The Genus Chaetogaster Baer, 1827 (Annelida, Clitellata) in Switzerland: A First Step toward Cataloguing Its Molecular Diversity and Description of New Species on a DNA Sequence Basis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Specimen Collection
2.2. Morphological Analysis
2.3. Molecular Analyses
2.3.1. DNA Extraction and Sequencing
2.3.2. Molecular Phylogeny
2.3.3. Distance Analysis
2.3.4. Single-Locus Species Delimitation
3. Results
3.1. Identification Key of the Nominal Species
- Body size: 1.5–4 mm long and 0.3–0.6 mm wide (at head); prostomium absent, buccal cavity large C. diaphanus
- -
- Body size: 0.5–1.2 mm long, 0.08–0.16 mm wide (at head); prostomium present or absent; buccal cavity large or not large 2
- 2(1)
- Simple-pointed chaetae C. setosus
- -
- Bifid chaetae 3
- 3(2)
- Body size: 0.6–1.2 mm long, 0.11–0.16 mm wide (at head); prostomium present; buccal cavity not large to large C. diastrophus
- -
- Body size 0.5–0.7 mm long, 0.08–0.11 mm wide (at head); prostomium absent or presence of a vestigial prostomium (notch in its place at the edge of the mouth); buccal cavity generally large C. langi
3.2. Delimitation of Lineages
3.3. Distance Analyses
3.4. Morphological vs. Molecular Identifications
3.5. Taxonomy
- Morphological group Chaetogaster diastrophus (MOTUs 3, 9 and 10)
- Morphological group Chaetogaster spp. (MOTUs 1–2)
- Chaetogaster langi (MOTU5)
- Chaetogaster setosus (MOTU4)
- Chaetogaster diaphanus (MOTUs 6–7)
- Chaetogaster sp. with no morphological description (MOTU8)
4. Discussion
4.1. Species Delimitations and Chaetogaster Diversity in Switzerland
4.2. Description of New Chaetogaster Species
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Timm, T.; Martin, P.J. Chapter 21—Clitellata: Oligochaeta. In Thorp and Covich’s Freshwater Invertebrates, 4th ed.; Thorp, J.H., Rogers, D.C., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 529–549. [Google Scholar]
- Mack, J.M.; Klinth, M.; Martinsson, S.; Lu, R.; Stormer, H.; Hanington, P.; Proctor, H.C.; Erséus, C.; Bely, A.E. Cryptic carnivores: Intercontinental sampling reveals extensive novel diversity in a genus of freshwater annelids. Mol. Phylogenet. Evol. 2023, 182, 107748. [Google Scholar] [CrossRef] [PubMed]
- Vivien, R.; Lafont, M.; Werner, I.; Laluc, M.; Ferrari, B.J.D. Assessment of the effects of wastewater treatment plant effluents on receiving streams using oligochaete communities of the porous matrix. Knowl. Manag. Aquat. Ec. 2019, 420, 18. [Google Scholar] [CrossRef]
- Lafont, M.; Jézéquel, C.; Vivier, A.; Breil, P.; Schmitt, L.; Bernoud, S. Refinement of biomonitoring of urban watercourses by combining descriptive and ecohydrological approaches. Ecohydrol. Hydrobiol. 2010, 10, 3–11. [Google Scholar] [CrossRef]
- Martin, P.; Reynolds, J.; van Haaren, T. World List of Marine Oligochaeta. Chaetogaster von Baer, 1827. World Register of Marine Species. 2024. Available online: https://www.marinespecies.org/aphia.php?p=taxdetails&id=137356 (accessed on 17 May 2024).
