Research Progress on Starfish Outbreaks and Their Prevention and Utilization: Lessons from Northern China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Starfish Outbreak Disasters and Their Causes
2.1. Recent Starfish Outbreaks in Various Regions
2.2. Reasons for Starfish Outbreaks
2.2.1. Robust Adaptability of Starfish
2.2.2. Abundant Food Resources
2.2.3. Decline in Natural Predators under the Influence of Climate Change
2.2.4. Summary of the Reasons for Starfish Outbreaks
2.3. Control and Prevention of Starfish Outbreaks
2.3.1. Physical Removal Methods
2.3.2. Chemical Removal Methods
2.3.3. Removal Methods through Natural Enemy Deployment: Biological Control
3. Exploitation and Utilization of Starfish
3.1. Basic Biological Research
3.2. Medical Applications
3.3. Food Applications
3.4. Industry and Other Applications
3.4.1. Models as Lightweight Industrial Materials
3.4.2. Application of Body Wall Collagen
3.4.3. Feed Additives
3.4.4. Contributing to the Reduction in Carbon Emissions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.Y.; Zheng, G.M. General Zoology; Higher Education Press: Beijing, China, 2009; Volume 8, pp. 288–293. [Google Scholar]
- Guo, W.C.; Ding, X.Q.; Liu, J.H.; Zhao, B.B. Species, distribution and comprehensive benefits of starfish resources in China. Spec. Econ. Anim. Plants 2013, 16, 9–13. (In Chinese) [Google Scholar]
- Carpenter, S.R.; Kitchell, J.F.; Hodgson, J.R. Cascading trophic interactions and lake productivity. BioScience 1985, 35, 634–639. [Google Scholar] [CrossRef]
- Matassa, C.M.; Trussell, G.C. Prey state shapes the effects of temporal variation in predation risk. Proc. R. Soc. B Biol. Sci. 2014, 281, 1952. [Google Scholar] [CrossRef] [PubMed]
- Gravem, S.A.; Morgan, S.G. Prey state alters trait-mediated indirect interactions in rocky tide pools. Funct. Ecol 2016, 30, 1574–1582. [Google Scholar] [CrossRef]
- Li, S.Y. A Preliminary Study on the Behavioural and Ecological Characteristics and Control Strategies of the Starfish (Asterias amurensis). Master’s Thesis, Ocean University of China, Qingdao, China, 2014. (In Chinese). [Google Scholar]
- Hewitt, C.L.; Martin, R.B.; Sliwa, C.; Mcennulty, F.R.; Murphy, N.E.; Jones, T. Asterias amurensis species summary. National Introduced Marine Pest Information System (NIMPIS). 2002. Available online: https://www.mendeley.com/catalogue/f2f36310-d30e-37ca-b1d4-49cfe9594241/ (accessed on 15 May 2024).
- Qi, Z.H.; Wang, J.; Mao, Y.Z.; Zhang, J.H.; Fang, J.G. Predation selectivity and feeding rate of two starfish on three bivalve mussels. J. Ecol. 2013, 33, 4878–4884. (In Chinese) [Google Scholar]
- Hennebert, E.; Wattiez, R.; Demeuldre, M.; Flammang, P. Sea star tenacity mediated by a protein that fragments, then aggregates. Proc. Natl. Acad. Sci. USA 2014, 111, 6317–6322. [Google Scholar] [CrossRef]
- Li, S.Y.; Zhang, X.M.; Nie, M.; Li, W.T.; Zhang, P.D. Feeding selectivity of Asterias amurensis discus on Ruditapes philippinarum at different temperatures. J. Fish. 2014, 38, 981–991. (In Chinese) [Google Scholar]
- Du, M.R.; Zhang, J.H.; Mao, Y.Z.; Jiang, Z.J.; Gao, Y.P.; Fang, J.G. Embryonic and early larval development of Asterias amurensis. Prog. Fish. Sci. 2014, 35, 133–138. (In Chinese) [Google Scholar]
