The Involvement of microRNAs in Bone Remodeling Signaling Pathways and Their Role in the Development of Osteoporosis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Bone Remodeling
3. Biogenesis of miRNAs
4. Osteoclastogenesis
4.1. Signaling Pathways Involved in Osteoclast Differentiation
4.1.1. M-CSF Signaling Pathway
4.1.2. RANKL–RANK Signaling Pathway
4.1.3. Tyrosine-Based Immunoreceptor (ITAM) Signaling Pathway
5. The Role of miRNAs in Osteoclastogenesis
5.1. miR-30
5.2. miR-320e
5.3. miR-1270
6. Osteoblastogenesis
6.1. Signaling Pathways Involved in Osteoblast Differentiation
6.1.1. Wnt Signaling Pathway
6.1.2. Ligands and Agonists of the Wnt Pathway in Bone
6.1.3. Notch Signaling Pathway
6.1.4. Notch Signaling Pathway in Osteoblastogenesis
6.1.5. TGF-β Signaling Pathway in Osteoblastogenesis
7. The Role of miRNAs in Osteoblastogenesis
7.1. miR-23b-3p/miR-885, miR-140-3p and miR-885
7.2. miR-29-3p, miR-324-3p, and miR-550a-3p
7.3. miR-30a-3p/5p, miR-194-3p/5p, miR-27b-3p/5p and miR-34a-3p/5p
7.4. miR-194
7.5. miR-1224-5p
8. miRNAs Involved in Osteocyte Differentiation
9. The Role of miRNA in Osteoporosis
10. Effect of Drugs or Biomaterials in the Expression of miRNAs
10.1. Bisphosphonates in the Treatment of OP and Changes in the Expression of miRNAs
10.2. Effect of Biomaterials in the Expression of miRNAs
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Porter, J.L.; Varacallo, M. Osteoporosis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar] [PubMed]
- Rashki Kemmak, A.; Rezapour, A.; Jahangiri, R.; Nikjoo, S.; Farabi, H.; Soleimanpour, S. Economic burden of Osteoporosis in the world: A systematic review. Med. J. Islam. Repub. Iran 2020, 34, 154. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Lin, C.; Stavre, Z.; Greenblatt, M.B.; Shim, J.H. Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells 2020, 9, 2073. [Google Scholar] [CrossRef] [PubMed]
- Tu, K.N.; Lie, J.D.; Wan, C.K.V.; Cameron, M.; Austel, A.G.; Nguyen, J.K.; Van, K.; Hyun, D. Osteoporosis: A Review of Treatment Options. Pharm. Ther. 2018, 43, 92–104. [Google Scholar]
- Vienberg, S.; Geiger, J.; Madsen, S.; Dalgaard, L.T. MicroRNAs in metabolism. Acta Physiol. 2017, 219, 346–361. [Google Scholar] [CrossRef] [PubMed]
- Macvanin, M.; Obradovic, M.; Zafirovic, S.; Stanimirovic, J.; Isenovic, E.R. The role of miRNAs in metabolic diseases. Curr. Med. Chem. 2022, 30, 1922–1944. [Google Scholar] [CrossRef] [PubMed]
- Materozzi, M.; Merlotti, D.; Gennari, L.; Bianciardi, S. The Potential Role of miRNAs as New Biomarkers for Osteoporosis. Int. J. Endocrinol. 2018, 2018, 2342860. [Google Scholar] [CrossRef] [PubMed]
- Krane, S.M. Identifying genes that regulate bone remodeling as potential therapeutic targets. J. Exp. Med. 2005, 201, 841–843. [Google Scholar] [CrossRef]
- Katsimbri, P. The biology of normal bone remodeling. Eur. J. Cancer Care 2017, 26, e12740. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; McDonald, J.M. Disorders of bone remodeling. Annu. Rev. Pathol. 2011, 6, 121–145. [Google Scholar] [CrossRef]
- Raut, N.; Wicks, S.M.; Lawal, T.O.; Mahady, G.B. Epigenetic regulation of bone remodeling by natural compounds. Pharmacol. Res. 2019, 147, 104350. [Google Scholar] [CrossRef]
- Oton-Gonzalez, L.; Mazziotta, C.; Iaquinta, M.R.; Mazzoni, E.; Nocini, R.; Trevisiol, L.; D’Agostino, A.; Tognon, M.; Rotondo, J.C.; Martini, F. Genetics and Epigenetics of Bone Remodeling and Metabolic Bone Diseases. Int. J. Mol. Sci. 2022, 23, 1500. [Google Scholar] [CrossRef]
- Stotz, K.; Griffiths, P. Epigenetics: Ambiguities and implications. Hist. Philos. Life Sci. 2016, 38, 22. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Sultana, A.; Abdullah, K.M.; Pothuraju, R.; Nasser, M.W.; Batra, S.K.; Siddiqui, J.A. Epigenetic regulation of bone remodeling and bone metastasis. Semin. Cell Dev. Biol. 2024, 154 (Pt C), 275–285. [Google Scholar] [CrossRef]
- Suzuki, H.I. Roles of MicroRNAs in Disease Biology. JMA J. 2023, 6, 104–113. [Google Scholar] [CrossRef]
- Bravo Vázquez, L.A.; Moreno Becerril, M.Y.; Mora Hernández, E.O.; León Carmona, G.G.; Aguirre Padilla, M.E.; Chakraborty, S.; Bandyopadhyay, A.; Paul, S. The Emerging Role of MicroRNAs in Bone Diseases and Their Therapeutic Potential. Molecules 2021, 27, 211. [Google Scholar] [CrossRef]
- Alva-Partida, I.; Espinosa-Zavala, L.I.; Jiménez-Ortega, R.F. Biogenesis of miRNAs and their role as biomarkers in detection of diabetic nephropathy. ALAD 2022, 12, 15–25. [Google Scholar] [CrossRef]
- Smolarz, B.; Durczyński, A.; Romanowicz, H.; Szyłło, K.; Hogendorf, P. miRNAs in Cancer (Review of Literature). Int. J. Mol. Sci. 2022, 23, 2805. [Google Scholar] [CrossRef] [PubMed]
- Sreedharam, S.; Puthamohan, V.M.; Valiya Parambil, S. MicroRNAs in cancer as biomarkers and therapeutic keys. ExRNA 2020, 2, 9. [Google Scholar] [CrossRef]
- Zhao, C.; Sun, X.; Li, L. Biogenesis and function of extracellular miRNAs. ExRNA 2019, 1, 38. [Google Scholar] [CrossRef]
- Wang, L.; You, X.; Zhang, L.; Zhang, C.; Zou, W. Mechanical regulation of bone remodeling. Bone Res. 2022, 10, 16. [Google Scholar] [CrossRef]
- Ikeda, K.; Takeshita, S. The role of osteoclast differentiation and function in skeletal homeostasis. J. Biochem. 2016, 159, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Chen, X.; Yu, X. MicroRNAs in Osteoclastogenesis and Function: Potential Therapeutic Targets for Osteoporosis. Int. J. Mol. Sci. 2016, 17, 349. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Z.; Duan, N.; Zhu, G.; Schwarz, E.M.; Xie, C. Osteoblast-osteoclast interactions. Connect. Tissue Res. 2018, 59, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Mizoguchi, F.; Murakami, Y.; Saito, T.; Miyasaka, N.; Kohsaka, H. miR-31 controls osteoclast formation and bone resorption by targeting RhoA. Arthritis Res. Ther. 2013, 15, R102. [Google Scholar] [CrossRef] [PubMed]
- Minamizaki, T.; Nakao, Y.; Irie, Y.; Ahmed, F.; Itoh, S.; Sarmin, N.; Yoshioka, H.; Nobukiyo, A.; Fujimoto, C.; Niida, S.; et al. The matrix vesicle cargo miR-125b accumulates in the bone matrix, inhibiting bone resorption in mice. Commun. Biol. 2020, 3, 30. [Google Scholar] [CrossRef]
- Guo, L.J.; Liao, L.; Yang, L.; Li, Y.; Jiang, T.J. MiR-125a TNF receptor-associated factor 6 to inhibit osteoclastogenesis. Exp. Cell Res. 2014, 321, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Kelch, S.; Balmayor, E.R.; Seeliger, C.; Vester, H.; Kirschke, J.S.; van Griensven, M. miRNAs in bone tissue correlate to bone mineral density, and circulating miRNAs are gender independent in osteoporotic patients. Sci. Rep. 2017, 7, 15861. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Pitari, M.R.; Amodio, N.; Di Martino, M.T.; Conforti, F.; Leone, E.; Botta, C.; Paolino, F.M.; Del Giudice, T.; Iuliano, E.; et al. miR-29b negatively regulates human osteoclastic cell differentiation and function: Implications for treating multiple mye-loma-related bone disease. J. Cell. Physiol. 2013, 228, 1506–1515. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Moore, B.T.; Peng, X.H.; Fang, X.; Lappe, J.M.; Recker, R.R.; Xiao, P. MiR-133a in human circulating monocytes: A potential biomarker associated with postmenopausal Osteoporosis. PLoS ONE 2012, 7, e34641. [Google Scholar] [CrossRef]