- Vivien, R.; Lafont, M. Note faunistique sur les oligochètes aquatiques de la région genevoise et de Suisse. Rev. Suisse Zool. 2015, 122, 207–212. [Google Scholar]
- Vivien, R.; Ferrari, B.J.D. Assessment of the Biological Quality and Functioning of the Suze River Upstream and Downstream of the Wastewater Treatment Plant in Villeret (Canton of Bern) Using Oligochaete Communities in the Porous Matrix; Centre Ecotox; Eawag-EPFL: Lausanne, Switzerland, 2023. [Google Scholar]
- Vivien, R.; Werner, I.; Ferrari, B.J.D. Simultaneous preservation of the DNA quality, the community composition and the density of aquatic oligochaetes for the development of genetically based biological indices. PeerJ 2018, 6, e6050. [Google Scholar]
- Reymond, O. Préparations microscopiques permanentes d’oligochètes: Une méthode simple. Bull. Soc. Vaud. Sci. Nat. 1994, 83, 1–3. [Google Scholar]
- Tkach, V.; Pawlowski, J. A new method of DNA extraction from the ethanol-fixed parasitic worms. Acta Parasitol. 1999, 44, 147–148. [Google Scholar]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrigenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Leray, M.; Yang, J.Y.; Meyer, C.P.; Mills, S.C.; Agudelo, N.; Ranwez, V.; Boehm, J.T.; Machida, R.J. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity—Application for characterizing coral reef fish gut contents. Front. Zool. 2013, 10, 34. [Google Scholar] [CrossRef]
- Navajas, M.; Lagnel, J.; Gutierrez, J.; Boursot, P. Species wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity 1998, 80, 742–752. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, B.G.; Tillier, S.; Tillier, A.; Justine, J.L.; Ling, E.; James, S.; McDonald, K.; Hugall, A.F. Phylogeny of the Megascolecidae and Crassiclitellata (Annelida, Oligochaeta): Combined versus partitioned analysis using nuclear (28S) and mitochondrial (12S, 16S) rDNA. Zoosystema 2002, 24, 707–734. [Google Scholar]
- Edgar, R.C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef]
- Gouy, M.; Guindon, S.; Gascuel, O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 2010, 27, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong TK, F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [PubMed]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [PubMed]
- Puillandre, N.; Brouillet, S.; Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 2021, 21, 609–620. [Google Scholar] [CrossRef]
- Zhang, J.; Kapli, P.; Pavlidis, P.; Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 2013, 29, 2869–2876. [Google Scholar] [CrossRef]
- Pons, J.; Barraclough, T.G.; Gomez-Zurita, J.; Cardoso, A.; Duran, D.P.; Hazell, S.; Kamoun, S.; Sumlin, W.D.; Vogler, A.P. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 2006, 55, 595–609. [Google Scholar]
- Dellicour, S.; Flot, J.-F. The hitchhiker’s guide to single-locus species delimitation. Mol. Ecol. Resour. 2018, 18, 1234–1246. [Google Scholar] [CrossRef]
- Luo, A.; Ling, C.; Ho, S.Y.W.; Zhu, C.D. Comparison of methods for molecular species delimitation across a range of speciation scenarios. Syst. Biol. 2018, 67, 830–846. [Google Scholar] [PubMed]
- Goulpeau, A.; Penel, B.; Maggia, M.-E.; Marchán, D.F.; Steinke, D.; Hedde, M.; Decaëns, T. OTU delimitation with earthworm DNA barcodes: A comparison of methods. Diversity 2022, 14, 866. [Google Scholar] [CrossRef]
- Phillips, J.D.; Gillis, D.J.; Hanner, R.H. Lack of statistical rigor in DNA barcoding likely invalidates the presence of a true species’ barcode gap. Front. Ecol. Evol. 2022, 10, 859099. [Google Scholar] [CrossRef]
- Kapli, P.; Lutteropp, S.; Zhang, J.; Kobert, K.; Pavlidis, P.; Stamatakis, A.; Flouri, T. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 2017, 33, 1630–1638. [Google Scholar] [PubMed]
- Timm, T. A guide to the freshwater Oligochaeta and Polychaeta of Northern and Central Europe. Lauterbornia 2009, 66, 1–235. [Google Scholar]
