Effects of Organic Xenobiotics on Tenebrio molitor Larvae and Their Parasite Gregarina polymorpha
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramos-Elorduy, J.; González, E.A.; Hernández, A.R.; Pino, J.M. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J. Econ. Entomol. 2002, 95, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Rosentrater, K.A. Chapter 21—Insects in grains: Identification, damage, and detection. In Storage of Cereal Grains and Their Products, 5th ed.; Woodhead Publishing: Sawston, UK, 2022; pp. 607–646. [Google Scholar] [CrossRef]
- Park, J.B.; Choi, W.H.; Kim, S.; Jin, H.; Han, Y.S.; Lee, Y.; Kim, N.J. Developmental characteristics of Tenebrio molitor larvae (Coleoptera: Tenebrionidae) in different instars. Int. J. Ind. Entomol. 2014, 28, 5–9. [Google Scholar] [CrossRef]
- Martynov, V.O.; Brygadyrenko, V.V. The impact of some inorganic substances on change in body mass of Tenebrio molitor (Coleoptera, Tenebrionidae) larvae in a laboratory experiment. Folia Oecol. 2018, 45, 24–32. [Google Scholar] [CrossRef]
- Martynov, V.O.; Brygadyrenko, V.V. The influence of synthetic food additives and surfactants on the body weight of larvae of Tenebrio molitor (Coleoptera, Tenebrionidae). Biosyst. Divers. 2017, 25, 236–242. [Google Scholar] [CrossRef]
- Neethirajan, S.; Karunakaran, C.; Jayas, D.S.; White, N.D.G. Detection techniques for stored-product insects in grain. Food Control 2007, 18, 157–162. [Google Scholar] [CrossRef]
- Siemianowska, E.; Kosewska, A.; Aljewicz, M.; Skibniewska, K.; Polak-Juszczak, L.; Jarocki, A.; Jędras, M. Larvae of mealworm (Tenebrio molitor L.) as European novel food. Agric. Sci. 2013, 4, 287–291. [Google Scholar] [CrossRef]
- Bjørge, J.D.; Overgaard, J.; Malte, H.; Gianotten, N.; Heckmann, L.H. Role of temperature on growth and metabolic rate in the tenebrionid beetles Alphitobius diaperinus and Tenebrio molitor. J. Insect Physiol. 2018, 107, 89–96. [Google Scholar] [CrossRef]
- Ribeiro, N.; Abelho, M.; Costa, R. A review of the scientific literature for optimal conditions for mass rearing Tenebrio molitor (Coleoptera: Tenebrionidae). J. Entomol. Sci. 2018, 53, 434–454. [Google Scholar] [CrossRef]
- Ortiz, J.A.C.; Ruiz, A.T.; Morales-Ramos, J.A.; Thomas, M.; Rojas, M.G.; Tomberlin, J.K.; Yi, L.; Han, R.; Giroud, L.; Jullien, R.L. Chapter 6—Insect mass production technologies. In Insects as Sustainable Food Ingredients; Dossey, T., Morales-Ramos, J.A., Rojas, M.G., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 153–201. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Williams, J.P.; Williams, J.R.; Kirabo, A.; Chester, D.; Peterson, M. Chapter 3—Nutrient content and health benefits of insect. In Insects as Sustainable Food Ingredients; Dossey, T., Morales-Ramos, J.A., Rojas, M.G., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 61–84. [Google Scholar] [CrossRef]
- Grau, T.; Vilcinskas, A.; Joop, G. Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed. Z. Naturforschung C J. Biosci. 2017, 72, 337–349. [Google Scholar] [CrossRef]
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA); Turck, D.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, e06343. [Google Scholar] [CrossRef] [PubMed]
- Martynov, V.O.; Brygadyrenko, V.V. The influence of the synthetic food colourings tartrazine, allura red and indigo carmine on the body weight of Tenebrio molitor (Coleoptera, Tenebrionidae) larvae. Regul. Mech. Biosyst. 2018, 9, 479–484. [Google Scholar] [CrossRef]
