The Landscape of Pediatric High-Grade Gliomas: The Virtues and Pitfalls of Pre-Clinical Models
Abstract
:Simple Summary
Abstract
1. Introduction
2. Pediatric-Type High-Grade Gliomas (pHGGs)
2.1. Diffuse Midline Glioma, H3 K27-Altered
2.2. Diffuse Hemispheric Glioma, H3 G34-Mutant
2.3. Diffuse Pediatric-Type High-Grade Glioma, H3-Wildtype and IDH Wildtype
2.4. Infant-Type Diffuse Hemispheric Glioma
2.5. Epigenetic Alterations Caused by Histone Mutations
Global Epigenetic Dysregulation in pHGGs
3. In Vitro and In Vivo Pre-Clinical Models for the Study of pHGG
3.1. In Vitro Patient-Derived Cell Line Models for pHGG (Table 1)
Cell Line | Histone Status | Mutational Status | Reference |
---|---|---|---|
PB19SH058 | H3.3K27M | TP53 V157F, H3K27M | [60] |
CNMC_D_874 | H3.3K27M | NA | [60] |
VUMC-DIPG-8 | H3.3K27M | H3K27M | [60] |
SU-DIPG-13 | H3.3K27M | TP53 mutated, H3K27M | [55,56,63] |
SU-DIPG-17 | H3.3K27M | H3K27M | [55] |
SU-DIPG-19 | H3.3K27M | H3K27M | [55] |
SU-DIPG-25 | H3.3K27M | H3K27M | [55] |
SU-DIPG-27 | H3.3K27M | H3K27M | [55] |
SU-DIPG-29 | H3.3K27M | H3K27M | [55] |
SU-DIPG-35 | H3.3K27M | PPM1D S432 *, H3K27M | [56] |
SU-DIPG-6 | H3.3K27M | TP53 mutated, H3K27M | [55,56,69] |
SU-DIPG-24 | H3.3K27M | H3K27M | [55] |
7316_388_A | H3.3K27M | TP53 R248W, PDGFRA D842V, H3K27M | [70] |
7316_3058_S | H3.3K27M | PIK3CA E542K, TP53 R273H, A276T, R283C CDKN2A D74A, H3K27M | [70] |
7316_1763_S1 | H3.3K27M | PIK3CA E542K, TP53 R273H, A276T, R283C CDKN2A D74A, H3K27M | [70] |
SU-pSCG1 | H3.3K27M | NA | [55] |
P005306 | H3.3K27M | ATM R1466 *, PIK3R1 F456Q, H3K27M | [60] |
BT245 | H3.3K27M | H3K27M | [71] |
VUMC-DIPG-11 | H3.3K27M | H3K27M | [72] |
VUMC-DIPG-A | H3.3K27M | H3K27M | [63,73] |
HGG080318 | H3.3K27M | H3K27M | [60] |
7316_6349_S | H3.3K27M | TP53 R175H, C141Y; PDGFRA N659K, H3K27M | [70] |
JHH-DIPG-1 | H3.3K27M | H3K27M | [63,74] |
SF7761 | H3.3K27M | PPM1D E540 *, H3K27M | [75,76] |
JHH_DIPG_2J | H3.3K27M | NA | [60] |
P002306 | H3.3K27M | ACVR1 G328E; PPM1D W427*; PIK3CA H1047R, H3K27M | [60] |
SF8628 | H3.3K27M | H3K27M | [73] |
P001401 | H3.3K27M | TP53 R175H, BRCA2 M3181fs, H3K27M | [60] |
7316_195_S | H3.3K27M | TP53 X331splice, H3K27M | [70] |
HSJD-DIPG-007 | H3.3K27M | ACVR1 R206H; PPM1D P428Qfs *, H3K27M | [56,77,78] |
7316_6475_S1 | H3.3K27M | NRAS Q61K; FBXW7 X195splice; RB1 X474splice, H3K27M | [70] |
7316_1769_S | H3.3K27M | PIK3CA Q546H; PTPN11 A72T; PIK3CA T1025A, H3K27M | [70] |
PBT-29FHTC | H3.3K27M | FGFR1 546K; PIK3CA R93P; TP53 S127P, H3K27M | [60] |
PBT-22FHTC | H3.3K27M | TP53 R306*, H3K27M | [60] |
PPMP058_140222 | H3.3K27M | TP53 R158L, H3K27M | [60] |
ICR_B169_2D | H3.3K27M | TP53 C176Y; BRAF G469V, H3K27M | [60] |
ICR_B181_2D | H3.3K27M | TP53 R273H; ACVR1 G328E; PIK3R1 N564D, H3K27M | [60] |
RA055 | H3.3K27M | TP53 R175H; PDGFRA amp, H3K27M | [60] |
SU-DIPG-21 | H3.1K27M | H3K27M | [55] |
SU-DIPG-33 | H3.1K27M | H3K27M | [79] |
SU-DIPG-36 | H3.1K27M | H3K27M | [79] |
SU-DIPG-4 | H3.1K27M | ACVR1 G328V, H3K27M | [55,63] |
SU-DIPG-38 | H3.1K27M | H3K27M | [79] |
P003302 | H3.1K27M | TP53 R273C; ACVR1 R206H, H3K27M | [60] |
P005401 | H3.1K27M | TP53 Arg306 *, H214Glnfs *; EGFR A289S, A289V, H3K27M | [60] |
UON_JUMP4 | H3.1K27M | TP53 R273H; PIK3CA E545K; ACVR1 G328V, H3K27M | [60] |