- Schmelz, R.M.; Rüdiger, M.; Beylich, A.; Boros, G.; Dózsa-Farkas, K.; Graefe, U. How to deal with cryptic species in Enchytraeidae, with recommendations on taxonomical descriptions. Opusc. Zool. 2017, 48, 45–51. [Google Scholar] [CrossRef]
- Liu, Y.; Fend, S.V.; Martinsson, S.; Erséus, C. Extensive cryptic diversity in the cosmopolitan sludge worm Limnodrilus hoffmeisteri (Clitellata, Naididae). Org. Divers. Evol. 2017, 17, 477–495. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, H.; Zhu, X.; Wang, K.; Xue, H.; Ye, Z.; Zheng, C.; Bu, W. Mitochondrial introgression and mito-nuclear discordance obscured the closely related species boundaries in Cletus Stål from China (Heteroptera: Coreidae). Mol. Phylogenet. Evol. 2023, 184, 107802. [Google Scholar]
- Toews, D.P.L.; Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 2012, 21, 3907–3930. [Google Scholar] [CrossRef]
- Galtier, N. An approximate likelihood method reveals ancient gene flow between human, chimpanzee and gorilla. Peer Community J. 2024, 4, e3. [Google Scholar]
- de Queiroz, K. Species concepts and species delimitation. Syst. Biol. 2007, 56, 879–886. [Google Scholar] [PubMed]
- Sperber, C. A taxonomical study of the Naididae. Zool. Bidr. Upps. 1950, 29, 45–81. [Google Scholar]
- Lafont, M. Redescription de Chaetogaster parvus Poitner, 1914 (Oligochaeta, Naididae) avec quelques remarques sur la validité de cette espèce et sa répartition dans les eaux douces françaises. Ann. Limnol. 1981, 17, 211–217. [Google Scholar] [CrossRef]
- Juget, J. Quelques données Nouvelles sur les oligochètes du Léman: Composition et origine du peuplement. Ann. Limnol. 1967, 3, 217–229. [Google Scholar] [CrossRef]
- Bickford, D.; Lohman, D.J.; Sodhi, N.S.; Ng, P.K.; Meier, R.; Winker, K.; Ingram, K.K.; Das, I. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 2007, 22, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Dayrat, B. Towards integrative taxonomy. Biol. J. Linn. Soc. 2005, 85, 407–415. [Google Scholar] [CrossRef]
- Padial, J.M.; Miralles, A.; De la Riva, I.; Vences, M. The integrative future of taxonomy. Front. Zool. 2010, 7, 16. [Google Scholar] [CrossRef]
- Jörger, K.M.; Schrödl, M. How to describe a cryptic species? Practical challenges of molecular taxonomy. Front. Zool. 2013, 10, 59. [Google Scholar] [CrossRef]
- Marchán, D.F.; Díaz Cosín, D.J.; Novo, M. Why are we blind to cryptic species? Lessons from the eyeless. Eur. J. Soil Biol. 2018, 86, 49–51. [Google Scholar] [CrossRef]
- Jones, G.L.; Wills, A.; Morgan, A.J.; Thomas, R.J.; Kille, P.; Novo, M. The worm has turned: Behavioural drivers of reproductive isolation between cryptic lineages. Soil Biol. Biochem. 2016, 98, 11–17. [Google Scholar] [CrossRef]
- Dupont, L.; Audusseau, H.; Porco, D.; Butt, K.R. Mitonuclear discordance and patterns of reproductive isolation in a complex of simultaneously hermaphroditic species, the Allolobophora chlorotica case study. J. Evol. Biol. 2022, 35, 831–843. [Google Scholar] [CrossRef] [PubMed]
- Lowe, C.N.; Butt, K.R. Culture techniques for soil dwelling earthworms: A review. Pedobiologia 2005, 49, 401–413. [Google Scholar]
- Knutson, V.L.; Gosliner, T.M. The first phylogenetic and species delimitation study of the nudibranch genus Gymnodoris reveals high species diversity (Gastropoda: Nudibranchia). Mol. Phylogenet. Evol. 2022, 171, 107470. [Google Scholar] [CrossRef]
- Lawley, J.W.; Gamero-Mora, E.; Maronna, M.M.; Chiaverano, L.M.; Stampar, S.N.; Hopcroft, R.R.; Collins, A.G.; Morandini, A.C. The importance of molecular characters when morphological variability hinders diagnosability: Systematics of the moon jellyfish genus Aurelia (Cnidaria: Scyphozoa). PeerJ 2021, 9, e11954. [Google Scholar]
