potentially suitable areas of Litsea cubeba in China based on future climate change using the optimized MaxEnt model. Ecol. Indic. 2023, 148, 110093. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, L.; Zhang, K.; Tao, J. MaxEnt Modeling and the Impact of Climate Change on Pistacia chinensis Bunge Habitat Suitability Variations in China. Forests 2023, 14, 1579. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Optimized Maxent model predictions of climate change impacts on the suitable distribution of Cunninghamia lanceolata in China. Forests 2020, 11, 302. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Zhuo, Z.; Xu, D.; Pu, B.; Wang, R.; Ye, M. Predicting distribution of Zanthoxylum bungeanum Maxim. in China. BMC Ecol. 2020, 20, 46. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhu, X.; Song, W.; Shi, X.; Huang, X. Predicting the potential distribution of 12 threatened medicinal plants on the Qinghai-Tibet Plateau, with a maximum entropy model. Ecol. Evol. 2024, 14, e11042. [Google Scholar] [CrossRef] [PubMed]
- da Silva, N.R.; Souza, P.G.; de Oliveira, G.S.; da Silva Santana, A.; Bacci, L.; Silva, G.A.; Barry, E.J.; de Aguiar Coelho, F.; Soares, M.A.; Picanço, M.C.; et al. A MaxEnt Model of Citrus Black Fly Aleurocanthus woglumi Ashby (Hemiptera: Aleyrodidae) under Different Climate Change Scenarios. Plants 2024, 13, 535. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Yan, K.; Zhang, M.; Ma, R.; Zhu, X.; Duan, Q.; Jiang, X. Predicting the potential distribution of Astragali radix in China under climate change adopting the MaxEnt model. Front. Plant Sci. 2024, 15, 1505985. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, H.; Chen, L.; Xiao, J.; Weng, F.; Liu, J.; He, T.; Chen, L.; Rong, J.; Chen, L.; et al. Forecasting appropriate habitats for rare and endangered indocalamus Species in China in response to climate change. Forests 2024, 15, 1693. [Google Scholar] [CrossRef]
- Xiang, Y.; Yang, Q.; Li, S.; Liu, Y.; Li, Y.; Ren, J.; Yao, J.; Luo, X.; Luo, Y.; Yao, B. Climate Change Drives Northwestward Migration of Betula alnoides: A Multi-Scenario MaxEnt Modeling Approach. Plants 2025, 14, 2539. [Google Scholar] [CrossRef]
- Liu, C.; White, M.; Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 2013, 40, 778–789. [Google Scholar] [CrossRef]
- Hou, J.; Xiang, J.; Li, D.; Liu, X. Prediction of Potential Suitable Distribution Areas of Quasipaa spinosa in China Based on MaxEnt Optimization Model. Biology 2023, 12, 366. [Google Scholar] [CrossRef]
- Xu, Y.; Su, X.; Ren, Z. Prediction of historical, current and future potential distribution of Rhus chinensis (Anacardiaceae) based on the optimized MaxEnt model in China. Plant Ecol. 2024, 225, 1109–1123. [Google Scholar] [CrossRef]
- Tu, G.H.; Guo, X.D.; Xi, S.Y.; Ma, X.H.; Jin, L. Predicting potential suitable habitat of Cistanche deserticola by integrating parasitic constraints and land use data into MaxEnt modeling. Front. Plant Sci. 2025, 16, 10.3389. [Google Scholar] [CrossRef]
- Brown, J.L.; Bennett, J.R.; French, C.M. SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 2017, 5, e4095. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, G.; Shao, Y.; Yan, L.; Huang, L.; Fan, Z.; Han, S.; Ren, X.; Han, R.; Zhang, C.; et al. Assessing the impacts of climate change and human activities on distribution of Lophatherum gracile in China using the maxent model. Sci. Rep. 2025, 15, 29945. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, L.; Xue, J.; Shi, P.; Liang, S. Habitat Suitability Shifts of Eucommia ulmoides in Southwest China Under Climate Change Projections. Biology 2025, 14, 451. [Google Scholar] [CrossRef] [PubMed]
- Piirainen, S.; Lehikoinen, A.; Husby, M.; Kålås, J.A.; Lindström, Å.; Ovaskainen, O. Species distributions models may predict accurately future distributions but poorly how distributions change: A critical perspective on model validation. Divers. Distrib. 2023, 29, 654–665. [Google Scholar] [CrossRef]