ICR_B184_2D | H3.1K27M | TP53 C275Y; PIK3CA E542K, H3K27M | [60] |
ICR_B301_2D | H3.1K27M | TP53 C135F; ACVR1 G328V; BCOR E858fs, H3K27M | [60] |
OPBG_DIPG_004_2D | H3.1K27M | TP53 R348Q; ACVR1 G328E, H3K27M | [60] |
DUB_D003_2D | H3.1K27M | TP53 R175H; KDM6B R513P, H3K27M | [60] |
RCH4065 | H3G34 | PTEN del; CDKN2A del; PDGFRA amp, H3G34R | [60] |
KNS_42 | H3G34 | BLM S186 *; TP53 R342 *, H3G34R | [80] |
HSJD_GBM_002 | H3G34 | TP53 R209fs; NF1 L1246fs; CDKN2A/B del, H3G34R | [60] |
ICR_CXJ_046 | H3G34 | H3G34R | [60] |
OPBG_GBM_001 | H3G34 | TP53 mutated; PDGFRA Y288C; PTEN F341V; ATRX mutated, H3G34R | [60] |
7316_158_S | H3G34 | TP53 C238W, P152L, H3G34R | [70] |
CNMC_760_XD | H3 WT | NA | [60] |
VUMC-DIPG-10 | H3 WT | NF1 Q209 *; MYCN amp | [60] |
7316_913_S | H3 WT | PDGFRA N848K | [70] |
ICR_B194_2D | H3 WT | TP53 R158fs | [60] |
7316_5335_S2 | H3 WT | KRAS G12V; CTNNB1 S33Y; EGFR N771_H773 dup; TP53 R342P | [70] |
7316_5335_S1 | H3 WT | KRAS G12V; CTNNB1 S33Y; EGFR N771_H773 dup; TP53 R342P | [70] |
7316_1746_S | H3 WT | NA | [60,70] |
P007401 | H3 WT | TP53 G245S; RB1 R579 *; NF1 R1949Sfs; PTEN R173H; MSH6 R300W | [60] |
3.2. Modeling pHGG In Vivo Using Mice (Table 2)
3.2.1. Genetically Engineered Mouse Models for pHGG
Model | Cell Target | Molecular Alterations | Tumor Formation Latency | Result | Reference |
---|---|---|---|---|---|
GEMM | Nestin+ | PDGF-B overexpression, Ink4a loss RCAS-PDGFB; Ntv-a; Ink4a-ARF −/− | 4 weeks | PDGF-B overexpression alone caused low-grade tumors; PDGF-B overexpression and Ink4a loss caused high-grade tumors | [81] |
Nestin+ | H3.3K27M overexpression, p53 loss RCAS-PDGF-B, RCAS-Cre, ±RCAS-H3.3K27M in nestin tv-a; p53fl/fl | Not disclosed | Not sufficient to generate gliomas, but did generate proliferating clusters | [42] | |
Pax3+ | PDGF-B overexpression, p53 loss, H3.3K27M overexpression Pax3-Tv-a; p53fl/fl, with RCAS-PDGF-B + RCAS-Cre or RCAS-PDGF-B + RCAS-Cre + RCAS-H3.3K27M | 34–83 days | Sufficient to create high-grade, Olig2+ tumors, but tumors are not localized to the brainstem | [82] | |
Olig2+ | PDGF-B overexpression, p53 loss, H3K27M overexpression Olig2-Tv-a-Cre; p53fl/fl, and Olig2-Tv-a-Cre; p53fl/+ Olig2-Tv-a-Cre; PDGF-A; H3.3K27M Olig2-Tv-a-Cre PDGF-B; H3.3K27M Nestin-Tv-a; p53fl/fl | Not disclosed | Formed tumors, but was considered inadequate compared to Nestin+ GEMM | [83] | |
Acvr1+ | Acvr1 G328V, H3.3K27M, Pik3ca mutations Acvr1floxG328V/+; Hist1h3bK27M/+; Pik3cafloxH1047R/+; Olig2Cre/+ | Neurological symptoms begin shortly after birth, mice survive for 419 days | Formed tumors, arrested cell lineage in the pre-OPC cell state. | [84] | |
NSCs | H3.3K27M/PPM1DΔC/PIK3CAE545K, H3.1K27M/ACVR1G328V/PIK3CAE545K, H3.3K27M/p53LOF/FGFR1N457K, H3.3K27M/NF1LOF/FGFR1N457K, H3.3K27M/p53LOF/CCND2WT, H3.3/1 K27M with p53 LOF, or NF1LOF, or FGFR1N457K | 20–60 days | Tumors develop in the brainstem proper | [85] | |
Engraftment cell | Animal model | Result | Reference | ||
Brainstem Engraftment-based | Adult rat glioma C6, F98, 9L | Rat, adult and neonate | Successful engraftment in the brainstem, tumors histologically resembled DMG but not molecularly | [86,87,88,89,90] | |
