Molecular Pathways and Potential Therapeutic Targets of Refractory Asthma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Immune Cells
2.1. Eosinophils
2.2. Mast Cells
2.3. Macrophages
2.4. Neutrophils
2.5. Th17 and Innate Lymphoid Type 3 Cells
3. Cytokines and Signaling Pathways
3.1. TSLP
3.2. IL-1 Receptor Family
3.3. IL-6
3.4. CCL5
3.5. CC16
3.6. RGS Pathway
3.7. Drivers of Airway Remodeling in Asthma
3.8. Lipid Mediators
3.9. Microbiome
3.10. Obesity
4. Current Management Options of Refractory Asthma
4.1. Chronic Macrolide Therapy
4.2. Treatable Traits
5. Potential New Targets of Refractory Asthma
5.1. Targeting Mast Cells
5.2. Targeting IL-33
5.3. Targeting Janus Kinases
5.4. Targeting Tumor Necrosis Factor α (TNFα)
5.5. Targeting OX40 Ligand
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moore, W.C.; Bleecker, E.R.; Curran-Everett, D.; Erzurum, S.C.; Ameredes, B.T.; Bacharier, L.; Calhoun, W.J.; Castro, M.; Chung, K.F.; Clark, M.P.; et al. Characterization of the severe asthma phenotype by the National Heart, Lung, and Blood Institute’s Severe Asthma Research Program. J. Allergy Clin. Immunol. 2007, 119, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.F.; Wenzel, S.E.; Brozek, J.L.; Bush, A.; Castro, M.; Sterk, P.J.; Adcock, I.M.; Bateman, E.D.; Bel, E.H.; Bleecker, E.R.; et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur. Respir. J. 2014, 43, 343–373. [Google Scholar] [CrossRef]
- Nurmagambetov, T.; Kuwahara, R.; Garbe, P. The Economic Burden of Asthma in the United States, 2008–2013. Ann. Am. Thorac. Soc. 2018, 15, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Taunk, S.T.; Cardet, J.C.; Ledford, D.K. Clinical implications of asthma endotypes and phenotypes. Allergy Asthma Proc. 2022, 43, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Cohort, G.R.-L.S.A. Eosinophilic and Noneosinophilic Asthma. Chest 2021, 160, 814–830. [Google Scholar]
- Brusselle, G.G.; Koppelman, G.H. Biologic Therapies for Severe Asthma. N. Engl. J. Med. 2022, 386, 157–171. [Google Scholar] [CrossRef]
- Loureiro, C.C.; Amaral, L.; Ferreira, J.A.; Lima, R.; Pardal, C.; Fernandes, I.; Semedo, L.; Arrobas, A. Omalizumab for Severe Asthma: Beyond Allergic Asthma. BioMed Res. Int. 2018, 2018, 3254094. [Google Scholar] [CrossRef]
- Hanania, N.A.; Alpan, O.; Hamilos, D.L.; Condemi, J.J.; Reyes-Rivera, I.; Zhu, J.; Rosen, K.E.; Eisner, M.D.; Wong, D.A.; Busse, W. Omalizumab in severe allergic asthma inadequately controlled with standard therapy: A randomized trial. Ann. Intern. Med. 2011, 154, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Ortega, H.G.; Liu, M.C.; Pavord, I.D.; Brusselle, G.G.; Fitzgerald, J.M.; Chetta, A.; Humbert, M.; Katz, L.E.; Keene, O.N.; Yancey, S.W.; et al. Mepolizumab Treatment in Patients with Severe Eosinophilic Asthma. N. Engl. J. Med. 2014, 371, 1198–1207. [Google Scholar] [CrossRef]
- Castro, M.; Zangrilli, J.; Wechsler, M.E.; Bateman, E.D.; Brusselle, G.G.; Bardin, P.; Murphy, K.; Maspero, J.F.; O’Brien, C.; Korn, S. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: Results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir. Med. 2015, 3, 355–366. [Google Scholar] [CrossRef]