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef]
- Rehan, M.; Hassan, A.; Zeb, S.; Ullah, S.; Ahmad, F.; Bohnett, E.; Bosso, L.; Fida, T.; Kabir, M. Application of species distribution models to estimate and manage the Asiatic black bear (Ursus thibetanus) habitat in the Hindu Kush Mountains, Pakistan. Eur. J. Wildl. Res. 2024, 70, 62. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Li, S.; Yang, Q.; Li, Y.; Xiang, Y.; Yao, B. MaxEnt Modeling of Future Habitat Shifts of Itea yunnanensis in China Under Climate Change Scenarios. Biology 2025, 14, 899. [Google Scholar] [CrossRef]
- Shi, J.; Xia, M.; He, G.; Gonzalez, N.C.T.; Zhou, S.; Lan, K.; Ouyang, L.; Shen, X.; Jiang, X.; Cao, F.; et al. Predicting Quercus gilva distribution dynamics and its response to climate change induced by GHGs emission Through MaxEnt modeling. J. Environ. Manag. 2024, 357, 120841. [Google Scholar] [CrossRef]
- Leroy, B.; Delsol, R.; Hugueny, B.; Meynard, C.N.; Barhoumi, C.; Barbet-Massin, M.; Bellard, C. Without quality presence–absence data, discrimination metrics such as TSS can be misleading measures of model performance. J. Biogeogr. 2018, 45, 1994–2002. [Google Scholar] [CrossRef]
- Freeman, E.A.; Moisen, G.G. A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol. Model. 2008, 217, 48–58. [Google Scholar] [CrossRef]
- Ren, Z.; Zhao, W.; Chen, N.; Zhou, X. Explaining the mechanisms behind niche dimensionality and light-driving species diversity based on functional traits. npj Biodiversity 2024, 3, 17. [Google Scholar] [CrossRef]
- Richards, D.; Lavorel, S. Niche theory improves understanding of associations Between ecosystem services. One Earth 2023, 6, 811–823. [Google Scholar] [CrossRef]
- Adams, H.D.; Zeppel, M.J.B.; Anderegg, W.R.L.; Hartmann, H.; Landhäusser, S.M.; Tissue, D.T.; Huxman, T.E.; Hudson, P.J.; Franz, T.E.; Allen, C.D.; et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 2017, 1, 1285–1291. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Feng, L.; Wang, T.; Tian, X.; He, X.; Xia, H.; Wang, W. Predicting the Potential Habitat of Three Endangered Species of Carpinus Genus under Climate Change and Human Activity. Forests 2021, 12, 1216. [Google Scholar] [CrossRef]
- Trisos, C.H.; Merow, C.; Pigot, A.L. The projected timing of abrupt ecological disruption from climate change. Nature 2020, 580, 496–501. [Google Scholar] [CrossRef]
- Jones, K.R.; Watson, J.E.M.; Possingham, H.P.; Klein, C.J. Incorporating climate change into spatial conservation prioritisation: A review. Biol. Conserv. 2016, 194, 121–130. [Google Scholar] [CrossRef]
- Duncanson, L.; Liang, M.; Leitold, V.; Armston, J.; Krishna Moorthy, S.M.; Dubayah, R.; Costedoat, S.; Enquist, B.J.; Fatoyinbo, L.; Goetz, S.J.; et al. The effectiveness of global protected areas for climate change mitigation. Nat. Commun. 2023, 14, 2908. [Google Scholar] [CrossRef]
- Urban, M.C. Accelerating extinction risk from climate change. Science 2015, 348, 571–573. [Google Scholar] [CrossRef]
- Hannah, L.; Roehrdanz, P.R.; Marquet, P.A.; Enquist, B.J.; Midgley, G.; Foden, W.; Lovett, J.C.; Corlett, R.T.; Corcoran, D.; Butchart, S.H.M.; et al. 30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography 2020, 43, 943–953. [Google Scholar] [CrossRef]
- Wu, S.; Luo, M.; Lau, G.N.-C.; Zhang, W.; Wang, L.; Liu, Z.; Lin, L.; Wang, Y.; Ge, E.; Li, J.; et al. Rapid flips between warm and cold extremes in a warming world. Nat. Commun. 2025, 16, 3543. [Google Scholar] [CrossRef]
- Nie, Y.; Sun, Y.; Zhang, X.; Chen, G. Human-induced changes in extreme cold surges across the Northern Hemisphere. Nat. Commun. 2025, 16, 8086. [Google Scholar] [CrossRef] [PubMed]
- Travis, J.M.J.; Delgado, M.; Bocedi, G.; Baguette, M.; Bartoń, K.; Bonte, D.; Boulangeat, I.; Hodgson, J.A.; Kubisch, A.; Penteriani, V.; et al. Dispersal and species’ responses to climate change. Oikos 2013, 122, 1532–1540. [Google Scholar] [CrossRef]