- Cheng, P.; Chen, C.; He, H.B.; Hu, R.; Zhou, H.D.; Xie, H.; Zhu, W.; Dai, R.-C.; Wu, X.-P.; Liao, E.-Y.; et al. miR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B. J. Bone Miner. Res. 2013, 28, 1180–1190. [Google Scholar] [CrossRef]
- He, Y.; Chen, D.; Guo, Q.; Shi, P.; You, C.; Feng, Y. MicroRNA-151a-3p Functions in the Regulation of Osteoclast Differentiation: Significance to Postmenopausal Osteoporosis. Clin. Interv. Aging 2021, 16, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Deng, Z.; Chen, Y.; Giannopoulou, E.; Xu, R.; Gong, S.; Greenblatt, M.B.; Mangala, L.S.; Lopez-Berestein, G.; Kirsch, D.G.; et al. Bone protection by inhibition of microRNA-182. Nat. Commun. 2018, 9, 4108. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Sun, W.; Zhang, P.; Ling, S.; Li, Y.; Zhao, D.; Peng, J.; Wang, A.; Li, Q.; Song, J.; et al. miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biol. 2015, 12, 343–353. [Google Scholar] [CrossRef] [PubMed]
- De-Ugarte, L.; Balcells, S.; Nogues, X.; Grinberg, D.; Diez-Perez, A.; Garcia-Giralt, N. Pro-osteoporotic miR-320a impairs osteoblast function and induces oxidative stress. PLoS ONE 2018, 13, e0208131. [Google Scholar] [CrossRef] [PubMed]
- Ke, K.; Sul, O.J.; Rajasekaran, M.; Choi, H.S. MicroRNA-183 increases osteoclastogenesis by repressing heme oxygenase-1. Bone 2015, 81, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Cheng, P.; Xie, H.; Zhou, H.D.; Wu, X.P.; Liao, E.-Y.; Luo, X.-H. MiR-503 regulates osteoclastogenesis via targeting RANK. J. Bone Miner. Res. 2014, 29, 338–347. [Google Scholar] [CrossRef]
- Ramírez-Salazar, E.G.; Almeraya, E.V.; López-Perez, T.V.; Patiño, N.; Salmeron, J.; Velázquez-Cruz, R. MicroRNA-548-3p overexpression inhibits proliferation, migration and invasion in osteoblast-like cells by targeting STAT1 and MAFB. J. Biochem. 2020, 168, 203–211. [Google Scholar] [CrossRef]
- Hodge, J.M.; Collier, F.M.; Pavlos, N.J.; Kirkland, M.A.; Nicholson, G.C. M-CSF potently augments RANKL-induced resorption activation in mature human osteoclasts. PLoS ONE 2011, 6, e21462. [Google Scholar] [CrossRef] [PubMed]
- Mun, S.H.; Park, P.S.U.; Park-Min, K.H. The M-CSF receptor in osteoclasts and beyond. Exp. Mol. Med. 2020, 52, 1239–1254. [Google Scholar] [CrossRef]
- Oppezzo, A.; Rosselli, F. The underestimated role of the microphthalmia-associated transcription factor (MiTF) in normal and pathological haematopoiesis. Cell Biosci. 2021, 11, 18. [Google Scholar] [CrossRef]
- Park, B.; Yu, S.N.; Kim, S.H.; Lee, J.; Choi, S.J.; Chang, J.H.; Yang, E.J.; Kim, K.-Y.; Ahn, S.-C. Inhibitory Effect of Biotransformed-Fucoidan on the Differentiation of Osteoclasts Induced by Receptor for Activation of Nuclear Factor-κB Ligand. J. Microbiol. Biotechnol. 2022, 32, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.Y.; Li, M.; Lin, Y.L. Mitf regulates osteoclastogenesis by modulating NFATc1 activity. Exp. Cell Res. 2014, 328, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.H.; Ritchlin, C.T. DC-STAMP: A Key Regulator in Osteoclast Differentiation. J. Cell. Physiol. 2016, 231, 2402–2407. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.X.; Gu, J.H.; Zhang, Y.R.; Tong, X.S.; Zhao, H.Y.; Yuan, Y.; Liu, X.-Z.; Bian, J.-C.; Liu, Z.-P. Osteoprotegerin influences the bone resorption activity of osteoclasts. Int. J. Mol. Med. 2013, 31, 1411–1417. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Chen, M.; Song, R.; Zhao, H.; Bian, J.; Gu, J.; Liu, Z. Overexpression of c-Fos reverses osteoprotegerin-mediated suppression of osteoclastogenesis by increasing the Beclin1-induced autophagy. J. Cell. Mol. Med. 2021, 25, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, N. Regulation of NFATc1 in Osteoclast Differentiation. J. Bone Metab. 2014, 21, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Koga, T.; Inui, M.; Inoue, K.; Kim, S.; Suematsu, A.; Kobayashi, E.; Iwata, T.; Ohnishi, H.; Matozaki, T.; Kodama, T.; et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 2004, 428, 758–763. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, N.K.; Lee, S.Y. Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation. Mol. Cells 2017, 40, 706–713. [Google Scholar] [CrossRef]
- Galson, D.L.; Roodman, G.D. Origin of osteoclasts. In Osteoimmunology. Interactions of the Immune and Skeletal Systems; Lorenzo, J., Choi, Y., Horowitz, M., Takayanagi, H., Eds.; Academic Press: Cambridge, MA, USA, 2011; pp. 7–41. [Google Scholar] [CrossRef]
- Croset, M.; Pantano, F.; Kan, C.W.S.; Bonnelye, E.; Descotes, F.; Alix-Panabières, C.; Lecellier, C.-H.; Bachelier, R.; Allioli, N.; Hong, S.-S.; et al. miRNA-30 Family Members Inhibit Breast Cancer Invasion, Osteomimicry, and Bone Destruction by Directly Targeting Multiple Bone Metastasis-Associated Genes. Cancer Res. 2018, 78, 5259–5273. [Google Scholar] [CrossRef]
- Fujita, K.; Janz, S. Attenuation of WNT signaling by DKK-1 and -2 regulates BMP2-induced osteoblast differentiation and expression of OPG, RANKL and M-CSF. Mol. Cancer 2007, 6, 71. [Google Scholar] [CrossRef]
- Chen, H.; Hu, Y.; Xu, X.; Dai, Y.; Qian, H.; Yang, X.; Liu, J.; He, Q.; Zhang, H. DKK1 activates the PI3K/AKT pathway via CKAP4 to balance the inhibitory effect on Wnt/β-catenin signaling and regulates Wnt3a-induced MSC migration. Stem Cells 2024, 42, 567–579. [Google Scholar] [CrossRef] [PubMed]
- Clézardin, P.; Coleman, R.; Puppo, M.; Ottewell, P.; Bonnelye, E.; Paycha, F.; Confavreux, C.B.; Holen, I. Bone metastasis: Mechanisms, therapies, and biomarkers. Physiol. Rev. 2021, 101, 797–855. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Liu, H.; Peng, F.; Liu, Z.; Ding, K.; Song, J.; Li, L.; Chen, J.; Shao, Q.; Yan, S.; et al. Complement C3a activates osteoclasts by regulating the PI3K/PDK1/SGK3 pathway in patients with multiple myeloma. Cancer Biol. Med. 2021, 18, 721–733. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhang, Z.; Liu, N.; Li, L.; Zhong, H.; Wang, R.; Shi, Q.; Zhang, Z.; Wei, L.; Hu, B.; et al. Small extracellular vesicle-mediated miR-320e transmission promotes osteogenesis in OPLL by targeting TAK1. Nat. Commun. 2022, 13, 2467. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, C.; Nie, L.; Gu, M.; Wu, A.; Han, X.; Wang, X.; Shao, J.; Xia, Z. Transforming growth factor (TGF)-β-activated kinase 1 (TAK1) activation requires phosphorylation of serine 412 by protein kinase A catalytic subunit α (PKACα) and X-linked protein kinase (PRKX). J. Biol. Chem. 2014, 289, 24226–24237. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Ortega, R.F.; Ramírez-Salazar, E.G.; Parra-Torres, A.Y.; Muñoz-Montero, S.A.; Rangel-Escareňo, C.; Salido-Guadarrama, I.; Rodriguez-Dorantes, M.; Quiterio, M.; Salmerón, J.; Velázquez-Cruz, R. Identification of microRNAs in human circulating monocytes of postmenopausal osteoporotic Mexican-Mestizo women: A pilot study. Exp. Ther. Med. 2017, 14, 5464–5472. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Salazar, E.G.; Almeraya, E.V.; López-Perez, T.V.; Jiménez-Salas, Z.; Patiño, N.; Velázquez-Cruz, R. MicroRNA-1270 Inhibits Cell Proliferation, Migration, and Invasion via Targeting IRF8 in Osteoblast-like Cell Lines. Curr. Issues Mol. Biol. 2022, 44, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Wehrhan, F.; Gross, C.; Creutzburg, K.; Amann, K.; Ries, J.; Kesting, M.; Geppert, C.I.; Weber, M. Osteoclastic expression of higher-level regulators NFATc1 and BCL6 in medication-related osteonecrosis of the jaw secondary to bisphosphonate therapy: A comparison with osteoradionecrosis and osteomyelitis. J. Transl. Med. 2019, 17, 69. [Google Scholar] [CrossRef]