- Jackson, D.J.; Heaney, L.G.; Humbert, M.; Kent, B.D.; Shavit, A.; Hiljemark, L.; Olinger, L.; Cohen, D.; Menzies-Gow, A.; Korn, S.; et al. Reduction of daily maintenance inhaled corticosteroids in patients with severe eosinophilic asthma treated with benralizumab (SHAMAL): A randomised, multicentre, open-label, phase 4 study. Lancet 2024, 403, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.; Corren, J.; Pavord, I.D.; Maspero, J.; Wenzel, S.; Rabe, K.F.; Busse, W.W.; Ford, L.; Sher, L.; FitzGerald, J.M.; et al. Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. N. Engl. J. Med. 2018, 378, 2486–2496. [Google Scholar] [CrossRef] [PubMed]
- Pavord, I.D.; Siddiqui, S.; Papi, A.; Corren, J.; Sher, L.D.; Bardin, P.; Langton, D.; Park, H.-S.; Rice, M.S.; Deniz, Y.; et al. Dupilumab Efficacy in Patients Stratified by Baseline Treatment Intensity and Lung Function. J. Asthma Allergy 2020, 13, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Akenroye, A.; Marshall, J.; Simon, A.L.; Hague, C.; Costa, R.; Jamal-Allial, A.; McMahill-Walraven, C.N.; Haffenreffer, K.; Han, A.; Wu, A.C. Smaller Differences in the Comparative Effectiveness of Biologics in Reducing Asthma-Related Hospitalizations Compared With Overall Exacerbations. J. Allergy Clin. Immunol. Pr. 2024, 12, 1568–1574.e1562. [Google Scholar] [CrossRef] [PubMed]
- Tiotiu, A.; Badi, Y.; Kermani, N.Z.; Sanak, M.; Kolmert, J.; Wheelock, C.E.; Hansbro, P.M.; Dahlén, S.-E.; Sterk, P.J.; Djukanovic, R.; et al. Association of Differential Mast Cell Activation with Granulocytic Inflammation in Severe Asthma. Am. J. Respir. Crit. Care Med. 2022, 205, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, M.E.; Ruddy, M.K.; Pavord, I.D.; Israel, E.; Rabe, K.F.; Ford, L.B.; Maspero, J.F.; Abdulai, R.M.; Hu, C.-C.; Martincova, R.; et al. Efficacy and Safety of Itepekimab in Patients with Moderate-to-Severe Asthma. N. Engl. J. Med. 2021, 385, 1656–1668. [Google Scholar] [CrossRef] [PubMed]
- Sparreman Mikus, M.; Kolmert, J.; Andersson, L.I.; Östling, J.; Knowles, R.G.; Gómez, C.; Ericsson, M.; Thörngren, J.-O.; Emami Khoonsari, P.; Dahlén, B.; et al. Plasma proteins elevated in severe asthma despite oral steroid use and unrelated to Type-2 inflammation. Eur. Respir. J. 2022, 59, 2100142. [Google Scholar] [CrossRef] [PubMed]
- Bradding, P.; Walls, A.; Holgate, S. The role of the mast cell in the pathophysiology of asthma. J. Allergy Clin. Immunol. 2006, 117, 1277–1284. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.K.; Ng, S.S.M.; Lun, S.W.M.; Cao, J.; Lam, C.W.K. Signalling mechanisms regulating the activation of human eosinophils by mast-cell-derived chymase: Implications for mast cell–eosinophil interaction in allergic inflammation. Immunology 2009, 126, 579–587. [Google Scholar] [CrossRef]
- Fricker, M.; Gibson, P.G. Macrophage dysfunction in the pathogenesis and treatment of asthma. Eur. Respir. J. 2017, 50, 1700196. [Google Scholar] [CrossRef]
- Son, K.; Miyasaki, K.; Salter, B.; Loukov, D.; Chon, J.; Zhao, N.; Radford, K.; Huang, C.; LaVigne, N.; Dvorkin-Gheva, A.; et al. Autoantibody-mediated Macrophage Dysfunction in Patients with Severe Asthma with Airway Infections. Am. J. Respir. Crit. Care Med. 2023, 207, 427–437. [Google Scholar] [CrossRef]
- Fricker, M.; Qin, L.; Sánchez-Ovando, S.; Simpson, J.L.; Baines, K.J.; Riveros, C.; Scott, H.A.; Wood, L.G.; Wark, P.A.; Kermani, N.Z.; et al. An altered sputum macrophage transcriptome contributes to the neutrophilic asthma endotype. Allergy 2022, 77, 1204–1215. [Google Scholar] [CrossRef]