- Martinsson, S.; Erséus, C. Cryptic Clitellata: Molecular species delimitation of clitellate worms (Annelida): An overview. Diversity 2021, 13, 36. [Google Scholar] [CrossRef]
- Zamani, A.; Faltynek Fric, Z.; Gante, H.F.; Hopkins, T.; Orfinger, A.B.; Scherz, M.D.; Suchacko Bartonova, A.; Dal Pos, D. DNA barcodes on their own are not enough to describe a species. Syst. Entomol. 2022, 47, 385–389. [Google Scholar] [CrossRef]
- Gruithuisen, F.V.P. Über die Nais diaphana und Nais diastropha mit dem Nerven-und Blutsystem derselben. Nova Acta Phys.-Medica Acad. Caesareae Leopold.-Carol. Naturae Curiosorum 1828, 14, 407–420 + Plate I. [Google Scholar]
- Martinsson, S.; Erséus, C. Cryptic diversity in supposedly species-poor genera of Enchytraeidae (Annelida: Clitellata). Zool. J. Linn. Soc. 2018, 183, 749–762. [Google Scholar]
- Envall, I.; Gustavsson, L.M.; Erséus, C. Genetic and chaetal variation in Nais worms (Annelida, Clitellata, Naididae). Zool. J. Linn. Soc. 2012, 165, 495–520. [Google Scholar] [CrossRef]
- Martin, P.; Knüsel, M.; Alther, R.; Altermatt, F.; Ferrari, B.; Vivien, R. Haplotaxis gordioides (Hartmann in Oken, 1819) (Annelida, Clitellata) as a sub-cosmopolitan species: A commonly held view challenged by DNA barcoding. Zoosymposia 2023, 23, 78–93. [Google Scholar]
No of Species Found by [2] | Maximal Intra-MOTU Variation (%) in COI | Minimal Inter-MOTU Variation (%) in COI | Maximal Intra-MOTU Variation (%) in ITS2 | Minimal Inter-MOTU Variation (%) in ITS2 | |
---|---|---|---|---|---|
C. diaphanus MOTU6 | “C. diaphanus” sp. 4 | 2.12 | 9.57 | 4.97 | 7.46 |
C. diaphanus MOTU7 | “C. diaphanus” sp. 3 | 0.05 | 9.57 | ||
C. diastrophus MOTU10 | “C. diastrophus” sp. 11 | 3.87 | 11.45 | 4.48 | 9.60 |
C. diastrophus MOTU3 | “C. diastrophus” sp. 8 | 2.74 | 14.35 | 6.21 | 7.46 |
C. diastrophus MOTU9 | “C. diastrophus” sp. 12 | 2.89 | 11.45 | 5.58 | 11.59 |
C. langi MOTU5 | “C. diastrophus” sp. 19 | 0.91 | 13.67 | 5.68 | 10.34 |
C. setosus MOTU4 | 0.00 | 12.61 | 2.73 | 12.50 | |
Chaetogaster sp. MOTU1 | NC | 14.89 | NC | 13.86 | |
Chaetogaster sp. MOTU2 | “C. diastrophus” sp. 1 | 0 | 12.00 | 2.78 | 12.29 |
Chaetogaster sp. MOTU8 | “C. diastrophus” sp. 18 | NC | 11.89 | NC | 9.84 |
Morphospecies/Group | New Species Name | Geographical Coordinates | Material Preservation |
---|---|---|---|
Chaetogaster diaphanus MOTUs 6–7 | Isolates Sor6-9: 46.522661° N, 6.573581° E; Isolate G4: 47.419157° N, 9.195899° E; Isolates CDP1-5, No 201–207, 209–211, 219, No 183–187, 189–194: 47.305217° N, 8.327193° E | DNA voucher of the 32 specimens stored in buffer at −20 °C at the Ecotox Center in Lausanne; anterior part of 30 specimens (all except No 204 and 205) preserved (mounted on slides) in the Muséum cantonal des sciences naturelles of Lausanne. | |
Chaetogaster diastrophus MOTU10 | Chaetogaster communis sp. nov. Vivien, Lafont & Martin | Isolates No 1, 2, 10, 21: 47.419157° N, 9.195899° E; Isolates No 23, 24, 28, 30, 32, 35, 47, 67, 76, 85: 47.414825° N, 9.198461° E; Isolates No 88, 97, 100, 110, 131, 139, 148, 151, 156, 162, 163, 164: 47.152502° N, 7.014924° E; Isolates No 220–230: 47.43167° N, 9.17485° E | Holotype and paratypes: DNA voucher of the 36 specimens stored in buffer at −20 °C at the Ecotox Center in Lausanne; anterior part of 35 specimens (all except No. 30) preserved (mounted on slides) in the Muséum cantonal des sciences naturelles of Lausanne. |
Chaetogaster diastrophus MOTU3 | Chaetogaster fluvii sp. nov. Vivien, Lafont & Martin | Isolates CDS1, CDS2, No 195, 196, 197, 198, 199, 200, 212, 213, 214, 215, 216: 47.305217° N, 8.327193° E; Isolate No 98: 47.152502° N, 7.014924° E | Holotype and paratypes: DNA voucher of the 14 specimens stored in buffer at −20 °C at the Ecotox Center in Lausanne; anterior part of the 14 specimens preserved (mounted on slides) in the Muséum cantonal des sciences naturelles of Lausanne. |