- Koga, T.; Matsui, Y.; Asagiri, M.; Kodama, T.; de Crombrugghe, B.; Nakashima, K.; Takayanagi, H. NFAT, and Osterix cooperatively regulate bone formation. Nat. Med. 2005, 11, 880–885. [Google Scholar] [CrossRef]
- Hojo, H.; Ohba, S.; Chung, U.I. Signaling pathways regulating the specification and differentiation of the osteoblast lineage. Regen. Ther. 2015, 1, 57–62. [Google Scholar] [CrossRef]
- Maupin, K.A.; Droscha, C.J.; Williams, B.O. A Comprehensive Overview of Skeletal Phenotypes Associated with Alterations in Wnt/β-catenin Signaling in Humans and Mice. Bone Res. 2013, 1, 27–71. [Google Scholar] [CrossRef] [PubMed]
- De, A. Wnt/Ca2+ signaling pathway: A brief overview. Acta Biochim. Biophys. Sin. 2011, 43, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Y.P.; Paulson, C.; Shao, J.Z.; Zhang, X.; Wu, M.; Chen, W. Wnt and the Wnt signaling pathway in bone development and disease. Front. Biosci. 2014, 19, 379–407. [Google Scholar] [CrossRef] [PubMed]
- Rauch, F.; Glorieux, F.H. Osteogenesis imperfecta. Lancet 2004, 363, 1377–1385. [Google Scholar] [CrossRef] [PubMed]
- Niemann, S.; Zhao, C.; Pascu, F.; Stahl, U.; Aulepp, U.; Niswander, L.; Weber, J.L.; Müller, U. Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family. Am. J. Hum. Genet. 2004, 74, 558–563. [Google Scholar] [CrossRef]
- Yang, Y.; Topol, L.; Lee, H.; Wu, J. Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development 2003, 130, 1003–1015. [Google Scholar] [CrossRef] [PubMed]
- Haÿ, E.; Buczkowski, T.; Marty, C.; Da Nascimento, S.; Sonnet, P.; Marie, P.J. Peptide-based mediated disruption of N-cadherin-LRP5/6 interaction promotes Wnt signaling and bone formation. J. Bone Miner. Res. 2012, 27, 1852–1863. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.N.; Ouyang, H.; Ma, Y.L.; Zeng, Q.; Gerin, I.; Sousa, K.M.; Lane, T.F.; Krishnan, V.; Hankenson, K.D.; A MacDougald, O. Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation. J. Bone Miner. Res. 2007, 22, 1924–1932. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.S.; Oyserman, S.M.; Hankenson, K.D. Wnt11 promotes osteoblast maturation and mineralization through R-spondin 2. J. Biol. Chem. 2009, 284, 14117–14125. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, Y.; Fu, Q.; He, M. Parathyroid hormone regulates osteoblast differentiation in a Wnt/β-catenin-dependent manner. Mol. Cell Biochem. 2011, 355, 211–216. [Google Scholar] [CrossRef]
- O’Brien, C.A.; Plotkin, L.I.; Galli, C.; Goellner, J.J.; Gortazar, A.R.; Allen, M.R.; Robling, A.G.; Bouxsein, M.; Schipani, E.; Turner, C.H.; et al. Control of bone mass and remodeling by PTH receptor signaling in osteocytes. PLoS ONE 2008, 3, e2942. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, N.H.; Halladay, D.L.; Miles, R.R.; Gilbert, L.M.; Frolik, C.A.; Galvin, R.J.; Martin, T.; Gillespie, M.; Onyia, J. Effects of parathyroid hormone on Wnt signaling pathway in bone. J. Cell. Biochem. 2005, 95, 1178–1190. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Liu, M.; Yang, D.; Bouxsein, M.L.; Saito, H.; Galvin, R.S.; Kuhstoss, S.A.; Thomas, C.C.; Schipani, E.; Baron, R.; et al. Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metab. 2010, 11, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Romero, G.; Sneddon, W.B.; Yang, Y.; Wheeler, D.; Blair, H.C. Parathyroid hormone receptors directly interact with disheveled to regulate beta-catenin signaling and osteoclastogenesis. J. Biol. Chem. 2010, 285, 14756–14763. [Google Scholar] [CrossRef] [PubMed]
- Regan, J.; Long, F. Notch signaling and bone remodeling. Curr. Osteoporos. Rep. 2013, 11, 126–129. [Google Scholar] [CrossRef]
- Deregowski, V.; Gazzerro, E.; Priest, L.; Rydziel, S.; Canalis, E. Notch 1 overexpression inhibits osteoblastogenesis by suppressing Wnt/beta-catenin but not bone morphogenetic protein signaling. J. Biol. Chem. 2006, 281, 6203–6210. [Google Scholar] [CrossRef] [PubMed]
- Sciaudone, M.; Gazzerro, E.; Priest, L.; Delany, A.M.; Canalis, E. Notch 1 impairs osteoblastic cell differentiation. Endocrinology 2003, 144, 5631–5639. [Google Scholar] [CrossRef] [PubMed]
- Tezuka, K.; Yasuda, M.; Watanabe, N.; Morimura, N.; Kuroda, K.; Miyatani, S.; Hozumi, N. Stimulation of osteoblastic cell differentiation by Notch. J. Bone Miner. Res. 2002, 17, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Nobta, M.; Tsukazaki, T.; Shibata, Y.; Xin, C.; Moriishi, T.; Sakano, S.; Shindo, H.; Yamaguchi, A. Critical regulation of bone morphogenetic protein-induced osteoblastic differentiation by Delta1/Jagged1-activated Notch1 signaling. J. Biol. Chem. 2005, 280, 15842–15848. [Google Scholar] [CrossRef]
- Hilton, M.J.; Tu, X.; Wu, X.; Bai, S.; Zhao, H.; Kobayashi, T.; Kronenberg, H.M.; Teitelbaum, S.L.; Ross, F.P.; Kopan, R.; et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat. Med. 2008, 14, 306–314. [Google Scholar] [CrossRef]
- Tu, X.; Chen, J.; Lim, J.; Karner, C.M.; Lee, S.Y.; Heisig, J.; Wiese, C.; Surendran, K.; Kopan, R.; Gessler, M.; et al. Physiological notch signaling maintains bone homeostasis via RBPjk and Hey upstream of NFATc1. PLoS Genet. 2012, 8, e1002577. [Google Scholar] [CrossRef]
- Salie, R.; Kneissel, M.; Vukevic, M.; Zamurovic, N.; Kramer, I.; Evans, G.; Gerwin, N.; Mueller, M.; Kinzel, B.; Susa, M. Ubiquitous overexpression of the Hey1 transcription factor leads to osteopenia and chondrocyte hypertrophy in bone. Bone 2010, 46, 680–694. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Chen, S.; Yang, T.; Dawson, B.; Munivez, E.; Bertin, T.; Lee, B. Osteosclerosis owing to Notch gain of function is solely Rbpj-dependent. J. Bone Miner. Res. 2010, 25, 2175–2183. [Google Scholar] [CrossRef]
- Zanotti, S.; Smerdel-Ramoya, A.; Stadmeyer, L.; Durant, D.; Radtke, F.; Canalis, E. Notch inhibits osteoblast differentiation and causes osteopenia. Endocrinology 2008, 149, 3890–3899. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Chen, G.; Li, Y.P. TGF-β and BMP signaling in osteoblast, skeletal development, bone formation, homeostasis and disease. Bone Res. 2016, 4, 16009. [Google Scholar] [CrossRef] [PubMed]