- Zhang, J.W. Preliminary Study on Feeding and Visual Behavior of Asterina pectinifera. Master’s Thesis, Dalian Ocean University, Dalian, China, 2019. (In Chinese). [Google Scholar]
- Feng, Y.; Piñon Gonzalez, V.M.; Lin, M.; Egertová, M.; Mita, M.; Elphick, M.R. Localization of relaxin-like gonad-stimulating peptide expression in starfish reveals the gonoducts as a source for its role as a regulator of spawning. J. Comp. Neurol. 2023, 531, 1299–1316. [Google Scholar] [CrossRef]
- Hatanaka, M.; Kosaka, M. Biological studies on the population of the starfish, Asterias amurencis, in Sendai Bay. Tohoku J. Agric. Res. 1959, 9, 159–178. [Google Scholar]
- Kim, Y.S. Histological observations of the annual change in the gonad of the starfish, Asterias amurensis Lüken. Bull. Fac. Fish. Hokkaido Univ. 1968, 19, 97–108. [Google Scholar]
- Guillou, M. Biotic and abiotic interactions controlling starfish outbreaks in the Bay of Douarnenez, Brittany, France. Oceanol. Acta 1996, 19, 415–420. [Google Scholar]
- Ross, D.J.; Johnson, C.R.; Hewitt, C.L. Impact of introduced sea stars Asterias amurensis on survivorship of juvenile commercial bivalves Fulvia tenuicostata. Mar. Ecol. Prog. Ser. 2002, 241, 99–112. [Google Scholar] [CrossRef]
- Ross, D.J.; Johnson, C.R.; Hewitt, C.L. Assessing the ecological impacts of an introduced seastar: The importance of multiple methods. Biol. Invasions 2003, 5, 3–21. [Google Scholar] [CrossRef]
- Li, C.L.; Song, A.H.; Hu, W.; Li, Q.C.; Zhang, Y. Prevention and control strategies for starfish invading shellfish. Sci. Fish. Cult. 2008, 227, 48–49. [Google Scholar]
- Zhou, S.H.; Wang, Y.G. Introspection of starfish disaster in coastal waters. Fish. Sci 2008, 10, 555–556. [Google Scholar] [CrossRef]
- Ling, S.D.; Johnson, C.R. Native spider crab causes high incidence of sub-lethal injury to the introduced sea star Asterias amurensis. In Echinoderms in a Changing World; CRC Press: Boca Raton, FL, USA, 2013; pp. 195–201. [Google Scholar] [CrossRef]
- Jiang, H.T.; Liu, Y.X.; Xin, X.D.; Yu, L.; Zhang, X.C. The starfish Asterina pectinifera, an enemy of sea cucumber. Shandong Fish. 2008, 9, 22–23. [Google Scholar]
- Pratchett, M.S.; Caballes, C.F.; Rivera-Posada, J.A.; Sweatman, H.P.A. Limits to understanding and managing outbreaks of crown-of-thorns starfish. Oceanogr. Mar. Biol. Annu. Rev. 2014, 52, 133–200. [Google Scholar] [CrossRef]
- De’ath, G. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. USA 2012, 109, 17995–17999. [Google Scholar] [CrossRef]
- Fabricius, K.E.; Okaji, K.; De’ath, G. Three lines of evidence to link outbreaks of the crown-of-thorns seastar Acanthaster planci to the release of larval food limitation. Coral Reefs 2010, 29, 593–605. [Google Scholar] [CrossRef]
- Seymour, R.M.; Bradbury, R.H. Lengthening reef recovery times from crown-of-thorns outbreaks signal systemic degradation of the Great Barrier Reef. Mar. Ecol. Prog. Ser. 1999, 176, 1–10. [Google Scholar] [CrossRef]
- Sun, G. Research on the ecology of starfish and their harm and control methods in shellfish aquaculture. Foreign Fish. 1983, 4, 16–20. [Google Scholar]
- Byrne, M.; Morrice, M.G.; Wolf, B. Introduction of the northern Pacific asteroid Asterias amurensis to Tasmania: Reproduction and current distribution. Mar. Biol. 1997, 127, 673–685. [Google Scholar] [CrossRef]