Adult GBM cell lines (U87 MG, U251, GBM6, GBM14) | Athymic mice | Successful engraftment in the brainstem, tumors histologically resembled DMG but not molecularly | [91] | ||
GBM primary patient tumor | NOD-SCID mice | Successful engraftment in the brainstem, tumors histologically resembled DMG but not molecularly | [92] | ||
DMG primary patient tumor | NOD-SCID mice | Successful engraftment, tumors molecularly retain patient characteristics | [51,69,93] | ||
Model system | Culture technique | Result | Reference | ||
Tumor organoid models | GBM, “organ-on-a-chip” | Printed with decellularized ECM | GBM organoids are able to invade and proliferate through ECM | [94] | |
3D GBM organoid | Patient-derived organoids suspended in Matrigel, cultured on a shaking plate | Organoids recapitulate hypoxia gradients; organoids were long-lived | [95,96,97,98] | ||
Organoid co-culture | GBM-cerebral organoid co-culture | GBM cells co-cultured with cerebral organoids (representative of a developing brain) | GBM cells successfully invade and proliferate within the cerebral organoid and retain the patient phenotype | [99,100] | |
DMG cortical organoid co-culture | DMG cells co-cultured with printed organoid | DMG cells are adequately targeted by HDAC inhibitors, showing similar results to previous pre-clinical data | [101] |
3.2.2. Transplant-Based Models for pHGG
3.3. Organoid Models for pHGG
3.3.1. Tumor Organoids
3.3.2. Organoid Co-Culture
4. Concluding Remarks
Impact of H3.3K27M Mutation | Genes | Gene Function | References |
---|---|---|---|
Mutation: loss of function | TP53 | Tumor suppressor | [17,37,43,115] |
Copy number abnormalities: amplification | TOP3A | Topoisomerase III alpha, involved in DNA replication | [30] |
Copy number abnormalities: amplification | CCND2 | Cell cycle | [30] |
Upregulation | ATRX | DNA recombination and repair | [30] |
Downregulation | CDKN2a (locus p16) | Tumor suppressor | [41,116] |
Mutation | H3F3A | Histone H3 | [38] |
NA | PDGFRα | Pathway involved in cell growth and division | [23] |
NA | FGFR1 | Proliferation of precursor cells | [115] |
Copy number abnormalities: amplification | MYC | Proto-oncogene | [117] |
Downregulation | FOXG1 | Developmental transcription factor | [37] |
Upregulation | LIN28 | Neural precursor cell proliferation and differentiation | [23] |
Upregulation | PLAG1 | Neural precursor cell proliferation and differentiation | [23] |
Upregulation | IGF2BP2 | Neural precursor cell proliferation and differentiation | [23] |
Impact of H3.1K27M mutation | Genes | Gene Function | References |
NA | ACRV1 | Bone regulation and skeletal development, heart development, and the reproductive system | [17,118,119,120] |
NA | EGOR | Epigenetic regulator plays a role in noncanonical PRC1 and contributes to the specification of cell differentiation and development of body structure | [17,121,122,123] |
NA | PI3K | Cell growth, proliferation, and migration | [17,124] |
Pre-Clinical Model | Benefits | Limitations |
---|---|---|
In vitro cell culture | Efficient to derive and maintain relative to animal models Greater availability Efficient for use in different forms of screening (i.e., CRISPR screening, drug screening) | Does not adequately represent the complexity of a tumor Homogeneity of clones Does not consider tumor microenvironmental conditions (i.e., hypoxia, ECM changes, angiogenesis, immune cell infiltration) |