- Tiotiu, A.; Zounemat Kermani, N.; Badi, Y.; Pavlidis, S.; Hansbro, P.M.; Guo, Y.K.; Chung, K.F.; Adcock, I.M. Sputum macrophage diversity and activation in asthma: Role of severity and inflammatory phenotype. Allergy 2021, 76, 775–788. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Cui, J.; Yi, L.; Qin, J.; Tulake, W.; Teng, F.; Tang, W.; Wei, Y.; Dong, J. The Role of T Cells and Macrophages in Asthma Pathogenesis: A New Perspective on Mutual Crosstalk. Mediat. Inflamm. 2020, 2020, 7835284. [Google Scholar] [CrossRef]
- Alam, R.; Good, J.; Rollins, D.; Verma, M.; Chu, H.; Pham, T.-H.; Martin, R.J. Airway and serum biochemical correlates of refractory neutrophilic asthma. J. Allergy Clin. Immunol. 2017, 140, 1004–1014.e1013. [Google Scholar] [CrossRef]
- Kermani, N.Z.; Song, W.-J.; Badi, Y.; Versi, A.; Guo, Y.; Sun, K.; Bhavsar, P.; Howarth, P.; Dahlen, S.-E.; Sterk, P.J.; et al. Sputum ACE2, TMPRSS2 and FURIN gene expression in severe neutrophilic asthma. Respir. Res. 2021, 22, 10. [Google Scholar] [CrossRef] [PubMed]
- Panek, I.; Liczek, M.; Gabryelska, A.; Rakoczy, I.; Kuna, P.; Panek, M. Inflammasome signalling pathway in the regulation of inflammation—Its involvement in the development and exacerbation of asthma and chronic obstructive pulmonary disease. Postep. Dermatol. Alergol. 2023, 40, 487–495. [Google Scholar] [CrossRef]
- Uddin, M.; Watz, H.; Malmgren, A.; Pedersen, F. NETopathic Inflammation in Chronic Obstructive Pulmonary Disease and Severe Asthma. Front. Immunol. 2019, 10, 47. [Google Scholar] [CrossRef]
- Lachowicz-Scroggins, M.E.; Dunican, E.M.; Charbit, A.R.; Raymond, W.; Looney, M.R.; Peters, M.C.; Gordon, E.D.; Woodruff, P.G.; Lefrançais, E.; Phillips, B.R.; et al. Extracellular DNA, Neutrophil Extracellular Traps, and Inflammasome Activation in Severe Asthma. Am. J. Respir. Crit. Care Med. 2019, 199, 1076–1085. [Google Scholar] [CrossRef] [PubMed]
- Abdo, M.; Uddin, M.; Goldmann, T.; Marwitz, S.; Bahmer, T.; Holz, O.; Kirsten, A.-M.; Trinkmann, F.; Von Mutius, E.; Kopp, M.; et al. Raised sputum extracellular DNA confers lung function impairment and poor symptom control in an exacerbation-susceptible phenotype of neutrophilic asthma. Respir. Res. 2021, 22, 167. [Google Scholar] [CrossRef]
- Xie, Y.; Abel, P.W.; Casale, T.B.; Tu, Y. T(H)17 cells and corticosteroid insensitivity in severe asthma. J. Allergy Clin. Immunol. 2022, 149, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Lajoie, S.; Lewkowich, I.P.; Suzuki, Y.; Clark, J.R.; Sproles, A.A.; Dienger, K.; Budelsky, A.L.; Wills-Karp, M. Complement-mediated regulation of the IL-17A axis is a central genetic determinant of the severity of experimental allergic asthma. Nat. Immunol. 2010, 11, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Ricciardolo, F.L.M.; Sorbello, V.; Folino, A.; Gallo, F.; Massaglia, G.M.; Favatà, G.; Conticello, S.; Vallese, D.; Gani, F.; Malerba, M.; et al. Identification of IL-17F/frequent exacerbator endotype in asthma. J. Allergy Clin. Immunol. 2017, 140, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Camargo, L.D.N.; Righetti, R.F.; Aristóteles, L.; Dos Santos, T.M.; de Souza, F.C.R.; Fukuzaki, S.; Cruz, M.M.; Alonso-Vale, M.I.C.; Saraiva-Romanholo, B.M.; Prado, C.M.; et al. Effects of Anti-IL-17 on Inflammation, Remodeling, and Oxidative Stress in an Experimental Model of Asthma Exacerbated by LPS. Front. Immunol. 2017, 8, 1835. [Google Scholar] [CrossRef] [PubMed]
- Safety, Tolerability, and Efficacy of AIN457 in Patients with Uncontrolled Asthma. Available online: https://www.clinicaltrials.gov/ct2/show/NCT01478360 (accessed on 26 June 2024).