- Derynck, R.; Budi, E.H. Specificity, versatility, and control of TGF-β family signaling. Sci. Signal. 2019, 12, eaav5183. [Google Scholar] [CrossRef]
- Grafe, I.; Alexander, S.; Peterson, J.R.; Snider, T.N.; Levi, B.; Lee, B.; Mishina, Y. TGF-β Family Signaling in Mesenchymal Differentiation. Cold Spring Harb. Perspect. Biol. 2018, 10, a022202. [Google Scholar] [CrossRef]
- Crane, J.L.; Cao, X. Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling. J. Clin. Investig. 2014, 124, 466–472. [Google Scholar] [CrossRef]
- Ramírez-Salazar, E.G.; Carrillo-Patiño, S.; Hidalgo-Bravo, A.; Rivera-Paredez, B.; Quiterio, M.; Ramírez-Palacios, P.; Patiño, N.; Valdés-Flores, M.; Salmerón, J.; Velázquez-Cruz, R. Serum miRNAs miR-140-3p and miR-23b-3p as potential biomarkers for osteoporosis and osteoporotic fracture in postmenopausal Mexican-Mestizo women. Gene 2018, 679, 19–27. [Google Scholar] [CrossRef]
- Feichtinger, X.; Muschitz, C.; Heimel, P.; Baierl, A.; Fahrleitner-Pammer, A.; Redl, H.; Resch, H.; Geiger, E.; Skalicky, S.; Dormann, R.; et al. Bone-related Circulating MicroRNAs miR-29b-3p, miR-550a-3p, and miR-324-3p and their Association to Bone Microstructure and Histomorphometry. Sci. Rep. 2018, 8, 4867. [Google Scholar] [CrossRef]
- Weivoda, M.M.; Lee, S.K.; Monroe, D.G. miRNAs in osteoclast biology. Bone 2021, 143, 115757. [Google Scholar] [CrossRef]
- Xu, W.; Xia, R.; Tian, F.; Liu, L.; Li, M.; Fang, S. microRNA-324-3p Promotes Osteoblasts Differentiation via Suppressing SMAD7. Hard Tissue Biol. 2022, 31, 263–268. [Google Scholar] [CrossRef]
- Zarecki, P.; Hackl, M.; Grillari, J.; Debono, M.; Eastell, R. Serum microRNAs as novel biomarkers for osteoporotic vertebral fractures. Bone 2020, 130, 115105. [Google Scholar] [CrossRef]
- Zhou, H.; Jiang, J.; Chen, X.; Zhang, Z. Differentially expressed genes and miRNAs in female osteoporosis patients. Medicine 2022, 101, e29856. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shi, Z.; Feng, S. Systematic analysis of miRNAs in patients with postmenopausal Osteoporosis. Gynecol. Endocrinol. 2020, 36, 997–1001. [Google Scholar] [CrossRef]
- Li, J.; He, X.; Wei, W.; Zhou, X. MicroRNA-194 promotes osteoblast differentiation via downregulating STAT1. Biochem. Biophys. Res. Commun. 2015, 460, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Sun, C.; Lu, J.; Zou, L.; Hu, M.; Yang, Z.; Xu, Y. MicroRNA-590-5p antagonizes the inhibitory effect of high glucose on osteoblast differentiation by suppressing Smad7 in MC3T3-E1 cells. J. Int. Med. Res. 2019, 47, 1740–1748. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Xie, X.; Xue, H.; Wang, T.; Panayi, A.C.; Lin, Z.; Xiong, Y.; Cao, F.; Yan, C.; Chen, L.; et al. MiR-1224-5p modulates osteogenesis by coordinating osteoblast/osteoclast differentiation via the Rap1 signaling target ADCY2. Exp. Mol. Med. 2022, 54, 961–972. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Li, H.; Wang, S.; Li, T.; Fan, J.; Liang, X.; Li, J.; Han, Q.; Zhu, L.; Fan, L.; et al. let-7 enhances osteogenesis and bone formation while repressing adipogenesis of human stromal/mesenchymal stem cells by regulating HMGA2. Stem Cells Dev. 2014, 23, 1452–1463. [Google Scholar] [CrossRef]
- Fan, J.B.; Liu, W.; Zhu, X.H.; Cui, S.Y.; Cui, Z.M.; Zhao, J.N. microRNA-7 inhibition protects human osteoblasts from dexamethasone via activation of epidermal growth factor receptor signaling. Mol. Cell. Biochem. 2019, 460, 113–121. [Google Scholar] [CrossRef]
- Vimalraj, S.; Partridge, N.C.; Selvamurugan, N. A positive role of microRNA-15b on regulation of osteoblast differentiation. J. Cell. Physiol. 2014, 229, 1236–1244. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhang, Y.; Zheng, Y.; Chen, B. The miRNA-15b/USP7/KDM6B axis engages in the initiation of Osteoporosis by modulating osteoblast differentiation and autophagy. J. Cell. Mol. Med. 2021, 25, 2069–2081. [Google Scholar] [CrossRef]
- Huang, J.; Li, Y.; Zhu, S.; Wang, L.; Yang, L.; He, C. MiR-30 Family: A Novel Avenue for Treating Bone and Joint Diseases? Int. J. Med. Sci. 2023, 20, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Wu, S.; Zhou, H.; Bi, X.; Wang, Y.; Hu, Y.; Gu, P.; Fan, X. Effects of a miR-31, Runx2, and Satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells. Stem Cells Dev. 2013, 22, 2278–2286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wei, Q.S.; Ding, W.B.; Zhang, L.L.; Wang, H.C.; Zhu, Y.J.; He, W.; Chai, Y.N.; Liu, Y.W. Increased microRNA-93-5p inhibits osteogenic differentiation by targeting bone morphogenetic protein-2. PLoS ONE 2017, 12, e0182678. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.P.; Zhang, J.; Zhu, C.H.; Lin, L.; Wang, J.; Zhang, H.J.; Li, J.; Yu, X.G.; Zhao, Z.S.; Dong, W.; et al. MicroRNA-98 regulates osteogenic differentiation of human bone mesenchymal stromal cells by targeting BMP2. J. Cell. Mol. Med. 2017, 21, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Dole, N.S.; Yoon, J.; Monteiro, D.A.; Yang, J.; Mazur, C.M.; Kaya, S.; Belair, C.D.; Alliston, T. Mechanosensitive miR-100 coordinates TGFβ and Wnt signaling in osteocytes during fluid shear stress. FASEB J. 2021, 35, e21883. [Google Scholar] [CrossRef]
- Zuo, B.; Zhu, J.; Li, J.; Wang, C.; Zhao, X.; Cai, G.; Li, Z.; Peng, J.; Wang, P.; Shen, C.; et al. microRNA-103a functions as a mechanosensitive microRNA to inhibit bone formation through targeting Runx2. J. Bone Miner. Res. 2015, 30, 330–345. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Liu, Q.; Li, C.; He, P. miR-125a-5p Regulates Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells under Oxidative Stress. BioMed Res. Int. 2021, 2021, 6684709. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, L.; Yan, C.; Wang, F.; Zhang, Y. Overexpression of miR125b Promotes Osteoporosis Through miR-125b-TRAF6 Pathway in Postmenopausal Ovariectomized Rats. Diabetes Metab. Syndr. Obes. 2021, 14, 671–682. [Google Scholar] [CrossRef]
- Eskildsen, T.; Taipaleenmäki, H.; Stenvang, J.; Abdallah, B.M.; Ditzel, N.; Nossent, A.Y.; Bak, M.; Kauppinen, S.; Kassem, M. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc. Natl. Acad. Sci. USA 2011, 108, 6139–6144. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, K.; Hu, Z.; Zhou, H.; Zhang, L.; Wang, H.; Li, G.; Zhang, S.; Cao, X.; Shi, F. MicroRNA-139-3p regulates osteoblast differentiation and apoptosis by targeting ELK1 and interacting with long noncoding RNA ODSM. Cell Death Dis. 2018, 9, 1107. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Park, S.K.; Lee, H.Y.; Kim, S.W.; Lee, J.S.; Choi, E.K.; You, D.; Kim, C.S.; Suh, N. miR-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells. FEBS Lett. 2014, 588, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Huszar, J.M.; Payne, C.J. MIR146A inhibits JMJD3 expression and osteogenic differentiation in human mesenchymal stem cells. FEBS Lett. 2014, 588, 1850–1856. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, H.; Ding, D.; Wang, S.; Dai, X.; Zhu, Y. The interaction of miR-181a-5p and sirtuin 1 regulated human bone marrow mesenchymal stem cells differentiation and apoptosis. Bioengineered 2021, 12, 1426–1435. [Google Scholar] [CrossRef] [PubMed]