- Keppel, G.; Van Niel, K.P.; Wardell-Johnson, G.W.; Yates, C.J.; Byrne, M.; Mucina, L.; Schut, A.G.T.; Hopper, S.D.; Franklin, S.E. Refugia: Identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 2012, 21, 393–404. [Google Scholar] [CrossRef]
- Cazzolla Gatti, R. Ecological Peace Corridors: A new conservation strategy to protect human and biological diversity. Biol. Conserv. 2025, 302, 110947. [Google Scholar] [CrossRef]
- Beger, M.; Metaxas, A.; Balbar, A.C.; McGowan, J.A.; Daigle, R.; Kuempel, C.D.; Treml, E.A.; Possingham, H.P. Demystifying ecological connectivity for actionable spatial conservation planning. Trends Ecol. Evol. 2022, 37, 1079–1091. [Google Scholar] [CrossRef]
- Fida, T.; Mohammadi, A.; Almasieh, K.; Bosso, L.; Ud Din, S.; Shamas, U.; Nawaz, M.A.; Kabir, M. Species distribution modelling and landscape connectivity as tools to inform management and conservation for the critically endangered Himalayan brown bear (Ursus arctos isabellinus) in the Deosai National Park, Pakistan. Front. Ecol. Evol. 2025, 12, 1477480. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Hughes, L.; McIntyre, S.; Lindenmayer, D.B.; Parmesan, C.; Possingham, H.P.; Thomas, C.D. Assisted Colonization and Rapid Climate Change. Science 2008, 321, 345–346. [Google Scholar] [CrossRef]
Category | Abbreviation | Environmental Variables | Units | VIF |
---|---|---|---|---|
Bioclimatic | Bio2 | Mean diurnal range (Mean of monthly) | °C | 6.58 |
Bio3 | Isothermality (Bio2/Bio7) (×100) | 7.39 | ||
Bio8 | Mean temperature of wettest quarter | °C | 5.84 | |
Bio15 | Variation in precipitation seasonality | 3.10 | ||
Bio18 | Precipitation of warmest quarter | mm | 2.73 | |
Bio19 | Precipitation of coldest quarter | mm | 4.64 | |
Topographic | Elevation | Elevation | m | 9.45 |
Aspect | Aspect | ° | 1.20 | |
Slope | Slope | ° | 1.92 | |
Vegetation | NDVI | Normalized Difference Vegetation Index | 2.45 | |
Human | HFI | Human Footprint Index | 1.86 |
Period | Area (104 km2) | Rate of Change (%) | ||||
---|---|---|---|---|---|---|
Stability | Contraction | Expansion | Stability | Contraction | Expansion | |
2050s-SSP126 | 173.41 | 30.27 | 11.35 | 80.65 | 14.08 | 5.28 |
2050s-SSP245 | 176.83 | 26.86 | 15.58 | 80.64 | 12.25 | 7.11 |
2050s-SSP585 | 159.18 | 44.50 | 10.42 | 74.35 | 20.79 | 4.87 |
2070s-SSP126 | 182.01 | 21.71 | 16.09 | 82.80 | 9.88 | 7.32 |
2070s-SSP245 | 157.69 | 46.01 | 10.83 | 73.51 | 21.45 | 5.05 |
2070s-SSP585 | 142.34 | 61.32 | 6.92 | 67.59 | 29.12 | 3.29 |
2090s-SSP126 | 181.88 | 21.83 | 16.60 | 82.56 | 9.91 | 7.54 |
2090s-SSP245 | 144.23 | 59.41 | 10.00 | 67.51 | 27.81 | 4.68 |
2090s-SSP585 | 117.81 | 85.83 | 3.85 | 56.78 | 41.36 | 1.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, Y.; Li, S.; Yang, Q.; Liu, J.; Liu, Y.; Zhao, L.; Lin, H.; Luo, Y.; Ren, J.; Luo, X.; et al. Modeling the Habitat Suitability and Range Shift of Daphniphyllum macropodum in China Under Climate Change Using an Optimized MaxEnt Model. Biology 2025, 14, 1360. https://doi.org/10.3390/biology14101360
Xiang Y, Li S, Yang Q, Liu J, Liu Y, Zhao L, Lin H, Luo Y, Ren J, Luo X, et al. Modeling the Habitat Suitability and Range Shift of Daphniphyllum macropodum in China Under Climate Change Using an Optimized MaxEnt Model. Biology. 2025; 14(10):1360. https://doi.org/10.3390/biology14101360
Chicago/Turabian StyleXiang, Yangzhou, Suhang Li, Qiong Yang, Jiaojiao Liu, Ying Liu, Ling Zhao, Hua Lin, Yang Luo, Jun Ren, Xuqiang Luo, and et al. 2025. "Modeling the Habitat Suitability and Range Shift of Daphniphyllum macropodum in China Under Climate Change Using an Optimized MaxEnt Model" Biology 14, no. 10: 1360. https://doi.org/10.3390/biology14101360
APA StyleXiang, Y., Li, S., Yang, Q., Liu, J., Liu, Y., Zhao, L., Lin, H., Luo, Y., Ren, J., Luo, X., & Wang, H. (2025). Modeling the Habitat Suitability and Range Shift of Daphniphyllum macropodum in China Under Climate Change Using an Optimized MaxEnt Model. Biology, 14(10), 1360. https://doi.org/10.3390/biology14101360