- Busse, W.W.; Holgate, S.; Kerwin, E.; Chon, Y.; Feng, J.; Lin, J.; Lin, S.L. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am. J. Respir. Crit. Care Med. 2013, 188, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
- Pelaia, C.; Pelaia, G.; Longhini, F.; Crimi, C.; Calabrese, C.; Gallelli, L.; Sciacqua, A.; Vatrella, A. Monoclonal Antibodies Targeting Alarmins: A New Perspective for Biological Therapies of Severe Asthma. Biomedicines 2021, 9, 1108. [Google Scholar] [CrossRef] [PubMed]
- Menzies-Gow, A.; Wechsler, M.E.; Brightling, C.E.; Korn, S.; Corren, J.; Israel, E.; Chupp, G.; Bednarczyk, A.; Ponnarambil, S.; Caveney, S.; et al. Long-term safety and efficacy of tezepelumab in people with severe, uncontrolled asthma (DESTINATION): A randomised, placebo-controlled extension study. Lancet Respir. Med. 2023, 11, 425–438. [Google Scholar] [CrossRef]
- Osei, E.T.; Brandsma, C.-A.; Timens, W.; Heijink, I.H.; Hackett, T.-L. Current perspectives on the role of interleukin-1 signalling in the pathogenesis of asthma and COPD. Eur. Respir. J. 2020, 55, 1900563. [Google Scholar] [CrossRef] [PubMed]
- Schworer, S.A.; Chason, K.D.; Chen, G.; Chen, J.; Zhou, H.; Burbank, A.J.; Kesic, M.J.; Hernandez, M.L. IL-1 receptor antagonist attenuates proinflammatory responses to rhinovirus in airway epithelium. J. Allergy Clin. Immunol. 2023, 151, 1577–1584.e1574. [Google Scholar] [CrossRef]
- Baines, K.J.; Simpson, J.L.; Wood, L.G.; Scott, R.J.; Gibson, P.G. Transcriptional phenotypes of asthma defined by gene expression profiling of induced sputum samples. J. Allergy Clin. Immunol. 2011, 127, 153–160, 160.e1–160.e9. [Google Scholar] [CrossRef]
- Rossios, C.; Pavlidis, S.; Hoda, U.; Kuo, C.-H.; Wiegman, C.; Russell, K.; Sun, K.; Loza, M.J.; Baribaud, F.; Durham, A.L.; et al. Sputum transcriptomics reveal upregulation of IL-1 receptor family members in patients with severe asthma. J. Allergy Clin. Immunol. 2018, 141, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.Y.; Pinkerton, J.W.; Essilfie, A.T.; Robertson, A.A.B.; Baines, K.J.; Brown, A.C.; Mayall, J.R.; Ali, M.K.; Starkey, M.R.; Hansbro, N.G.; et al. Role for NLRP3 Inflammasome-mediated, IL-1β-Dependent Responses in Severe, Steroid-Resistant Asthma. Am. J. Respir. Crit. Care Med. 2017, 196, 283–297. [Google Scholar] [CrossRef] [PubMed]
- University of North Carolina CH. Early Phase Administration of Anakinra as a Rescue Treatment for Inhaled Allergen Challenge-Induced Airway Inflammation. [updated 7 May 2021]. Available online: www.clinicaltrials.gov/ct2/show/NCT03513471 (accessed on 26 June 2024).
- University of North Carolina CH. Late Phase Administration Anakinra as a Rescue Treatment for Inhaled Allergen Challenge-Induced Airway Inflammation (LateAna). [updated 14 May 2021]. Available online: www.clinicaltrials.gov/ct2/show/NCT03513458 (accessed on 26 June 2024).