Genetically engineered mouse models (GEMMs) | Effective for understanding the origins of a tumor with a specific set of co-mutations Tumors usually arise in the spatially correct portion of the brain Given driver mutations, is sufficient to delineate the developmental origins of tumors Optogenetic models allow for the evaluation of neuronal circuit integration with tumor cells | Derived from a discreet number of pathogenic mutations; therefore, it is transcriptionally and genetically homogenous relative to the parent tumor |
In vivo transplant models | Better represent patient tumor heterogeneity than in vitro and GEMM models Histologically, tumors usually resemble patient tumors Better predict patient responses to therapeutics | Findings on pathophysiology are limited to the patient cell lines used and are therefore inefficient compared to in vitro systems Requires an immunocompromised animal, thereby being unable to properly evaluate the immune landscape of the tumor microenvironment |
Tumor organoid model | Better represents clonal hierarchy than in vitro systems Lower cost and time commitment than in vivo models Better high-throughput screening ability compared to other models | Lacks endogenous tumor microenvironmental features, such as vasculature and the immune system |
Organoid-cancer co-culture model | Allows for analysis of interactions between cancer cells and a developing brain-like environment May allow for high-throughput screens that can assess brain toxicity | Most cortical organoid protocols are regionalized to a specific anatomical location of the brain and do not represent the entire brain microenvironment Lacks vasculature, immune milieu |
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steliarova-Foucher, E.; Colombet, M.; Ries, L.A.G.; Moreno, F.; Dolya, A.; Bray, F.; Hesseling, P.; Shin, H.Y.; Stiller, C.A.; Bouzbid, S.; et al. International incidence of childhood cancer, 2001–10: A population-based registry study. Lancet. Oncol. 2017, 18, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Adel Fahmideh, M.; Scheurer, M.E. Pediatric Brain Tumors: Descriptive Epidemiology, Risk Factors, and Future DirectionsEpidemiology of Pediatric Brain Tumors. Cancer Epidemiol. Biomark. Prev. 2021, 30, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.D.; Ostrom, Q.T.; Kruchko, C.; Patil, N.; Tihan, T.; Cioffi, G.; Fuchs, H.E.; Waite, K.A.; Jemal, A.; Siegel, R.L. Brain and other central nervous system tumor statistics, 2021. CA A Cancer J. Clin. 2021, 71, 381–406. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Price, M.; Ryan, K.; Edelson, J.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Pediatric brain tumor foundation childhood and adolescent primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro-Oncol. 2022, 24 (Suppl. S3), iii1–iii38. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.; Pfister, S.M.; Reifenberger, G. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro-Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Sturm, D.; Pfister, S.M.; Jones, D.T. Pediatric gliomas: Current concepts on diagnosis, biology, and clinical management. J. Clin. Oncol. 2017, 35, 2370–2377. [Google Scholar] [CrossRef] [PubMed]