- Li, Y.C.; Wu, Z.J.; Liang, J.L.; Chen, S.Q.; Zhao, J.M. Analysis on the outbreak period and cause of Acanthaster planci in Xisha Islands in recent 15 years. China Sci. Bull. 2009, 64, 3478–3484. [Google Scholar] [CrossRef]
- Li, Y.C.; Liang, J.L.; Wu, Z.J.; Chen, S.Q. Outbreak and Prevention of Acanthaster planci. Ocean. Dev. Manag. 2009, 36, 9–12. [Google Scholar]
- Tkachenko, K.S.; Huan, N.H.; Thanh, N.H.; Britayev, T.A. Extensive coral reef decline in Nha Trang Bay, Vietnam: Acanthaster planci outbreak: The final event in a sequence of chronic disturbances. Mar. Freshw. Res. 2020, 72, 186–199. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, Y.B.; Guo, H.; Cao, L.Q.; Jin, Y. Advances and perspectives on the research of starfish outbreaks in northern China. Chin. J. Appl. Ecol. 2023, 34, 1146–1152. (In Chinese) [Google Scholar] [CrossRef]
- Aleotti, A.; Wilkie, I.C.; Yaez-Guerra, L.A.; Gattoni, G.; Rahman, T.A.; Wademan, R.F.; Ahmad, Z.; Ivanova, D.A.; Semmens, D.C.; Delroisse, J.; et al. Discovery and functional characterization of neuropeptides in crinoid echinoderms. Front. Neurosci. 2022, 16, 1006594. [Google Scholar] [CrossRef]
- Mackenzie, C.L. Feeding rates of starfish, Asterias forbesi (Desor), at controlled water temperatures and during different seasons of the year. Fish. Bull. 1969, 65, 67–72. [Google Scholar]
- Lawrence, J.M.; Byrne, M.; Harris, L.; Keegan, B.; Freeman, S.; Cowell, B.C. Sublethal arm loss in Asterias amurensis, A. Rubens, A. Vulgaris, and A. Forbesi (Echinodermata: Asteroidea). Vie Milieu 1999, 49, 69–73. [Google Scholar] [CrossRef]
- Himmelman, J.H.; Dutil, C.; Gaymer, C.F. Foraging behavior and activity budgets of sea stars on a subtidal sediment bottom community. J. Exp. Mar. Biol. Ecol. 2005, 322, 153–165. [Google Scholar] [CrossRef]
- Li, H.J.; Li, S.Q.; Wang, F.; Lan, W.J. Analysis of the fatty acid composition and biological significance of Crown-of-Thorns Starfish. J. Zhongshan Univ. Nat. Sci. Ed. 2009, 48, 55–60. [Google Scholar]
- Ratianingsih, R.; Ismawati, N.; Puspita, J.W.; Jaya, A.I. The role of top-predator in the preservation of coral reefs ecosystem. Commun. Biomath. Sci. 2017, 1, 54. [Google Scholar] [CrossRef]
- Suenaga, K. Bioorganic studies on marine natural products with bioactivity, such as antitumor activity and feeding attractance. Cheminform 2004, 35, 461374. [Google Scholar] [CrossRef]
- Babcock, R.C.; Bull, G.D.; Harrison, P.L.; Heyward, A.J.; Willis, B.L. Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Mar. Biol. 1986, 90, 379–394. [Google Scholar] [CrossRef]
- Levitan, D.R. The ecology of fertilization in free-spawning invertebrates. In Ecology of Marine Invertebrate Larvae; CRC Press: Boca Raton, FL, USA, 2020; pp. 123–156. [Google Scholar] [CrossRef]
- Kanatani, H. Mechanism of starfish spawning with special reference to gonad-stimulating substance (GSS) of nerve and meiosis-inducing substance (MIS) of gonad. Jpn. J. Exp. Morph. 1967, 21, 61–78. [Google Scholar]
- Jönsson, M.; Morin, M.; Wang, C.K.; Craik, D.J.; Degnan, S.M.; Degnan, B.M. Sex-specific expression of pheromones and other signals in gravid starfish. BMC Biol. 2022, 20, 288. [Google Scholar] [CrossRef] [PubMed]
- Wilkie, I.C. Do gulls benefit from the starfish autotomy response? Mar. Biodivers. Rec. 2010, 3, e12. [Google Scholar] [CrossRef]