- Pascoe, S.; Kanniess, F.; Bonner, J.; Lloyd, P.; Lowe, P.; Beier, J. Woessner (Horsham, United Kingdom; Grosshansdorf, Wiesbaden, Germany; Basel, Switzerland). A monoclonal antibody to IL-1B attenuates the late asthmatic response to antigen challenge in patients with mild asthma. Annu. Congr. Eur. Resp. Soc. 2006, 752. [Google Scholar]
- Peters, M.C.; McGrath, K.W.; Hawkins, G.A.; Hastie, A.T.; Levy, B.D.; Israel, E.; Phillips, B.R.; Mauger, D.T.; Comhair, S.A.; Erzurum, S.C.; et al. Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: A cross-sectional analysis of two cohorts. Lancet Respir. Med. 2016, 4, 574–584. [Google Scholar] [CrossRef] [PubMed]
- Morjaria, J.B.; Babu, K.S.; Vijayanand, P.; Chauhan, A.J.; Davies, D.E.; Holgate, S.T. Sputum IL-6 concentrations in severe asthma and its relationship with FEV1. Thorax 2011, 66, 537. [Google Scholar] [CrossRef] [PubMed]
- Permaul, P.; Peters, M.C.; Petty, C.R.; Cardet, J.C.; Ly, N.P.; Ramratnam, S.K.; Ross, K.; Fitzpatrick, A.; Israel, E.; Bacharier, L.B.; et al. The association of plasma IL-6 with measures of asthma morbidity in a moderate-severe pediatric cohort aged 6–18 years. J. Allergy Clin. Immunol. Pr. 2021, 9, 2916–2919.e2. [Google Scholar] [CrossRef]
- Peters, M.C.; Mauger, D.; Ross, K.R.; Phillips, B.; Gaston, B.; Cardet, J.C.; Israel, E.; Levy, B.D.; Phipatanakul, W.; Jarjour, N.N.; et al. Evidence for Exacerbation-Prone Asthma and Predictive Biomarkers of Exacerbation Frequency. Am. J. Respir. Crit. Care Med. 2020, 202, 973–982. [Google Scholar] [CrossRef]
- El-Husseini, Z.W.; Khalenkow, D.; Lan, A.; Van Der Molen, T.; Brightling, C.; Papi, A.; Rabe, K.F.; Siddiqui, S.; Singh, D.; Kraft, M.; et al. An epithelial gene signature of trans-IL-6 signaling defines a subgroup of type 2-low asthma. Respir. Res. 2023, 24, 308. [Google Scholar] [CrossRef] [PubMed]
- Rincon, M.; Irvin, C.G. Role of IL-6 in Asthma and Other Inflammatory Pulmonary Diseases. Int. J. Biol. Sci. 2012, 8, 1281–1290. [Google Scholar] [CrossRef]
- Israel, E.; Denlinger, L.C.; Bacharier, L.B.; Lavange, L.M.; Moore, W.C.; Peters, M.C.; Georas, S.N.; Wright, R.J.; Mauger, D.T.; Noel, P.; et al. PrecISE: Precision Medicine in Severe Asthma: An adaptive platform trial with biomarker ascertainment. J. Allergy Clin. Immunol. 2021, 147, 1594–1601. [Google Scholar] [CrossRef]
- Salama, C.; Han, J.; Yau, L.; Reiss, W.G.; Kramer, B.; Neidhart, J.D.; Criner, G.J.; Kaplan-Lewis, E.; Baden, R.; Pandit, L.; et al. Tocilizumab in Patients Hospitalized with Covid-19 Pneumonia. N. Engl. J. Med. 2021, 384, 20–30. [Google Scholar] [CrossRef]
- Esty, B.; Harb, H.; Bartnikas, L.M.; Charbonnier, L.M.; Massoud, A.H.; Leon-Astudillo, C.; Visner, G.; Subramaniam, M.; Phipatanakul, W.; Chatila, T.A. Treatment of severe persistent asthma with IL-6 receptor blockade. J. Allergy Clin. Immunol. Pr. 2019, 7, 1639–1642.e4. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, M.; Kale, S.L.; Oriss, T.B.; Gorry, M.; Ramonell, R.P.; Dalton, K.; Ray, P.; Fahy, J.V.; Seibold, M.A.; Castro, M.; et al. CCL5 is a potential bridge between type 1 and type 2 inflammation in asthma. J. Allergy Clin. Immunol. 2023, 152, 94–106.e112. [Google Scholar] [CrossRef] [PubMed]
- Laucho-Contreras, M.E.; Polverino, F.; Gupta, K.; Taylor, K.L.; Kelly, E.; Pinto-Plata, V.; Divo, M.; Ashfaq, N.; Petersen, H.; Stripp, B.; et al. Protective role for club cell secretory protein-16 (CC16) in the development of COPD. Eur. Respir. J. 2015, 45, 1544–1556. [Google Scholar] [CrossRef] [PubMed]