- Fangusaro, J. Pediatric high grade glioma: A review and update on tumor clinical characteristics and biology. Front. Oncol. 2012, 2, 105. [Google Scholar] [CrossRef] [PubMed]
- Braunstein, S.; Raleigh, D.; Bindra, R.; Mueller, S.; Haas-Kogan, D. Pediatric high-grade glioma: Current molecular landscape and therapeutic approaches. J. Neuro-Oncol. 2017, 134, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Puget, S.; Beccaria, K.; Blauwblomme, T.; Roujeau, T.; James, S.; Grill, J.; Zerah, M.; Varlet, P.; Sainte-Rose, C. Biopsy in a series of 130 pediatric diffuse intrinsic Pontine gliomas. Child’s Nerv. Syst. 2015, 31, 1773–1780. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.L.; Monje, M. A protocol for rapid post-mortem cell culture of diffuse intrinsic pontine glioma (DIPG). J. Vis. Exp. JoVE 2017, 121, e55360. [Google Scholar]
- Harris, W.; Newcomb, W. A case of pontine glioma, with special reference to the paths of gustatory sensation. Proc. R. Soc. Med. 1926, 19, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Fisher, P.G.; Breiter, S.N.; Carson, B.S.; Wharam, M.D.; Williams, J.A.; Weingart, J.D.; Foer, D.R.; Goldthwaite, P.T.; Tihan, T.; Burger, P.C. A clinicopathologic reappraisal of brain stem tumor classification: Identification of pilocytic astrocytoma and fibrillary astrocytoma as distinct entities. Cancer Interdiscip. Int. J. Am. Cancer Soc. 2000, 89, 1569–1576. [Google Scholar] [CrossRef]
- Johung, T.B.; Monje, M. Diffuse intrinsic pontine glioma: New pathophysiological insights and emerging therapeutic targets. Curr. Neuropharmacol. 2017, 15, 88–97. [Google Scholar] [CrossRef]
- Vanan, M.I.; Eisenstat, D.D. DIPG in children–what can we learn from the past? Front. Oncol. 2015, 5, 237. [Google Scholar] [CrossRef] [PubMed]
- Mackay, A.; Burford, A.; Carvalho, D.; Izquierdo, E.; Fazal-Salom, J.; Taylor, K.R.; Bjerke, L.; Clarke, M.; Vinci, M.; Nandhabalan, M. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 2017, 32, 520–537.e5. [Google Scholar] [CrossRef]
- Lowe, B.R.; Maxham, L.A.; Hamey, J.J.; Wilkins, M.R.; Partridge, J.F. Histone H3 mutations: An updated view of their role in chromatin deregulation and cancer. Cancers 2019, 11, 660. [Google Scholar] [CrossRef] [PubMed]
- Schwartzentruber, J.; Korshunov, A.; Liu, X.-Y.; Jones, D.T.W.; Pfaff, E.; Jacob, K.; Sturm, D.; Fontebasso, A.M.; Quang, D.-A.K.; Tönjes, M.; et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 2012, 482, 226. [Google Scholar] [CrossRef] [PubMed]
- Caretti, V.; Bugiani, M.; Freret, M.; Schellen, P.; Jansen, M.; van Vuurden, D.; Kaspers, G.; Fisher, P.G.; Hulleman, E.; Wesseling, P. Subventricular spread of diffuse intrinsic pontine glioma. Acta Neuropathol. 2014, 128, 605–607. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Z. Oncohistone mutations in diffuse intrinsic pontine glioma. Trends Cancer 2019, 5, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Bender, S.; Tang, Y.; Lindroth, A.M.; Hovestadt, V.; Jones, D.T.; Kool, M.; Zapatka, M.; Northcott, P.A.; Sturm, D.; Wang, W. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 2013, 24, 660–672. [Google Scholar] [CrossRef]