- Martynov, V.O.; Hladkyi, O.Y.; Kolombar, T.M.; Brygadyrenko, V.V. Impact of essential oil from plants on migratory activity of Sitophilus granarius and Tenebrio molitor. Regul. Mech. Biosyst. 2019, 10, 359–371. [Google Scholar] [CrossRef]
- Brai, A.; Poggialini, F.; Vagaggini, C.; Pasqualini, C.; Simoni, S.; Francardi, V.; Dreassi, E. Tenebrio molitor as a simple and cheap preclinical pharmacokinetic and toxicity model. Int. J. Mol. Sci. 2023, 24, 2296. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.M.; Criddle, C.S. Characterization of biodegradation of plastics in insect larvae. Method. Enzymol. 2021, 648, 95–120. [Google Scholar] [CrossRef]
- Wang, X.; Tang, T. Effects of polystyrene diet on the growth and development of Tenebrio molitor. Toxics 2022, 10, 608. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Hou, Y.; Li, W.; Yang, S.; Li, Q.; Yu, Z. Exploring the potential of grease from yellow mealworm beetle (Tenebrio molitor) as a novel biodiesel feedstock. Appl. Energy 2013, 101, 618–621. [Google Scholar] [CrossRef]
- Son, Y.J.; Hwang, I.K.; Nho, C.W.; Kim, S.M.; Kim, S.H. Determination of carbohydrate composition in mealworm (Tenebrio molitor L.) larvae and characterization of mealworm chitin and chitosan. Foods 2021, 10, 640. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Kim, M.A.; Park, I.; Hwang, J.S.; Na, M.; Bae, J.S. Novel direct factor Xa inhibitory compounds from Tenebrio molitor with anti-platelet aggregation activity. Food Chem. Toxicol. 2017, 109, 19–27. [Google Scholar] [CrossRef]
- Cho, H.R.; Lee, S.O. Novel hepatoprotective peptides derived from protein hydrolysates of mealworm (Tenebrio molitor). Food Res. Int. 2020, 133, 109194. [Google Scholar] [CrossRef]
- Moruzzo, R.; Riccioli, F.; Espinosa Diaz, S.; Secci, C.; Poli, G.; Mancini, S. Mealworm (Tenebrio molitor): Potential and challenges to promote circular economy. Animals 2021, 11, 2568. [Google Scholar] [CrossRef]
- Desportes, I.; Schrével, J. Treatise on zoology—Anatomy, taxonomy, biology. The gregarines. In The Early Branching Apicomplexa; Brill: Leiden, The Netherlands, 2013; Volume 2. [Google Scholar]
- Clopton, R.E.; Janovy, J., Jr.; Percival, T.J. Host stadium specificity in the gregarine assemblage parasitizing Tenebrio molitor. J. Parasitol. 1992, 78, 334–337. [Google Scholar] [CrossRef]
- Clopton, R.E.; Janovy, J. Developmental niche structure in the gregarine assemblage parasitizing Tenebrio molitor. J. Parasitol. 1993, 79, 701–709. [Google Scholar] [CrossRef]
- Slowik, A.R.; Herren, P.; Bessette, E.; Lim, F.S.; Hernández-Pelegrín, L.; Savio, C. Harmful and beneficial symbionts of Tenebrio molitor and their implications for disease management. J. Insect. Food Feed 2023, 9, 1381–1396. [Google Scholar] [CrossRef]
- Schoonvaere, K.; Brunain, M.; Baeke, F.; De Bruyne, M.; De Rycke, R.; de Graaf, D.C. Comparison between Apicystis cryptica sp. n. and Apicystis bombi (Arthrogregarida, Apicomplexa): Gregarine parasites that cause fat body hypertrophism in bees. Eur. J. Protistol. 2020, 73, 125688. [Google Scholar] [CrossRef] [PubMed]
- Schawang, J.E.; Janovy, J., Jr. The response of Gregarina niphandrodes (Apicomplexa: Eugregarinida: Septatina) to host starvation in Tenebrio molitor (Coleoptera: Tenebrionidae) adults. J. Parasitol. 2001, 87, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Bessette, E.; Williams, B. Protists in the insect rearing industry: Benign passengers or potential risk? Insects 2022, 13, 482. [Google Scholar] [CrossRef] [PubMed]