- Voraphani, N.; Stern, D.A.; Ledford, J.G.; Spangenberg, A.L.; Zhai, J.; Wright, A.L.; Morgan, W.J.; Kraft, M.; Sherrill, D.L.; Curtin, J.A.; et al. Circulating CC16 and Asthma: A Population-based, Multicohort Study from Early Childhood through Adult Life. Am. J. Respir. Crit. Care Med. 2023, 208, 758–769. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Xie, Y.; Abel, P.W.; Wolff, D.W.; Toews, M.L.; Panettieri, R.A.; Casale, T.B.; Tu, Y. Regulator of G-Protein Signaling 2 Repression Exacerbates Airway Hyper-Responsiveness and Remodeling in Asthma. Am. J. Respir. Cell Mol. Biol. 2015, 53, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Cardet, J.C.; Kim, D.; Bleecker, E.R.; Casale, T.B.; Israel, E.; Mauger, D.; Meyers, D.A.; Ampleford, E.; Hawkins, G.A.; Tu, Y.; et al. Clinical and molecular implications of RGS2 promoter genetic variation in severe asthma. J. Allergy Clin. Immunol. 2022, 150, 721–726.e1. [Google Scholar] [CrossRef] [PubMed]
- Varricchi, G.; Ferri, S.; Pepys, J.; Poto, R.; Spadaro, G.; Nappi, E.; Paoletti, G.; Virchow, J.C.; Heffler, E.; Canonica, W.G. Biologics and airway remodeling in severe asthma. Allergy 2022, 77, 3538–3552. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.J.; Ward, J.A.; Pickett, H.M.; Baldi, S.; Sousa, A.R.; Sterk, P.J.; Chung, K.F.; Djukanovic, R.; Dahlen, B.; Billing, B.; et al. Airway Elastin is increased in severe asthma and relates to proximal wall area: Histological and computed tomography findings from the U-BIOPRED severe asthma study. Clin. Exp. Allergy 2021, 51, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Ovando, S.; Pavlidis, S.; Kermani, N.Z.; Baines, K.J.; Barker, D.; Gibson, P.G.; Wood, L.G.; Adcock, I.M.; Chung, K.F.; Simpson, J.L.; et al. Pathways linked to unresolved inflammation and airway remodelling characterize the transcriptome in two independent severe asthma cohorts. Respirology 2022, 27, 730–738. [Google Scholar] [CrossRef]
- Brandsma, J.; Schofield, J.P.R.; Yang, X.; Strazzeri, F.; Barber, C.; Goss, V.M.; Koster, G.; Bakke, P.S.; Caruso, M.; Chanez, P.; et al. Stratification of asthma by lipidomic profiling of induced sputum supernatant. J. Allergy Clin. Immunol. 2023, 152, 117–125. [Google Scholar] [CrossRef]
- Chung, K.F. Airway microbial dysbiosis in asthmatic patients: A target for prevention and treatment? J. Allergy Clin. Immunol. 2017, 139, 1071–1081. [Google Scholar] [CrossRef] [PubMed]
- Ghedin, E.; Huang, Y.J. Oral Microbiota and Pediatric Asthma Phenotype: A New Window for Biomarkers? Am. J. Respir. Crit. Care Med. 2023, 208, 119–121. [Google Scholar] [CrossRef]
- Valverde-Molina, J.; García-Marcos, L. Microbiome and Asthma: Microbial Dysbiosis and the Origins, Phenotypes, Persistence, and Severity of Asthma. Nutrients 2023, 15, 486. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aziz, M.I.; Brinkman, P.; Vijverberg, S.J.H.; Neerincx, A.H.; Riley, J.H.; Bates, S.; Hashimoto, S.; Kermani, N.Z.; Chung, K.F.; Djukanovic, R.; et al. Sputum microbiome profiles identify severe asthma phenotypes of relative stability at 12 to 18 months. J. Allergy Clin. Immunol. 2021, 147, 123–134. [Google Scholar] [CrossRef]