- Long, Z.; Dou, P.; Cai, W.; Mao, M.; Wu, R. MiR-181a-5p promotes osteogenesis by targeting BMP3. Aging 2023, 15, 734–747. [Google Scholar] [CrossRef] [PubMed]
- Mi, B.; Yan, C.; Xue, H.; Chen, L.; Panayi, A.C.; Hu, L.; Hu, Y.; Cao, F.; Sun, Y.; Zhou, W.; et al. Inhibition of Circulating miR-194-5p Reverses Osteoporosis through Wnt5a/β-Catenin-Dependent Induction of Osteogenic Differentiation. Mol. Ther. Nucleic Acids 2020, 21, 814–823. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, X.; Zhan, J.; Yan, Z.; Chen, D.; Xue, X.; Pan, X. Bone marrow mesenchymal stem cell-derived exosomal miR-206 promotes osteoblast proliferation and differentiation in osteoarthritis by reducing Elf3. J. Cell. Mol. Med. 2021, 25, 7734–7745. [Google Scholar] [CrossRef]
- Asgharzadeh, A.; Alizadeh, S.; Keramati, M.R.; Soleimani, M.; Atashi, A.; Edalati, M.; Khatib, Z.K.; Rafiee, M.; Barzegar, M.; Razavi, H. Upregulation of miR-210 promotes differentiation of mesenchymal stem cells (MSCs) into osteoblasts. Bosn. J. Basic Med. Sci. 2018, 18, 328–335. [Google Scholar] [CrossRef]
- Gao, Y.; Patil, S.; Qian, A. The Role of MicroRNAs in Bone Metabolism and Disease. Int. J. Mol. Sci. 2020, 21, 6081. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hassan, M.Q.; Gordon, J.A.; Beloti, M.M.; Croce, C.M.; van Wijnen, A.J.; Stein, J.L.; Stein, G.S.; Lian, J.B. A network connecting Runx2, SATB2, and the miR-23a~27a~24-2 cluster regulates the osteoblast differentiation program. Proc. Natl. Acad. Sci. USA 2010, 107, 19879–19884. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, Y.; Zheng, Z.; Zeng, X.; Liu, D.; Wang, C.; Ting, K. MicroRNA-223 Suppresses Osteoblast Differentiation by Inhibiting DHRS3. Cell. Physiol. Biochem. 2018, 47, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Nie, H.; Liu, P.; Wang, Z.; Yao, B.; Yang, L. Down-regulation of miR-339 promotes differentiation of BMSCs and alleviates Osteoporosis by targeting DLX5. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Wei, X.; Sun, Q.; Zhao, X.Q.; Zheng, C.Y.; Bai, C.X.; Du, J.; Zhang, Z.; Zhu, L.G.; Jia, Y.S. MicroRNA-449b-5p promotes the progression of Osteoporosis by inhibiting osteogenic differentiation of BMSCs via targeting Satb2. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 6394–6403. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sun, Z.; You, Y.; Zhang, L.; Hou, D.; Gu, G.; Chen, Y.; Jiao, G. M2 macrophage-derived exosomal miR-486-5p influences the differentiation potential of bone marrow mesenchymal stem cells and Osteoporosis. Aging 2023, 15, 9499–9520. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wu, P.; Fu, W.; Xiong, Y.; Zhang, L.; Gao, Y.; Deng, G.; Zong, S.; Zeng, G. The Role and Mechanism of miRNA-1224 in the Polygonatum sibiricum Polysaccharide Regulation of Bone Marrow-Derived Macrophages to Osteoclast Differentiation. Rejuvenation Res. 2019, 22, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.Q.; Maeda, Y.; Taipaleenmaki, H.; Zhang, W.; Jafferji, M.; Gordon, J.A.; Li, Z.; Croce, C.M.; van Wijnen, A.J.; Stein, J.L.; et al. miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J. Biol. Chem. 2012, 287, 42084–42092. [Google Scholar] [CrossRef]
- Fukuda, T.; Ochi, H.; Sunamura, S.; Haiden, A.; Bando, W.; Inose, H.; Okawa, A.; Asou, Y.; Takeda, S. MicroRNA-145 regulates osteoblastic differentiation by targeting the transcription factor Cbfb. FEBS Lett. 2015, 589, 3302–3308. [Google Scholar] [CrossRef]
- Taipaleenmäki, H.; Browne, G.; Akech, J.; Zustin, J.; van Wijnen, A.J.; Stein, J.L.; Hesse, E.; Stein, G.S.; Lian, J.B. Targeting of Runx2 by miR-135 and miR-203 Impairs Progression of Breast Cancer and Metastatic Bone Disease. Cancer Res. 2015, 75, 1433–1444. [Google Scholar] [CrossRef]
- Sharma, A.R.; Lee, Y.H.; Lee, S.S. Recent advancements of miRNAs in the treatment of bone diseases and their delivery potential. Curr. Res. Pharmacol. Drug Discov. 2022, 4, 100150. [Google Scholar] [CrossRef]
- Daamouch, S.; Emini, L.; Rauner, M.; Hofbauer, L.C. MicroRNA and Diabetic Bone Disease. Curr. Osteoporos. Rep. 2022, 20, 194–201. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Huang, H.T.; Cheng, T.L.; Lu, Y.M.; Lin, S.Y.; Ho, C.J.; Lee, T.C.; Hsu, C.H.; Huang, P.J.; Huang, H.H. Application of microRNA in Human Osteoporosis and Fragility Fracture: A Systemic Review of Literatures. Int. J. Mol. Sci. 2021, 22, 5232. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, R.L.; Croce, C.M.; Stein, J.L.; Lian, J.B.; van Wijnen, A.J.; Stein, G.S. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc. Natl. Acad. Sci. USA 2011, 108, 9863–9868. [Google Scholar] [CrossRef]
- Chen, H.; Ji, X.; She, F.; Gao, Y.; Tang, P. miR-628-3p regulates osteoblast differentiation by targeting RUNX2: Possible role in atrophic nonunion. Int. J. Mol. Med. 2017, 39, 279–286. [Google Scholar] [CrossRef]
- Mizoguchi, F.; Izu, Y.; Hayata, T.; Hemmi, H.; Nakashima, K.; Nakamura, T.; Kato, S.; Miyasaka, N.; Ezura, Y.; Noda, M. Osteoclast-specific Dicer gene deficiency suppresses osteoclastic bone resorption. J. Cell. Biochem. 2010, 109, 866–875. [Google Scholar] [CrossRef]
- Kerschan-Schindl, K.; Hackl, M.; Boschitsch, E.; Föger-Samwald, U.; Nägele, O.; Skalicky, S.; Weigl, M.; Grillari, J.; Pietschmann, P. Diagnostic Performance of a Panel of miRNAs (OsteomiR) for Osteoporosis in a Cohort of Postmenopausal Women. Calcif. Tissue Int. 2021, 108, 725–737. [Google Scholar] [CrossRef]
- Palumbo, C.; Ferretti, M. The Osteocyte: From “Prisoner” to “Orchestrator”. J. Funct. Morphol. Kinesiol. 2021, 6, 28. [Google Scholar] [CrossRef]
- Schaffler, M.B.; Cheung, W.Y.; Majeska, R.; Kennedy, O. Osteocytes: Master orchestrators of bone. Calcif. Tissue Int. 2014, 94, 5–24. [Google Scholar] [CrossRef]