- Formery, L.; Peluso, P.; Kohnle, I.; Malnick, J.; Thompson, J.R.; Pitel, M.; Uhlinger, K.R.; Rokhsar, D.S.; Rank, D.R.; Lowe, C.J. Molecular evidence of anteroposterior patterning in adult echinoderms. Nature 2023, 623, 555–561. [Google Scholar] [CrossRef]
- Tian, S.; Zandawala, M.; Beets, I.; Baytemur, E.; Slade, S.E.; Scrivens, J.H.; Elphick, M.R. Urbilaterian origin of paralogous GnRH and corazonin neuropeptide signalling pathways. Sci. Rep. 2016, 6, 28788. [Google Scholar] [CrossRef]
- Yañez-Guerra, L.A.; Zhong, X.; Moghul, I.; Butts, T.; Zampronio, C.G.; Jones, A.M.; Mirabeau, O.; Elphick, M.R. Echinoderms provide missing link in the evolution of PrRP/sNPF-type neuropeptide signalling. eLife 2020, 9, e57640. [Google Scholar] [CrossRef]
- Escudero Castelán, N.; Semmens, D.C.; Guerra, L.A.Y.; Zandawala, M.; Dos Reis, M.; Slade, S.E.; Scrivens, J.H.; Zampronio, C.G.; Jones, A.M.; Mirabeau, O.; et al. Receptor deorphanization in an echinoderm reveals kisspeptin evolution and relationship with SALMFamide neuropeptides. BMC Biol. 2020, 20, 187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yañez-Guerra, L.A.; Tinoco, A.B.; Escudero Castelán, N.; Egertová, M.; Elphick, M.R. Somatostatin-type and allatostatin-C-type neuropeptides are paralogous and have opposing myoregulatory roles in an echinoderm. Proc. Natl. Acad. Sci. USA 2022, 119, e2113589119. [Google Scholar] [CrossRef]
- Tinoco, A.B.; Barreiro-Iglesias, A.; Yañez Guerra, L.A.; Delroisse, J.; Zhang, Y.; Gunner, E.F.; Zampronio, C.G.; Jones, A.M.; Egertová, M.; Elphick, M.R. Ancient role of sulfakinin/cholecystokinin-type signalling in inhibitory regulation of feeding processes revealed in an echinoderm. eLife 2021, 10, e65667. [Google Scholar] [CrossRef] [PubMed]
- Odekunle, E.A.; Semmens, D.C.; Martynyuk, N.; Ana Belén, T.; Elphick, M.R. Ancient role of vasopressin/oxytocin-type neuropeptides as regulators of feeding revealed in an echinoderm. BMC Biol. 2019, 17, 60. [Google Scholar] [CrossRef]
- Tinoco, A.B.; Semmens, D.C.; Patching, E.C.; Gunner, E.F.; Egertová, M.; Elphick, M.R. Characterization of NGFFYamide signaling in starfish reveals roles in regulation of feeding behavior and locomotory systems. Front. Endocrinol. 2018, 9, 507. [Google Scholar] [CrossRef]
- Lin, M.; Mita, M.; Egertová, M.; Zampronio, C.G.; Jones, A.M.; Elphick, M.R. Cellular localization of relaxin-like gonad-stimulating peptide expression in Asterias rubens: New insights into neurohormonal control of spawning in starfish. J. Comp. Neurol. 2017, 525, 1599–1617. [Google Scholar] [CrossRef]
- Lefevre, M.; Flammang, P.; Aranko, A.S.; Linder, M.B.; Scheibel, T.; Humenik, M.; Leclercq, M.; Surin, M.; Tafforeau, L.; Wattiez, R.; et al. Sea star-inspired recombinant adhesive proteins self-assemble and adsorb on surfaces in aqueous environments to form cytocompatible coatings. Acta Biomater. 2020, 112, 62–74. [Google Scholar] [CrossRef]
- Algrain, M.; Hennebert, E.; Bertemes, P.; Wattiez, R.; Flammang, P.; Lengerer, B. In the footsteps of sea stars: Deciphering the catalogue of proteins involved in underwater temporary adhesion. Open Biol. 2022, 12, 220103. [Google Scholar] [CrossRef]
- Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcotec, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2010, 25, 35–94. [Google Scholar] [CrossRef]