- Clopton, R.E. Phylum Apicomplexa Levine, 1970: Order Eugregarinorida Leger, 1900. In Illustrated Guide to the Protozoa, 2nd ed.; Lee, J.J., Leedale, G., Patterson, D., Bradbury, P.C., Eds.; Society of Protozoologists: Lawrence, KS, USA, 2002; pp. 205–288. [Google Scholar]
- Rueckert, S.; Betts, E.L.; Tsaousis, A.D. The symbiotic spectrum: Where do the gregarines fit? Trends Parasitol. 2019, 35, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Parhomenko, O.V.; Brygadyrenko, V.V. Effects of biphenyl on Blaberus craniifer (Blattodea, Blaberidae) cockroaches and their parasites—Gregarines and nematodes. Biosyst. Divers. 2023, 31, 513–520. [Google Scholar] [CrossRef]
- Parhomenko, O.V.; Lagutenko, O.T.; Lebedynets, N.V.; Brygadyrenko, V.V. Body-weight gains in Blaberus craniifer cockroaches and the intensity of their infection with gregarines and nematodes. Biosyst. Divers. 2023, 31, 368–375. [Google Scholar] [CrossRef]
- Zuk, M. The effects of gregarine parasites, body size, and time of day on spermatophore production and sexual selection in field crickets. Behav. Ecol. Sociobiol. 1987, 21, 65–72. [Google Scholar] [CrossRef]
- Rodriguez, Y.; Omoto, C.K.; Gomulkiewicz, R. Individual and population effects of eugregarine, Gregarina niphandrodes (Eugregarinida: Gregarinidae), on Tenebrio molitor (Coleoptera: Tenebrionidae). Environ. Entomol. 2007, 36, 689–693. [Google Scholar] [CrossRef]
- Mita, K.; Kawai, N.; Rueckert, S.; Sasakura, Y. Large-scale infection of the ascidian Ciona intestinalis by the gregarine Lankesteria ascidiae in an inland culture system. Dis. Aquat. Organ. 2012, 101, 185–195. [Google Scholar] [CrossRef]
- Brygadyrenko, V.V.; Svyrydchenko, A.O. Influence of the gregarine Stenophora julipusilli (Eugregarinorida, Stenophoridae) on the trophic activity of Rossiulus kessleri (Diplopoda, Julidae). Folia Oecol. 2015, 42, 10–20. [Google Scholar]
- Brygadyrenko, V.V.; Reshetniak, D.Y. Morphometric variability of Clitellocephalus ophoni (Eugregarinida, Gregarinidae) in the intestines of Harpalus rufipes (Coleoptera, Carabidae). Arch. Biol. Sci. 2016, 68, 587–601. [Google Scholar] [CrossRef]
- Siva-Jothy, M.T.; Plaistow, S.J. A fitness cost of eugregarine parasitism in a damselfly. Ecol. Entomol. 2001, 24, 465–470. [Google Scholar] [CrossRef]
- Beier, J.C. Effects of gregarine parasites on the development of Dirofilaria immitis in Aedes triseriatus (Diptera: Culicidae). J. Med. Entomol. 1983, 20, 70–75. [Google Scholar] [CrossRef]
- Hecker, K.R.; Forbes, M.R.; Léonard, N.J. Parasitism of damselflies (Enallagma boreale) by gregarines: Sex biases and relations to adult survivorship. Can. J. Zool. 2002, 80, 162–168. [Google Scholar] [CrossRef]
- Alarcón, M.E.; Jara, F.A.; Briones, R.C.; Dubey, A.K.; Slamovits, C.H. Gregarine infection accelerates larval development of the cat flea Ctenocephalides felis (Bouché). Parasitology 2017, 144, 419–425. [Google Scholar] [CrossRef]
- Štefanac, T.; Grgas, D.; Landeka Dragičević, T. Xenobiotics-division and methods of detection: A review. J. Xenobiot. 2021, 11, 130–141. [Google Scholar] [CrossRef]
- Croom, E. Metabolism of xenobiotics of human environments. Prog. Mol. Biol. Transl. Sci. 2012, 112, 31–88. [Google Scholar] [CrossRef]
- Miglani, R.; Parveen, N.; Kumar, A.; Ansari, M.A.; Khanna, S.; Rawat, G.; Panda, A.K.; Bisht, S.S.; Upadhyay, J.; Ansari, M.N. Degradation of xenobiotic pollutants: An environmentally sustainable approach. Metabolites 2022, 12, 818. [Google Scholar] [CrossRef]