Chaetogaster diastrophus MOTU9 | Chaetogaster fluminis sp. nov. Vivien, Lafont & Martin | Isolates No 5: 47.419157° N, 9.195899° E; Isolates No 34, 86: 47.414825° N, 9.198461° E; Isolate No 101: 47.152502° N, 7.014924° E Isolates No 127, 128, 129, 130 46.522661° N, 6.573581° E; Isolates No 141, 155, 157, 159, 160: 47.152502° N, 7.014924° E | Holotype and paratypes: DNA voucher of the 13 specimens stored in buffer at −20 °C at the Ecotox Center in Lausanne; anterior part of 12 specimens (all except No 155) preserved (mounted on slides) in the Muséum cantonal des sciences naturelles of Lausanne. |
Chaetogaster sp. MOTU1 | Chaetogaster suzensis sp. nov. Vivien, Lafont & Martin | Isolate No 113: 47.152502° N, 7.014924° E | Holotype: DNA voucher of the specimen stored in buffer at −20 °C at the Ecotox Center in Lausanne; anterior part of the specimen (mounted on a slide) preserved in the Muséum cantonal des sciences naturelles of Lausanne. |
Chaetogaster sp. MOTU2 | Chaetogaster sorgensis sp. nov. Vivien, Lafont & Martin | Isolate No 134: 46.522661° N, 6.573581° E; Isolate No 165: 47.152502° N, 7.014924° E | Holotype and paratype: DNA voucher of the 2 specimens stored in buffer at −20 °C at the Ecotox Center in Lausanne; anterior part of the 2 specimens preserved (mounted on slides) in the Muséum cantonal des sciences naturelles of Lausanne. |
Chaetogaster sp. MOTU8 | Isolate Glatt6: 47.43167° N, 9.17485° E | DNA voucher of the specimen (Glatt 6) stored in buffer at −20 °C at the Ecotox Center in Lausanne. | |
Chaetogaster langi MOTU5 | Isolates No 7, 9, 12, 13: 47.419157° N, 9.195899 ° E; Isolates No 25, 26, 27, 29, 31, 36–40, 42, 57, 65, 69–71, 78: 47.414825° N, 9.198461° E; Isolates No 87, 89, 90, 112: 47.152502° N, 7.014924° E; Isolate No 132: 46.522661° N, 6.573581° E; Isolates No 140, 142, 149, 150: 47.152502° N, 7.014924° E | DNA voucher of the 30 specimens stored in buffer at −20 °C at the Ecotox Center in Lausanne; anterior part of 27 specimens (all except No 29, 37, and 38) preserved (mounted on slides) in the Muséum cantonal des sciences naturelles of Lausanne. | |
Chaetogaster setosus MOTU4 | Isolates No 99, 111, 138, 147, 161: 47.152502° N, 7.014924 ° E | DNA voucher of the 5 specimens stored in buffer at −20 °C at the Ecotox Center in Lausanne; anterior part of the 5 specimens preserved (mounted on slides) in the Muséum cantonal des sciences naturelles of Lausanne. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivien, R.; Lafont, M.; Issartel, C.; Ferrari, B.J.D.; Martin, P. The Genus Chaetogaster Baer, 1827 (Annelida, Clitellata) in Switzerland: A First Step toward Cataloguing Its Molecular Diversity and Description of New Species on a DNA Sequence Basis. Biology 2024, 13, 693. https://doi.org/10.3390/biology13090693
Vivien R, Lafont M, Issartel C, Ferrari BJD, Martin P. The Genus Chaetogaster Baer, 1827 (Annelida, Clitellata) in Switzerland: A First Step toward Cataloguing Its Molecular Diversity and Description of New Species on a DNA Sequence Basis. Biology. 2024; 13(9):693. https://doi.org/10.3390/biology13090693
Chicago/Turabian StyleVivien, Régis, Michel Lafont, Colin Issartel, Benoît J. D. Ferrari, and Patrick Martin. 2024. "The Genus Chaetogaster Baer, 1827 (Annelida, Clitellata) in Switzerland: A First Step toward Cataloguing Its Molecular Diversity and Description of New Species on a DNA Sequence Basis" Biology 13, no. 9: 693. https://doi.org/10.3390/biology13090693
APA StyleVivien, R., Lafont, M., Issartel, C., Ferrari, B. J. D., & Martin, P. (2024). The Genus Chaetogaster Baer, 1827 (Annelida, Clitellata) in Switzerland: A First Step toward Cataloguing Its Molecular Diversity and Description of New Species on a DNA Sequence Basis. Biology, 13(9), 693. https://doi.org/10.3390/biology13090693