- Kimura, S.; Omura, Y.; Ishida, M.; Shirai, H. Molecular characterization of fibrillar collagen from the body wall of starfish Asterias amurensis. Comp. Biochem. B-Biochem. Mol. Biol. 1993, 104, 663–668. [Google Scholar] [CrossRef]
- Li, M.J.; Sun, Q.W.; Wang, X.Y.; Liu, Y. Antimicrobial activity of polypeptides from Asterias amurensis. Appl. Chem. 2017, 46, 2073–2076. [Google Scholar] [CrossRef]
- Cao, Q. Study on the medicinal and nutritional value of Asterias. China Foreign Med. Treat. 2008, 9, 71. [Google Scholar] [CrossRef]
- Wang, B.; Zheng, Y. Study of astersaponin on antitumor effects. Chin. Tradit. Herb. Drugs 2001, 32, 244–245. [Google Scholar]
- Masuda, K.; Funayama, S.; Komiyama, K.; Ito, K. Antitumor acidic polysaccharide NRP-1 isolated from starfish; Asterias amurensis Lütken. Kitasato Arch. Exp. Med. 1987, 60, 95–103. [Google Scholar]
- Xu, D.H.; Huang, S.L.; Xu, S.B. Starfish sterol protects anisodine treated mice from impairment of learning and memory. Chin. J. Pharmacol. Toxicol. 2000, 02, 121–124. [Google Scholar]
- Medina-Feliciano, J.G.; García-Arrarás, J.E. Regeneration in Echinoderms: Molecular advancements. Front. Cell Dev. Biol. 2021, 9, 768641. [Google Scholar] [CrossRef]
- Ji, S.L.; Zhong, Y.X.; Zheng, Y.X.; Zhang, T.M.; Xu, J.W. Studies on the principles analyses and inhibiting lack of vital energy experiments of Asterias. Chin. J. Biochem. Med. 1996, 03, 108–110. [Google Scholar]
- Moss, C.; Hunter, A.J.; Thorndyke, M.C. Patterns of bromodeoxyuridine incorporation and neuropeptide immunoreactivity during arm regeneration in the starfish Asterias rubens. Philos. Trans. R. Soc. Lond. 1998, 353, 421–436. [Google Scholar] [CrossRef]
- Zhukova, N.V. Fatty acids of echinoderms: Diversity, current applications and future opportunities. Mar. Drugs 2022, 21, 21. [Google Scholar] [CrossRef]
- Wang, C.Y.; Gu, Q.Q.; Zhou, P. Starfish Asterias amurensis—A potential seafood resource. J. Fish. Sci. China 1999, 4, 67–71. [Google Scholar]
- Xu, H.; Wang, Y.P.; Yang, D.M.; Lou, Q.M.; Zhang, J.J.; Yang, W.G. Analysis and evaluation of nutritional components of two kinds of sea urchin gonads. Acta Nutr. Sin. 2018, 40, 307–309. [Google Scholar]
- Diao, Q.P.; Hou, D.Y.; Hui, R.H.; Xu, L.L.; Li, T.C. Study on fatty acid in gonad of Anthocidaris crassispina with GC-MS in Chinese. Spec. Wild Econ. Anim. Plant Res. 2012, 34, 49–51. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, J.F.; Meng, S.J.; Xu, Z.L. Analysis on chemical, amino acid, fatty acid and heavy metal composition of different sea cucumber (Stichopus japonicus) products. Food Sci. Technol. 2016, 41, 133–139. [Google Scholar] [CrossRef]
- Xu, J.W. A study on nutrition and edibles of reproductive gland of Asterias. J. Dalian Fish. Coll. 1991, 1, 29–33. [Google Scholar] [CrossRef]
- Wang, C.L.; Wang, B.T.; Wang, H.J.; Teng, Y.; Qin, X.M.; Shen, J.L. Study on the processing technology of original flavor Maoctra veneriformis. Prog. Fish. Sci. 2011, 32, 135–140. [Google Scholar]
- Danis, B.; Wantier, P.; Flammang, R.; Pernet, P.; Dubois, P. Bioaccumulation and effects of pcbs and heavy metals in sea stars Asterias rubens l. from the north sea: A small scale perspective. Sci. Total Environ. 2006, 356, 275–289. [Google Scholar] [CrossRef]