- Bhatawadekar, S.A.; Peters, U.; Walsh, R.R.; Daphtary, N.; MacLean, E.S.; Hodgdon, K.; Kinsey, C.M.; Kaminsky, D.A.; Bates, J.H.T.; Dixon, A.E. Air Trapping versus Atelectasis in Obesity: Relationship to Late-Onset Nonallergic Asthma and Aging. Ann. Am. Thorac. Soc. 2022, 19, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.; Tang, M.; Huang, B.K.; Fain, S.B.; Hoffman, E.A.; Choi, J.; Dunican, E.M.; Mauger, D.T.; Denlinger, L.C.; Jarjour, N.N.; et al. A Novel Air Trapping Segment Score Identifies Opposing Effects of Obesity and Eosinophilia on Air Trapping in Asthma. Am. J. Respir. Crit. Care Med. 2024, 209, 1196–1207. [Google Scholar] [CrossRef]
- Tattersall, M.C.; Lee, K.E.; Tsuchiya, N.; Osman, F.; Korcarz, C.E.; Hansen, K.M.; Peters, M.C.; Fahy, J.V.; Longhurst, C.A.; Dunican, E.; et al. Skeletal Muscle Adiposity and Lung Function Trajectory in the Severe Asthma Research Program. Am. J. Respir. Crit. Care Med. 2023, 207, 475–484. [Google Scholar] [CrossRef]
- Gibson, P.G.; Yang, I.A.; Upham, J.W.; Reynolds, P.N.; Hodge, S.; James, A.L.; Jenkins, C.; Peters, M.J.; Marks, G.B.; Baraket, M.; et al. Effect of azithromycin on asthma exacerbations and quality of life in adults with persistent uncontrolled asthma (AMAZES): A randomised, double-blind, placebo-controlled trial. Lancet 2017, 390, 659–668. [Google Scholar] [CrossRef]
- Shukla, S.D.; Taylor, S.L.; Gibson, P.G.; Barker, D.; Upham, J.W.; Yang, I.A.; Reynolds, P.N.; Hodge, S.; James, A.L.; Rogers, G.B.; et al. Add-on azithromycin reduces sputum cytokines in non-eosinophilic asthma: An AMAZES substudy. Thorax 2021, 76, 733–736. [Google Scholar] [CrossRef]
- Global Initiative for Asthma; 20 July; Updated July 2023.
- Simpson, A.J.; Hekking, P.P.; Shaw, D.E.; Fleming, L.J.; Roberts, G.; Riley, J.H.; Bates, S.; Sousa, A.R.; Bansal, A.T.; Pandis, I.; et al. Treatable traits in the European U-BIOPRED adult asthma cohorts. Allergy 2019, 74, 406–411. [Google Scholar] [CrossRef]
- Davidescu, L.; Ursol, G.; Korzh, O.; Deshmukh, V.; Kuryk, L.; Nortje, M.-M.; Godlevska, O.; Devouassoux, G.; Khodosh, E.; Israel, E.; et al. Efficacy and Safety of Masitinib in Corticosteroid-Dependent Severe Asthma: A Randomized Placebo-Controlled Trial. J. Asthma Allergy 2022, 15, 737–747. [Google Scholar] [CrossRef]
- Cahill, K.N.; Katz, H.R.; Cui, J.; Lai, J.; Kazani, S.; Crosby-Thompson, A.; Garofalo, D.; Castro, M.; Jarjour, N.; Dimango, E.; et al. KIT Inhibition by Imatinib in Patients with Severe Refractory Asthma. N. Engl. J. Med. 2017, 376, 1911–1920. [Google Scholar] [CrossRef] [PubMed]
- Kelsen, S.G.; Agache, I.O.; Soong, W.; Israel, E.; Chupp, G.L.; Cheung, D.S.; Theess, W.; Yang, X.; Staton, T.L.; Choy, D.F.; et al. Astegolimab (anti-ST2) efficacy and safety in adults with severe asthma: A randomized clinical trial. J. Allergy Clin. Immunol. 2021, 148, 790–798. [Google Scholar] [CrossRef] [PubMed]
- Georas, S.N.; Donohue, P.; Connolly, M.; Wechsler, M.E. JAK inhibitors for asthma. J. Allergy Clin. Immunol. 2021, 148, 953–963. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Ham, J.; Kang, H.R.; Bae, Y.S.; Kim, T.; Kim, H.Y. JAK3 inhibitor suppresses multipotent ILC2s and attenuates steroid-resistant asthma. Sci. Adv. 2023, 9, eadi3770. [Google Scholar] [CrossRef] [PubMed]
- Calbet, M.; Ramis, I.; Calama, E.; Carreño, C.; Paris, S.; Maldonado, M.; Orellana, A.; Calaf, E.; Pauta, M.; De Alba, J.; et al. Novel Inhaled Pan-JAK Inhibitor, LAS194046, Reduces Allergen-Induced Airway Inflammation, Late Asthmatic Response, and pSTAT Activation in Brown Norway Rats. J. Pharmacol. Exp. Ther. 2019, 370, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Milara, J.; Ballester, B.; De Diego, A.; Calbet, M.; Ramis, I.; Miralpeix, M.; Cortijo, J. The pan-JAK inhibitor LAS194046 reduces neutrophil activation from severe asthma and COPD patients in vitro. Sci. Rep. 2022, 12, 5132. [Google Scholar] [CrossRef] [PubMed]