- Peng, S.; Gao, D.; Gao, C.; Wei, P.; Niu, M.; Shuai, C. MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review). Mol. Med. Rep. 2016, 14, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, H.; Leung, R.K.K.; Choy, K.W.; Lam, T.P.; Ng, B.K.W.; Qiu, Y.; Feng, J.Q.; Cheng, J.C.Y.; Lee, W.Y.W. Aberrant miR-145-5p/β-catenin signal impairs osteocyte function in adolescent idiopathic scoliosis. FASEB J. 2018, 32, 6537–6549. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Tang, C.Y.; Man, X.F.; Tang, H.N.; Tang, J.; Wang, F.; Zhou, C.L.; Tan, S.W.; Feng, Y.Z.; Zhou, H.D. Insulin receptor substrate-1 time-dependently regulates bone formation by controlling collagen Iα2 expression via miR-342. FASEB J. 2016, 30, 4214–4226. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, T.; Watanabe, K.; Hara, E.S.; Ono, M.; Kuboki, T.; Calderwood, S.K. OstemiR: A novel panel of microRNA biomarkers in osteoblastic and osteocytic differentiation from mesencymal stem cells. PLoS ONE 2013, 8, e58796. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.M.; Deosthale, P.J.; Pacheco-Costa, R.; Essex, A.L.; Atkinson, E.G.; Aref, M.W.; Dilley, J.E.; Bellido, T.; Ivan, M.; Allen, M.R.; et al. Osteocytic miR21 deficiency improves bone strength independent of sex despite having sex divergent effects on osteocyte viability and bone turnover. FEBS J. 2020, 287, 941–963. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.C.; Bae, Y.; Dawson, B.C.; Chen, Y.; Bertin, T.; Munivez, E.; Campeau, P.M.; Tao, J.; Chen, R.; Lee, B.H. MicroRNA miR-23a cluster promotes osteocyte differentiation by regulating TGF-β signalling in osteoblasts. Nat. Commun. 2017, 8, 15000. [Google Scholar] [CrossRef]
- Qin, Y.; Peng, Y.; Zhao, W.; Pan, J.; Ksiezak-Reding, H.; Cardozo, C.; Wu, Y.; Divieti Pajevic, P.; Bonewald, L.F.; Bauman, W.A.; et al. Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: A novel mechanism in muscle-bone communication. J. Biol. Chem. 2017, 292, 11021–11033. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Hao, L.; Tian, Y.; Liu, Y.; Gu, Y.; Wu, J. miR-199a-3p is involved in estrogen-mediated autophagy through the IGF-1/mTOR pathway in osteocyte-like MLO-Y4 cells. J. Cell. Physiol. 2018, 233, 2292–2303. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Nakashima, T.; Yoshimura, N.; Okamoto, K.; Tanaka, S.; Takayanagi, H. Autoregulation of Osteocyte Sema3A Orchestrates Estrogen Action and Counteracts Bone Aging. Cell Metab. 2019, 29, 627–637.e5. [Google Scholar] [CrossRef]
- Lv, P.Y.; Gao, P.F.; Tian, G.J.; Yang, Y.Y.; Mo, F.F.; Wang, Z.H.; Sun, L.; Kuang, M.J.; Wang, Y.L. Osteocyte-derived exosomes induced by mechanical strain promote human periodontal ligament stem cell proliferation and osteogenic differentiation via the miR-181b-5p/PTEN/AKT signaling pathway. Stem Cell Res. Ther. 2020, 11, 295. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, L.I.; Wallace, J.M. MicroRNAs and osteocytes. Bone 2021, 150, 115994. [Google Scholar] [CrossRef]
- Trojniak, J.; Sendera, A.; Banas-Zabczyk Kopanska, M. The MicroRNAs in the Pathophysiology of Osteoporosis. Int. J. Mol. Sci. 2024, 25, 6240. [Google Scholar] [CrossRef]
- Donati, S.; Ciuffi, S.; Palmini, G.; Brandi, M.L. Circulating miRNAs: A New Opportunity in Bone Fragility. Biomolecules 2020, 10, 927. [Google Scholar] [CrossRef]
- Cheng, F.; Yang, M.M.; Yang, R.H. MiRNA-365a-3p promotes the progression of osteoporosis by inhibiting osteogenic differentiation via targeting RUNX2. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 7766–7774. [Google Scholar] [CrossRef]
- Luo, B.; Yang, J.F.; Wang, Y.H.; Qu, G.B.; Hao, P.D.; Zeng, Z.J.; Yuan, J.; Yang, R.; Yuan, Y. MicroRNA-579-3p promotes the progression of osteoporosis by inhibiting osteogenic differentiation of mesenchymal stem cells through regulating Sirt1. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 6791–6799. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, Q.; Wu, X.P.; He, H.B.; Fu, L. MiR-96 regulates bone metabolism by targeting osterix. Clin. Exp. Pharmacol. Physiol. 2018, 45, 602–613. [Google Scholar] [CrossRef]
- Zhao, S.L.; Wen, Z.X.; Mo, X.Y.; Zhang, X.Y.; Li, H.N.; Cheung, W.H.; Fu, D.; Zhang, S.H.; Wan, Y.; Chen, B.L. Bone-Metabolism-Related Serum microRNAs to Diagnose Osteoporosis in Middle-Aged and Elderly Women. Diagnostics 2022, 12, 2872. [Google Scholar] [CrossRef]
- Guo, Y.; Li, L.; Gao, J.; Chen, X.; Sang, Q. miR-214 suppresses the osteogenic differentiation of bone marrow-derived mesenchymal stem cells and these effects are mediated through the inhibition of the JNK and p38 pathways. Int. J. Mol. Med. 2017, 39, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri-Fard, S.; Abak, A.; Tavakkoli Avval, S.; Rahmani, S.; Shoorei, H.; Taheri, M.; Samadian, M. Contribution of miRNAs and lncRNAs in osteogenesis and related disorders. Biomed. Pharmacother. 2021, 142, 111942. [Google Scholar] [CrossRef]
- Bedene, A.; Mencej Bedrač, S.; Ješe, L.; Marc, J.; Vrtačnik, P.; Preželj, J.; Kocjan, T.; Kranjc, T.; Ostanek, B. MiR-148a the epigenetic regulator of bone homeostasis is increased in plasma of osteoporotic postmenopausal women. Wien. Klin. Wochenschr. 2016, 128 (Suppl. S7), 519–526. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Pan, L.; Chen, L.; Gu, W.; Chen, J. MiR-27a is Essential for the Shift from Osteogenic Differentiation to Adipogenic Differentiation of Mesenchymal Stem Cells in Postmenopausal Osteoporosis. Cell. Physiol. Biochem. 2016, 39, 253–265. [Google Scholar] [CrossRef]
- Hasanzad, M.; Hassani Doabsari, M.; Rahbaran, M.; Banihashemi, P.; Fazeli, F.; Ganji, M.; Manavi Nameghi, S.; Sarhangi, N.; Nikfar, S.; Aghaei Meybodi, H.R. A systematic review of miRNAs as biomarkers in osteoporosis disease. J. Diabetes Meta.b Disord. 2021, 20, 1391–1406. [Google Scholar] [CrossRef]
- Mandourah, A.Y.; Ranganath, L.; Barraclough, R.; Vinjamuri, S.; Hof, R.V.; Hamill, S.; Czanner, G.; Dera, A.A.; Wang, D.; Barraclough, D.L. Circulating microRNAs as potential diagnostic biomarkers for osteoporosis. Sci. Rep. 2018, 8, 8421. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; He, H.; Wang, L.; Jiang, Y.; Xu, Y. Reduced miR-144-3p expression in serum and bone mediates osteoporosis pathogenesis by targeting RANK. Biochem. Cell Biol. 2018, 96, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.L.; Wang, Y.; Sun, Q.D.; Du, X.F. MiR-203 is involved in osteoporosis by regulating DKK1 and inhibiting osteogenic differentiation of MSCs. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 5098–5105. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Yu, S.; Jin, R.; Xiao, Y.; Pan, M.; Pei, F.; Zhu, X.; Huang, H.; Zhang, Z.; Chen, S.; et al. Circulating miR-338 Cluster activities on osteoblast differentiation: Potential Diagnostic and Therapeutic Targets for Postmenopausal Osteoporosis. Theranostics 2019, 9, 3780–3797. [Google Scholar] [CrossRef] [PubMed]
- Vail, D.J.; Somoza, R.A.; Caplan, A.I. MicroRNA Regulation of Bone Marrow Mesenchymal Stem Cell Chondrogenesis: Toward Articular Cartilage. Tissue Eng. Part A 2022, 28, 254–269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ding, W.; Ji, F.; Wu, D. MicroRNA-410 participa en el proceso patológico de la osteoporosis postmenopáusica mediante la regulación de la proteína morfogenética ósea-2. Exp. Ther. Med. 2019, 18, 3659–3666. [Google Scholar] [CrossRef] [PubMed]
- Rachner, T.D.; Khosla, S.; Hofbauer, L.C. Osteoporosis: Now and the future. Lancet 2011, 377, 1276–1287. [Google Scholar] [CrossRef] [PubMed]
- Anastasilakis, A.D.; Makras, P.; Pikilidou, M.; Tournis, S.; Makris, K.; Bisbinas, I.; Tsave, O.; Yovos, J.G.; Yavropoulou, M.P. Changes of Circulating MicroRNAs in Response to Treatment with Teriparatide or Denosumab in Postmenopausal Osteoporosis. J. Clin. Endocrinol. Metab. 2018, 103, 1206–1213. [Google Scholar] [CrossRef] [PubMed]