- Temara, A.; Warnau, M.; Dubois, P. Heavy metals in the sea star Asterias rubens (Echinodermata): Basis for the construction of an efficient biomonitoring. In Environmental Changes and Radioactive Tracers; IRD Editions: Paris, France, 2002; pp. 71–91. [Google Scholar]
- Besten, P.J.D.; Herwig, H.J.; Zandee, D.l.; Voogt, P.A. Effects of cadmium and PCBs on reproduction of the sea star Asterias rubens: Aberration in the earlydevelopment. Ecotoxicol. Environ. Saf. 1989, 18, 173–180. [Google Scholar] [CrossRef]
- Blowes, L.M.; Michaela, E.; Liu, Y.; Davis, G.R.; Elphick, M.R. Body wall structure in the starfish Asterias rubens. J. Anat. 2017, 231, 325–341. [Google Scholar] [CrossRef]
- Yang, T.; Chen, H.; Jia, Z.; Deng, Z.; Chen, L.; Peterman, E.M.; Weaver, J.C.; Li, L. A damage-tolerant, dual-scale, single-crystalline microlattice in the knobby starfish. Science 2022, 375, 647–652. [Google Scholar] [CrossRef]
- Vate, N.K.; Undeland, I.; Abdollahi, M. Resource efficient collagen extraction from common starfish with the aid of high shear mechanical homogenization and ultrasound. Food Chem. 2022, 393, 133426. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.C. Purification and Partial Biological Functions of Body Wall Collagen from Asterias rollestoni. Master’s Thesis, Ocean University of China, Qingdao, China, 2006. [Google Scholar]
- Park, T. Thermally stable, planar hybrid perovskite solar cells with high efficiency. In Proceedings of the 4th Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and Optoelectronics, Tsukuba-shi, Japan, 20–22 January 2020. [Google Scholar] [CrossRef]
- Banerjee, P.; Shanthi, C. Isolation of novel bioactive regions from bovine achilles tendon collagen having angiotensin I-converting enzyme-inhibitory properties. Process Biochem. 2012, 47, 2335–2346. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Raines, R.T.; Glick, G.D. Review collagen-based biomaterials for wound healing. Biopolymers 2014, 101, 821–833. [Google Scholar] [CrossRef] [PubMed]
- Daniel, K.; Steffen, O.; Stephan, S.; Denise, Z.; Albert, G. Specific collagen peptides improve bone mineral density and bone markers in postmenopausal women—A randomized controlled study. Nutrients 2018, 10, 97. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Cruz, G.; León-López, A.; Cruz-Gómez, V.; Jiménez-Alvarado, R.; Aguirre-Lvarez, G. Collagen hydrolysates for skin protection: Oral administration andtopical formulation. Antioxidants 2020, 9, 181. [Google Scholar] [CrossRef] [PubMed]
- Han, S.B.; Won, B.; Yang, S.C.; Kim, D.H. Asterias pectinifera derived collagen peptide-encapsulating elastic nanoliposomes for the cosmetic application. J. Ind. Eng. Chem. 2021, 98, 289–297. [Google Scholar] [CrossRef]
- Wu, H.Z.; Liu, T.H.; Sun, Y.Q.; Li, X.; Li, H.Y.; Wang, Y. The feasibility of Asterias echino skin as additive component of the feed for Apostichopus japonicus. Mar. Fish. 2015, 37, 45–51. [Google Scholar] [CrossRef]
- Uthicke, S.; Schaffelke, B.; Byrne, M. A boom-bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecol. Monogr. 2009, 79, 3–24. [Google Scholar] [CrossRef]
Time | Region | Species of Starfish | Endangered Species |
---|---|---|---|
1950s [14,15]. | Tokyo Bay, Sendai Bay, and Yuming Bay in Japan | Asterias amurensis | Shellfish |