- Braithwaite, I.E.; Cai, F.; Tom, J.A.; Galanter, J.M.; Owen, R.P.; Zhu, R.; Williams, M.; McGregor, A.G.; Eliahu, A.; Durk, M.R.; et al. Inhaled JAK inhibitor GDC-0214 reduces exhaled nitric oxide in patients with mild asthma: A randomized, controlled, proof-of-activity trial. J. Allergy Clin. Immunol. 2021, 148, 783–789. [Google Scholar] [CrossRef]
- Brightling, C.; Berry, M.; Amrani, Y. Targeting TNF-alpha: A novel therapeutic approach for asthma. J. Allergy Clin. Immunol. 2008, 121, 5–10; quiz 11–12. [Google Scholar] [CrossRef]
- Rouhani, F.N.; Meitin, C.A.; Kaler, M.; Miskinis-Hilligoss, D.; Stylianou, M.; Levine, S.J. Effect of tumor necrosis factor antagonism on allergen-mediated asthmatic airway inflammation. Respir. Med. 2005, 99, 1175–1182. [Google Scholar] [CrossRef]
- Wenzel, S.E.; Barnes, P.J.; Bleecker, E.R.; Bousquet, J.; Busse, W.; Dahlén, S.E.; Holgate, S.T.; Meyers, D.A.; Rabe, K.F.; Antczak, A.; et al. A randomized, double-blind, placebo-controlled study of tumor necrosis factor-alpha blockade in severe persistent asthma. Am. J. Respir. Crit. Care Med. 2009, 179, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Aaltonen, K.J.; Virkki, L.M.; Malmivaara, A.; Konttinen, Y.T.; Nordström, D.C.; Blom, M. Systematic review and meta-analysis of the efficacy and safety of existing TNF blocking agents in treatment of rheumatoid arthritis. PLoS ONE 2012, 7, e30275. [Google Scholar] [CrossRef] [PubMed]
- Kaur, D.; Brightling, C. OX40/OX40 Ligand Interactions in T-Cell Regulation and Asthma. Chest 2012, 141, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.; Mistry, V.; Doe, C.; Stinson, S.; Foster, M.; Brightling, C. Airway Wall Expression of OX40/OX40L and Interleukin-4 in Asthma. Chest 2010, 137, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.-L.; Zhang, L. Elevated serum OX40L is a biomarker for identifying corticosteroid resistance in pediatric asthmatic patients. BMC Pulm. Med. 2019, 19, 66. [Google Scholar] [CrossRef] [PubMed]
- Gauvreau, G.M.; Boulet, L.P.; Cockcroft, D.W.; FitzGerald, J.M.; Mayers, I.; Carlsten, C.; Laviolette, M.; Killian, K.J.; Davis, B.E.; Larché, M.; et al. OX40L blockade and allergen-induced airway responses in subjects with mild asthma. Clin. Exp. Allergy 2014, 44, 29–37. [Google Scholar] [CrossRef]
- Gracias, D.T.; Sethi, G.S.; Mehta, A.K.; Miki, H.; Gupta, R.K.; Yagita, H.; Croft, M. Combination blockade of OX40L and CD30L inhibits allergen-driven memory TH2 cell reactivity and lung inflammation. J. Allergy Clin. Immunol. 2021, 147, 2316–2329. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishmael, L.; Casale, T.; Cardet, J.C. Molecular Pathways and Potential Therapeutic Targets of Refractory Asthma. Biology 2024, 13, 583. https://doi.org/10.3390/biology13080583
Ishmael L, Casale T, Cardet JC. Molecular Pathways and Potential Therapeutic Targets of Refractory Asthma. Biology. 2024; 13(8):583. https://doi.org/10.3390/biology13080583
Chicago/Turabian StyleIshmael, Leah, Thomas Casale, and Juan Carlos Cardet. 2024. "Molecular Pathways and Potential Therapeutic Targets of Refractory Asthma" Biology 13, no. 8: 583. https://doi.org/10.3390/biology13080583
APA StyleIshmael, L., Casale, T., & Cardet, J. C. (2024). Molecular Pathways and Potential Therapeutic Targets of Refractory Asthma. Biology, 13(8), 583. https://doi.org/10.3390/biology13080583