- Yavropoulou, M.P.; Anastasilakis, A.D.; Makras, P.; Papatheodorou, A.; Rauner, M.; Hofbauer, L.C.; Tsourdi, E. Serum Profile of microRNAs Linked to Bone Metabolism During Sequential Treatment for Postmenopausal Osteoporosis. J. Clin. Endocrinol. Metab. 2020, 105, E2885–E2894. [Google Scholar] [CrossRef]
- Li, X.; Xu, R.; Ye, J.X.; Yuan, F.L. Suppression of bone remodeling associated with long-term bisphosphonate treatment is mediated by microRNA-30a-5p. Bioengineered 2022, 13, 9741–9753. [Google Scholar] [CrossRef]
- Messner, Z.; Carro Vázquez, D.; Haschka, J.; Grillari, J.; Resch, H.; Muschitz, C.; Pietschmann, P.; Zwerina, J.; Hackl, M.; Kocijan, R. Circulating miRNAs Respond to Denosumab Treatment after 2 Years in Postmenopausal Women with Osteoporosis-the MiDeTe study. J. Clin. Endocrinol. Metab. 2023, 108, 1154–1165. [Google Scholar] [CrossRef] [PubMed]
- Jing, D.; Hao, J.; Shen, Y.; Tang, G.; Li, M.-L.; Huang, S.-H.; Zhao, Z.-H. The role of microRNAs in bone remodeling. Int. J. Oral. Sci. 2015, 7, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, A.; Pezzetti, F.; Brunelli, G.; Zollino, I.; Scapoli, L.; Martinelli, M.; Arlotti, M.; Carinci, F. Differences in osteoblast miRNA induced by cell binding domain of collagen and silicate-based synthetic bone. J. Biomed. Sci. 2007, 14, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Leng, Q.; Ding, J.; Dai, M.; Liu, L.; Fang, Q.; Wang, D.W.; Wu, L.; Wang, Y. Insights Into Platelet-Derived MicroRNAs in Cardiovascular and Oncologic Diseases: Potential Predictor and Therapeutic Target. Front. Cardiovasc. Med. 2022, 9, 879351. [Google Scholar] [CrossRef]
- Farmani, A.R.; Nekoofar, M.H.; Ebrahimi-Barough, S.; Azami, M.; Najafipour, S.; Moradpanah, S.; Ai, J. Preparation and In Vitro Osteogenic Evaluation of Biomimetic Hybrid Nanocomposite Scaffolds Based on Gelatin/Plasma Rich in Growth Factors (PRGF) and Lithium-Doped 45s5 Bioactive Glass Nanoparticles. J. Polym. Environ. 2023, 31, 870–885. [Google Scholar] [CrossRef]
- Farmani, A.R.; Salmeh, M.A.; Golkar, Z.; Moeinzadeh, A.; Ghiasi, F.F.; Amirabad, S.Z.; Shoormeij, M.H.; Mahdavinezhad, F.; Momeni, S.; Moradbeygi, F.; et al. Li-Doped Bioactive Ceramics: Promising Biomaterials for Tissue Engineering and Regenerative Medicine. J. Funct. Biomater. 2022, 13, 162. [Google Scholar] [CrossRef]
miRNA ID | Study Model | Target Genes | Effects on Bone Remodeling | Reference |
---|---|---|---|---|
miR-31 ↑ | BMM | RhoA ↓ | Promotes osteoclastogenesis | [25] |
miR-125 ↑ | Osteoblasts | PRDM1 ↓ | Osteoclastogenic inhibition | [26] |
miR-125a ↑ | PBMCs | TRAF6 ↓ | Suppresses osteoclastogenesis | [27] |
miR-21 ↑ miR-125b ↑ miR-122 ↑ miR-124 ↑ miR-148a ↑ | Serum samples from patients with osteoporosis | PDCD4 ↓ TRAF6 ↓ RANKL ↓ NFATc1 ↓ MAFB ↓ | Inhibits osteoclastogenesis | [28] |
miR-29b ↑ | Human | c-FOS, MMP2 ↓ | Inhibits osteoclastogenesis | [29] |
miR-133a ↑ | Human | CXCL11, CXCR3, SLC39A1↓ | Not mentioned | [30] |
miR-148 ↑ | Human | MAFB ↓ | Enhances osteoclasts differentiation | [31] |
miR-151a-3p ↑ | Serum samples from patients with osteoporosis | TRAP, cFOS, NFATc1 ↓ | Regulates osteoclastogenesis | [32] |
miR-182 ↑ | BMMs | MX1, IFIT2, IRF7, CXCL10 ↓ | Positive regulation of osteoclastogenesis | [33] |
miR-214 ↑ | BMMs | ATF4 ↓ | Positive regulation of osteoclastogenesis and inhibits bone formation | [34] |
miR-320e ↑ | Extracellular vesicles from patients with heterotopic ossification of the posterior longitudinal ligament | TAK1 ↓ | Inhibits osteoclastogenesis | [35] |
miR-422 ↑ | Human | CBL, CD226, IGF1, PAG1, TOB2 ↓ | Postmenopausal osteoporosis | [36] |
miR-503 ↑ | Human | RANK ↓ | Inhibits RANKL-induced osteoclast differentiation | [37] |
miR-548x-3p ↑ | Human monocytes | MAFB, STAT1 ↓ | Attenuates the proliferative capacity of osteoblastic cells and could promote osteoclastogenesis cell lines | [38] |
miR-1270 ↑ | Human monocytes Saos-2 and U2-OS osteoblast cell lines | IRF8 ↓ | Attenuates the proliferative capacity of osteoblastic cells and could promote osteoclastogenesis | [39] |
miRNA ID | Study Model | Target Genes | Effects on Bone Remodeling | Reference |
---|---|---|---|---|
miR-21 ↑ miR-23a-3p ↑ miR-24-3p ↑ | Serum samples from patients with osteoporosis | SMAD7, SRPY ↓ RUNX2 ↓ SATB2 ↓ | Suppresses osteoblast differentiation | [28] |
miR-23b-3p ↑ miR-140-3p ↑ | Human blood serum samples | GSK3B, WNT5B, RUNX2, AKT1, AKT2, AKT3, BMP2, SMAD3 ↓ SMAD2, SMAD4, MAPK10, MAPK14, MAPKAPK2, SOS1, TRAF6, TGFB2, SMURF1, SP1, THBS1 ↓ | Regulates Wnt, MAPK, and TGF-B signaling pathways | [91] |
Let-7 ↑ | Mesenchymal stem cells (MSCs) | HMGA2 ↓ | In vivo upregulation induces bone formation by reducing HMGA2 expression | [101] |
miR-7 ↑ | Primary human osteoblast cells | EGFR ↓ | Promoting osteoblast apoptosis induced by DEX | [102] |
miR-15 ↑ | hBMSCs | RUNX2, SMAD7, CRIM1 and SMURF1 ↓ | Promotes osteoblast differentiation | [103] |
miR-15b ↑ | hBMSCs | USP7 ↓ | Suppressing autophagy and differentiation | [104] |
miR-30 ↑ | Breast cancer cell lines: MDA-B02, MDA-MB-231, T-47, MCF-7, BT-474, ZR-751, SK-BR3, and Hs-578T | CDH11, ITGA5, ITGB3, RUNX2, CTGF, DKK1 ↓ | Promotes osteoblastogenesis | [105] |
miR-31 ↑ | hBMSCs | SATB2, RUNX2 ↓ | Overexpression of miR-31 significantly reduces the expression of osteogenic transcription factors | [106] |
miR-93-5p ↑ | Patients with TIONFH | BMP2 ↓ | Regulates mechanisms of osteogenic differentiation | [107] |
miR-98 ↑ | hMSC | BMP2 ↓ | Regulates mechanisms of osteogenic differentiation | [108] |
miR-100 ↑ | hBMSCs | FZD5, FZD8 ↓ | Suppresses osteoblast differentiation | [109] |
miR-103 ↑ | Not mentioned | RUNX2 ↓ | Suppresses osteoblast differentiation | [110] |
miR-125a ↑ | hADSC cells | RUNX2, ALP, OCN, VEGF ↓ | Promotes osteogenesis of hADSC mesenchymal stem cells | [111] |
miR-125b ↑ | Total blood mononuclear cells | BMP2, RUNX2, TRAF6↓ | Suppresses osteoblast differentiation | [112] |
miR-138 ↑ | hMSC | PTK2, FAK ↓ | Suppresses osteoblast differentiation | [113] |
miR-139-3p ↑ | Microgravity | ELK1 ↓ | Suppresses osteoblast differentiation | [114] |
miR-140-5p ↑ | hMSC | BMP2 ↓ | Regulates osteoblast differentiation | [115] |
miR-146a ↑ | hMSCs | JMJD3, RUNX2 ↓ | Inhibits osteoblast differentiation | [116] |
miR-181a-5p ↑ | hBMSCs cells | ALP, OPN, RUNX2 ↓ | Regulates osteoblast differentiation | [117] |
miR-181a-5p↑ | Blood serum | BMP3 ↓ | Inhibits osteoblast differentiation | [118] |
miR194-5p ↑ | Plasma from patients with osteoporotic | WNT5a ↓ | Suppresses osteogenic differentiation | [119] |
miR-206 ↑ | hBMSCs | EIF3↓ | Promoting proliferation and differentiation and inhibiting apoptosis | [120] |
miR-210 ↑ | Human umbilical cord blood (HUCB)-derived mesenchymal stem cells (MSCs) | RUNX2, ALP ↑ | Regulates osteoblast differentiation | [121] |