1960s [24]; 1985–2012 [25]. | Great Barrier Reef in Australia | Acanthaster planci | Coral |
1974 [27]. | Tottori Prefecture, | Starfish | Babylonia japonica |
1981 [10]. | Japan | Asterias amurensis | Scapharca broughtoni |
1982–1988 [16]. | Bay of Douarnenez, Brittany, France | Asterias rubens | Mussel beds |
1980s [21]. | Southern Australia | Asterias amurensis | Scallop larva |
End of the 20th century [19,28]. | Tasmania | Asterias amurensis | Mussels, Brachionichthys hirsutus |
2006–2011 [29]; 2018 [30]. | Paracel Islands in the South China Sea | Acanthaster planci | Coral |
2006–2007 [6]; since 2020 [22]. | Qingdao, Shandong | Asterias amurensis, Patiria pectinifera | Abalone, Ruditapes philippinarum, Apostichopus japonicus, etc. |
2007 [8]. | Qingliu River | Asterias | Azumapecten farreri |
2016–2018 [31]. | Nha Trang Bay, Vietnam | Acanthaster planci | Coral |
Control and Prevention Methods | Ways | Process | Chemical Components |
---|---|---|---|
Physical removal methods | Manual timed cleaning | Large-scale fishing based on the reproductive cycle of starfish. | |
Chemical removal methods | Drug delivery | Quicklime; Ammonium salt and acetic acid stimulation; Acid-based Pharmaceuticals; Pheromones. | |
Removal methods through natural enemy deployment | Attack from predators | Destroying starfish with Triton’s trumpet. Leptomithrax gaimadii, Larus argentatus, fish, etc. |
Exploitation and Utilization of Starfish | Ways | References |
---|---|---|
Basic biological | Research on starfish and other echinoderms can shed light on the evolutionary origins of vertebrate characteristics. | [45] |
Medical applications | Characterization of antimicrobial peptides; Anticancer therapy through the development of starfish saponin-based formulations. | [50,51,52,57] |
Food applications | The gonads of starfish are abundant in fatty acids, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). | [54] |
Industry applications | The protein-rich body walls of starfish present an opportunity for collagen extraction, subsequently processed into gelatin. | [51,54] |
Other applications | Starfish can serve as a feed ingredient to enhance the growth of aquatic animals, contributing to the reduction in carbon emissions. | [58,59,60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, L.; Sun, Y.; Zhao, C.; Elphick, M.R.; Wang, Q. Research Progress on Starfish Outbreaks and Their Prevention and Utilization: Lessons from Northern China. Biology 2024, 13, 537. https://doi.org/10.3390/biology13070537
Qu L, Sun Y, Zhao C, Elphick MR, Wang Q. Research Progress on Starfish Outbreaks and Their Prevention and Utilization: Lessons from Northern China. Biology. 2024; 13(7):537. https://doi.org/10.3390/biology13070537
Chicago/Turabian StyleQu, Liang, Yongxin Sun, Chong Zhao, Maurice R. Elphick, and Qingzhi Wang. 2024. "Research Progress on Starfish Outbreaks and Their Prevention and Utilization: Lessons from Northern China" Biology 13, no. 7: 537. https://doi.org/10.3390/biology13070537
APA StyleQu, L., Sun, Y., Zhao, C., Elphick, M. R., & Wang, Q. (2024). Research Progress on Starfish Outbreaks and Their Prevention and Utilization: Lessons from Northern China. Biology, 13(7), 537. https://doi.org/10.3390/biology13070537