- Bharadwaj, A.; Rastogi, A.; Pandey, S.; Gupta, S. Assessment of the consequences of xenobiotics in soil ecosystem. In Xenobiotics in Urban Ecosystems; Springer International Publishing: Cham, Switzerland, 2023; pp. 51–65. [Google Scholar] [CrossRef]
- Tonelli, F.C.P.; Tonelli, F.M.P. Concerns and threats of xenobiotics on aquatic ecosystems. Bioremediat. Biotechnol. 2020, 3, 15–23. [Google Scholar] [CrossRef]
- Piwowarska, D.; Kiedrzyńska, E. Xenobiotics as a contemporary threat to surface waters. Ecohydrol. Hydrobiol. 2022, 22, 337–354. [Google Scholar] [CrossRef]
- Perkins, S.E.; Hankenson, F.C. Nonexperimental xenobiotics: Unintended consequences of intentionally administered substances in terrestrial animal models. ILAR J. 2022, 60, 216–227. [Google Scholar] [CrossRef]
- Datta, A.; Ghosh, B.; Sarmah, D.; Chaudhary, A.; Borah, A.; Bhattacharya, P. Aspects of xenobiotics and their receptors in stroke. Neuroprotection 2023, 1, 46–57. [Google Scholar] [CrossRef]
- Raś, M.; Iwan, D.; Kamiński, M.J. The tracheal system in post-embryonic development of holometabolous insects: A case study using the mealworm beetle. J. Anat. 2018, 232, 997–1015. [Google Scholar] [CrossRef]
- Aboelhadid, S.M.; Ibrahium, S.M.; Abdel-Tawab, H.; Hassan, A.O.; Al-Quraishy, S.; Saleh, F.E.R.; Abdel-Baki, A.S. Toxicity and repellency efficacy of benzyl alcohol and benzyl benzoate as eco-friendly choices to control the red flour beetle Tribolium castaneum (Herbst, 1797). Molecules 2023, 28, 7731. [Google Scholar] [CrossRef]
- Liu, C.; Masri, J.; Perez, V.; Maya, C.; Zhao, J. Growth performance and nutrient composition of mealworms (Tenebrio molitor) fed on fresh plant materials-supplemented diets. Foods 2020, 9, 151. [Google Scholar] [CrossRef] [PubMed]
- Geus, A. Sporentierchen, Sporozoa: Die Gregarinida der land- und su¨ßwasserbewohnenden Arthropoden Mitteleuropas. In Die Tierwelt Deutschlands und der Angrenzenden Meeresteile nach Ihren Merkmalen und Nach Ihrer Lebensweise; Dahl, F., Ed.; VEB Gustav Fischer: Jena, Germany, 1969. [Google Scholar]
- Castilla, A.M.; Dauwe, T.; Mora, I.; Palmer, M.; Guitart, R. Mortality of the yellow mealworm Tenebrio molitor exposed to fertilizers and herbicides commonly used in agriculture. Vie Milieu 2008, 58, 263–275. [Google Scholar]
- Sen, B.; Gurdal, B.; Estep, A.S.; Tabanca, N.; Kurkcuoglu, M.; Goger, F.; Gul, Z.; Bardakci, H.; Becnel, J.; Mat, A.; et al. The insecticidal activities of Erica manipuliflora Salisb. extracts in the flowering and fruiting periods and their evaluation in term of chemical profiles of active extracts. Ind. Crop. Prod. 2022, 187, 115380. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, Z.; Wang, S.; Yin, F.; Wei, Y.; Xie, J.; Sun, R. Discovery of 2-naphthol from the leaves of Actephila merrilliana as a natural nematicide candidate. J. Agric. Food Chem. 2023, 71, 13209–13219. [Google Scholar] [CrossRef] [PubMed]
- Poston, R.G.; Saha, R.N. Epigenetic effects of polybrominated diphenyl ethers on human health. Int. J. Environ. Res. Public Health 2019, 16, 2703. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.B.; Chen, W.J.; Shan, T.Z.; Sun, B.Y.; Yan, P.C.; Jiang, W. Antibacterial diphenyl ether, benzophenone and xanthone derivatives from Aspergillus flavipes. Chem. Biodivers. 2020, 17, e1900640. [Google Scholar] [CrossRef] [PubMed]
- Jose, A.; Bansal, M.; Svirskis, D.; Swift, S.; Gizdavic-Nikolaidis, M.R. Synthesis and characterization of antimicrobial colloidal polyanilines. Colloids Surf. B Biointerfaces 2024, 238, 113912. [Google Scholar] [CrossRef] [PubMed]