miR-214 ↑ | Human | MAPK ↓ ATF4 ↓ OSX ↓ | Upregulation of miR-214 could efficiently promote bone marrow mesenchymal stem cell (BMSC) differentiation and reduce osteogenic differentiation | [122] |
miR-218 ↑ | hBMSCs | RUNX2, ALP ↑, TOB1, DKK2, SFRP2, SOST ↓ | Regulates mechanisms of osteogenic differentiation | [123] |
miR-223 ↑ | hBMSCs | DHRS3 | Promotes the proliferation and differentiation of osteoblasts | [124] |
miR-339 ↑ | Bone marrow mesenchymal stem cells | DLX5 ↓ | Upregulation of miR-339 reduces osteogenic differentiation by silencing the action of DLX5, in BMSCs | [125] |
miR-449b-5p ↑ | hBMSCs | SATB2 ↓ | Suppresses osteoblast differentiation | [126] |
miR-486-5p ↑ | hBMSCs | COL1, RUNX2, ALP and BMP ↓ | Promotes the proliferation and differentiation of osteoblasts | [127] |
miR-1224-5p ↑ | Plasma from patients with osteoporotic fractures, bone marrow-derived macrophages, bone marrow mesenchymal stem cells, and osteoblast precursor cells | ADCY2, NFATc1, C-FOS, SRC, ACP5, CTSK ↓ | Promotes the expression of signaling pathways involved in osteoblastogenesis and suppresses osteoclastogenesis activity | [128] |
miR-23a ↑ miR-27a ↑ miR-24-2 ↑ | Human primary fetal ROB | RUNX2 ↓ PPARg ↓ RUNX2 ↓ | Regulates the osteoblast differentiation program | [129] |
miR-145 ↑ miR-34c ↑ | hMSC | CBFB ↓ | Regulates mechanisms of osteogenic differentiation | [130] |
miR-135 ↑ miR-203 ↑ miR-231 ↑ | Biopsies derived from primary tumors and bone metastases of patients with breast cancer | ROCK1, CD44, PTK2 ↓ ROCK1, CD44, PTK2 ↓ CCL7, CXCL12 ↓ | Inhibits the migration and proliferation of osteoblasts | [131] |
miR-30a-3p/5p ↑ miR-30a-3p/5p ↑ miR-194-3p/5p ↓ miR-27b-3p/5p ↓ | Serum samples from patients with osteoporosis | ROCK1, ALDH2, SOS2 ↑ TGFB1 ↓ NCF2 ↑ ROCK1, CXCL16, IFNAR1 ↑ | Suppress osteoclast survival and promotes the activity of osteoblasts | [132] |
miR-29b-3p ↓ miR-550a-3p ↓ miR-324-3p ↓ | Serum samples from patients with osteoporosis | Not mentioned | Related to the development of osteoporosis; observed to be down-expressed in patients receiving antiresorptive therapy, and proposed as biomarkers for the diagnosis of OP | [133] |
miR-194-5p ↑ miR-454-3p ↑ miR-151a-3p ↑ miR-590-5p ↑ miR-1972 ↓ | Mononuclear cells from postmenopausal women with osteopenia and with osteoporosis | IRF8 ↓ PTEN ↓ PTGES2 ↓ ALDH7A1, PRDM1, PLAG1 ↓ CDK6, PRDM1, BNIP3L ↑ | Promotes the expression of signaling pathways involved in osteoblastogenesis and suppresses osteoclastogenesis activity | [134] |
miR-23a ↑ miR-30c ↑ miR-34c ↑ miR-133 ↑ miR-135a ↑ miR-137 ↑ miR-204 ↑ miR-205 ↑ miR-217 ↑ miR-218 ↑ miR-338 ↑ | Different types of human mesenchymal cells | RUNX2 ↓ | Inhibits osteoblast differentiation | [135] |
miR-149 ↑ miR-221 ↑ miR-628-3p ↑ miR-654-5p ↑ | Fracture samples from patients with atrophic nonunion | RUNX2, COL1A1, OC ↓ | Regulates mechanisms of osteogenic differentiation | [137] |
Let-7b ↓ miR-220b ↓ miR-513a-3p ↓ miR-551a ↓ miR-576-5p ↓ miR-1236 ↓ vkshv-miR-K12-6-5p ↓ | Fracture samples from patients with atrophic nonunion | RUNX2 ↑ | Regulates mechanisms of osteogenic differentiation | [137] |
miRNA ID | Study Model | Target Genes | Effects on Bone Remodeling | Reference |
---|---|---|---|---|
miR-145-5p/β ↓ | Bone biopsies of patients with adolescent idiopathic scoliosis | CTNNB1 ↑ | Restores the activity of osteocytes | [142] |
miR-342 ↑ | Human bone marrow stromal cells | COL1A2 ↓ | Inhibits the differentiation of bone marrow stromal cells | [143] |
miR-541 ↑ | Human bone marrow stromal cells | OPN ↓ | Inhibits osteogenesis | [144] |
miR-21 ↑ | Not mentioned | ERK, p38, STAT3 ↓ | In women, reduces osteocyte viability in men, increases osteocyte viability | [145] |
miR-23a ↑ miR-27a ↑ miR-24-2 ↑ | Mouse osteoblasts | TGF-β, Sost ↓ | Promotes osteocyte differentiation | [146] |
miR-218 ↑ | Ocy454/IDG-SW3 | Sost ↓ | Inhibits osteogenesis | [147] |
miR-199a-3p ↑ | C57BL/6 mice MLO-Y4 osteocytic cells | IGF-1, LC3-II ↓ | regulates osteocyte autophagy through estrogen | [148] |
miR-29b ↑ miR-497 ↑ miR-195 ↑ miR-30a ↑ | IDG-SW3 osteocytic cells | SEMA3 ↓ | Reduces bone resorption | [149] |
miR-181b-5p ↑ | MLO-Y4 osteocytic cells | PTEN, AKT ↓ | Induces osteogenic differentiation in humans | [150] |
miRNA ID | Study Model | Target Genes | Effects on Bone Remodeling | Reference |
---|---|---|---|---|
miR-214 ↑ | Human MSCs | ALP, COL1A1, OCN, OPN ↓ | Overexpression of miR-214 promoted osteoporosis | [158] |
miR-31 ↑ | Human MSCs | SATB2, RUNX2 ↓ | Overexpression of miR-31 promoted osteoporosis | [106] |
miR-449-b-5p ↑ | Human MSCs | SATB2, RUNX2, ALP, OCN ↓ | Overexpression of miR-449-b-5p decreased during osteogenic differentiation. | [159] |
Let7d-5p ↑ Let7e-5p ↑ miR-30d-5p ↑ miR-30e-5p ↑ miR-126-3p ↑ miR-148a ↑ miR-199a-3p ↑ miR-423-5p ↑ miR-574-5p ↑ | Serum | Not mentioned | Negative correlation with low BMD | [160] |
miR-27a ↑ | Human MSCs | MEF2C ↓ | miR-27a decreased bone formation | [161] |
miR-96 ↑ | Serum | OSX ↓ | miR-96 decreased bone formation | [162] |
miR-122-5p ↑ miR-4516 ↑ | Serum | BMP2K, FSHB, IGF1R, PTHLH, RUNX2, SPARC, TSC22D3, VDR ↓ | Associated with fragility fracture | [163] |
miR-144-3p ↑ | Monocytes | TRAP, CTSK, NFATC, CKK8 ↓ | Involved in osteoporosis | [164] |
miR-203 ↑ | Serum | DKK1 ↓ | miR-203 decreased bone formation | [165] |
miR-338 ↑ | Serum | RUNX2, SOX4 ↓ | miR-338 decreased bone formation | [166] |
miR-579-3p ↑ | Serum | SIRT1 ↓ | Inhibits osteogenic differentiation | [167] |
miR-410 ↑ | PBMCs | BMP2 ↓ | Participates in postmenopausal osteoporosis | [168] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Ortega, R.F.; Ortega-Meléndez, A.I.; Patiño, N.; Rivera-Paredez, B.; Hidalgo-Bravo, A.; Velázquez-Cruz, R. The Involvement of microRNAs in Bone Remodeling Signaling Pathways and Their Role in the Development of Osteoporosis. Biology 2024, 13, 505. https://doi.org/10.3390/biology13070505
Jiménez-Ortega RF, Ortega-Meléndez AI, Patiño N, Rivera-Paredez B, Hidalgo-Bravo A, Velázquez-Cruz R. The Involvement of microRNAs in Bone Remodeling Signaling Pathways and Their Role in the Development of Osteoporosis. Biology. 2024; 13(7):505. https://doi.org/10.3390/biology13070505
Chicago/Turabian StyleJiménez-Ortega, Rogelio F., Alejandra I. Ortega-Meléndez, Nelly Patiño, Berenice Rivera-Paredez, Alberto Hidalgo-Bravo, and Rafael Velázquez-Cruz. 2024. "The Involvement of microRNAs in Bone Remodeling Signaling Pathways and Their Role in the Development of Osteoporosis" Biology 13, no. 7: 505. https://doi.org/10.3390/biology13070505
APA StyleJiménez-Ortega, R. F., Ortega-Meléndez, A. I., Patiño, N., Rivera-Paredez, B., Hidalgo-Bravo, A., & Velázquez-Cruz, R. (2024). The Involvement of microRNAs in Bone Remodeling Signaling Pathways and Their Role in the Development of Osteoporosis. Biology, 13(7), 505. https://doi.org/10.3390/biology13070505