- Morash, M.G.; Soanes, K.H.; Achenbach, J.C.; Ellis, L.D. Assessing the morphological and behavioral toxicity of catechol using larval zebrafish. Int. J. Mol. Sci. 2022, 23, 7985. [Google Scholar] [CrossRef] [PubMed]
- Sumner, R. Relation of gregarines to growth and longevity in the mealworm Tenebrio molitor L. Ann. Entomol. Soc. Am. 1936, 29, 645–648. [Google Scholar] [CrossRef]
- Harry, O.G. The effect of a eugregarine Gregarina polymorpha (Hammerschmidt) on the mealworm larva of Tenebrio molitor (L.). J. Protozool. 1967, 14, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Johny, S.; Muralirangan, M.; Sanjayan, P. Parasitization potential of two cephaline gregarines, Leidyana subramanii Pushkala and Muralirangan and Retractocephalus dhawanii sp. n. on the tobacco grasshopper, Atractomorpha crenulata (Fab.). J. Orthoptera Res. 2000, 9, 67. [Google Scholar] [CrossRef]
- Gigliolli, A.A.; Julio, A.H.; Conte, H. The life cycle of Gregarina cuneata in the midgut of Tribolium castaneum and the effects of parasitism on the development of insects. Bull. Entomol. Res. 2016, 106, 258–267. [Google Scholar] [CrossRef]
- Er, M.K.; Gökçe, A. Effect of Diplocystis tipulae Sherlock (Eugregarinida: Apicomplexa), a coelomic gregarine pathogen of tipulids, on the larval size of Tipula paludosa Meigen (Tipulidae: Diptera). J. Invertebr. Pathol. 2005, 89, 112–115. [Google Scholar] [CrossRef]
- Wolz, M.; Schrader, A.; Whitelaw, E.; Müller, C. Gregarines modulate insect responses to sublethal insecticide residues. Oecologia 2022, 198, 255–265. [Google Scholar] [CrossRef]
- Koura, E.A.; Kamel, E.G. A survey of gregarines associated with Tenebrio molitor and Opatriodes vicinus in the central region of Saudi Arabia. J. Egypt. Soc. Parasitol. 1993, 23, 213–220. [Google Scholar]
Compound | Number of Live Larvae | Number of Larvae That Turned into Pupae | Number of Larvae That Died |
---|---|---|---|
Cyclopentanol | 9 | 1 | 5 |
2-Naphthol | 9 | 1 | 5 |
3,4,5-Trihydroxybenzoic acid | 11 | 0 | 4 |
3-Aminobenzoic acid | 11 | 1 | 3 |
Benzalkonium chloride | 7 | 6 | 2 |
Cyclohexanemethanol | 8 | 5 | 2 |
Maleic anhydride | 12 | 1 | 2 |
Phenol | 13 | 0 | 2 |
Cyclohexanol | 13 | 0 | 2 |
Resorcin | 13 | 0 | 2 |
3-Furancarboxylic acid | 9 | 5 | 1 |
1-Phenylethylamine | 12 | 2 | 1 |
2-Methylfuran | 13 | 1 | 1 |
Terpinen-4-ol | 13 | 1 | 1 |
Dibutyl phthalate | 13 | 1 | 1 |
Benzoic acid | 14 | 0 | 1 |
Succinic anhydride | 14 | 1 | 0 |
o-Xylene | 14 | 1 | 0 |
Catechol | 15 | 0 | 0 |
Diphenyl ether | 15 | 0 | 0 |
Benzyl alcohol | 15 | 0 | 0 |
5-Methyl furfural | 15 | 0 | 0 |
6-Aminohexanoic acid | 15 | 0 | 0 |
Benzaldehyde | 15 | 0 | 0 |
Control group | 20 | 10 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazurska, V.; Brygadyrenko, V. Effects of Organic Xenobiotics on Tenebrio molitor Larvae and Their Parasite Gregarina polymorpha. Biology 2024, 13, 513. https://doi.org/10.3390/biology13070513
Lazurska V, Brygadyrenko V. Effects of Organic Xenobiotics on Tenebrio molitor Larvae and Their Parasite Gregarina polymorpha. Biology. 2024; 13(7):513. https://doi.org/10.3390/biology13070513
Chicago/Turabian StyleLazurska, Viktoriia, and Viktor Brygadyrenko. 2024. "Effects of Organic Xenobiotics on Tenebrio molitor Larvae and Their Parasite Gregarina polymorpha" Biology 13, no. 7: 513. https://doi.org/10.3390/biology13070513
APA StyleLazurska, V., & Brygadyrenko, V. (2024). Effects of Organic Xenobiotics on Tenebrio molitor Larvae and Their Parasite Gregarina polymorpha. Biology, 13(7), 513. https://doi.org/10.3390/biology13070513