- Larson, J.; Kasper, L.H.; Paugh, B.S.; Jin, H.; Wu, G.; Kwon, C.-H.; Fan, Y.; Shaw, T.I.; Silveira, A.B.; Qu, C.; et al. Histone H3.3 K27M Accelerates Spontaneous Brainstem Glioma and Drives Restricted Changes in Bivalent Gene Expression. Cancer Cell 2018, 35, 140–155. [Google Scholar] [CrossRef] [PubMed]
- Filbin, M.G.; Tirosh, I.; Hovestadt, V.; Shaw, M.L.; Escalante, L.E.; Mathewson, N.D.; Neftel, C.; Frank, N.; Pelton, K.; Hebert, C.M. Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 2018, 360, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Liu, I.; Jiang, L.; Samuelsson, E.R.; Marco Salas, S.; Beck, A.; Hack, O.A.; Jeong, D.; Shaw, M.L.; Englinger, B.; LaBelle, J. The landscape of tumor cell states and spatial organization in H3-K27M mutant diffuse midline glioma across age and location. Nat. Genet. 2022, 54, 1881–1894. [Google Scholar] [CrossRef] [PubMed]
- Jessa, S.; Mohammadnia, A.; Harutyunyan, A.S.; Hulswit, M.; Varadharajan, S.; Lakkis, H.; Kabir, N.; Bashardanesh, Z.; Hébert, S.; Faury, D. K27M in canonical and noncanonical H3 variants occurs in distinct oligodendroglial cell lineages in brain midline gliomas. Nat. Genet. 2022, 54, 1865–1880. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.-H.G.; Mueller, S.; Reddy, A.; Taylor, J.W.; Oberheim Bush, N.A.; Clarke, J.L.; Chang, S.M.; Gupta, N.; Berger, M.S.; Perry, A. Diffuse hemispheric glioma, H3 G34-mutant: Genomic landscape of a new tumor entity and prospects for targeted therapy. Neuro-Oncol. 2021, 23, 1974–1976. [Google Scholar] [CrossRef] [PubMed]
- Hegi, M.E.; Diserens, A.-C.; Godard, S.; Dietrich, P.-Y.; Regli, L.; Ostermann, S.; Otten, P.; Van Melle, G.; de Tribolet, N.; Stupp, R. Clinical Trial Substantiates the Predictive Value of O-6-Methylguanine-DNA Methyltransferase Promoter Methylation in Glioblastoma Patients Treated with Temozolomide. Clin. Cancer Res. 2004, 10, 1871–1874. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Deshmukh, S.; Jessa, S.; Hadjadj, D.; Lisi, V.; Andrade, A.F.; Faury, D.; Jawhar, W.; Dali, R.; Suzuki, H. Histone H3. 3G34-mutant interneuron progenitors co-opt PDGFRA for gliomagenesis. Cell 2020, 183, 1617–1633.e22. [Google Scholar] [CrossRef] [PubMed]
- Bjerke, L.; Mackay, A.; Nandhabalan, M.; Burford, A.; Jury, A.; Popov, S.; Bax, D.A.; Carvalho, D.; Taylor, K.R.; Vinci, M. Histone H3. 3 mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov. 2013, 3, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Duffner, P.K.; Horowitz, M.E.; Krischer, J.P.; Burger, P.C.; Cohen, M.E.; Sanford, R.A.; Friedman, H.S.; Kun, L.E. The treatment of malignant brain tumors in infants and very young children: An update of the Pediatric Oncology Group experience. Neuro-Oncol. 1999, 1, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Gianno, F.; Giovannoni, I.; Cafferata, B.; Diomedi-Camassei, F.; Minasi, S.; Barresi, S.; Buttarelli, F.R.; Alesi, V.; Cardoni, A.; Antonelli, M. Paediatric-type diffuse high-grade gliomas in the 5th CNS WHO Classification. Pathol.-J. Ital. Soc. Anat. Pathol. Diagn. Cytopathol. 2022, 114, 422–435. [Google Scholar] [CrossRef] [PubMed]
- Korshunov, A.; Schrimpf, D.; Ryzhova, M.; Sturm, D.; Chavez, L.; Hovestadt, V.; Sharma, T.; Habel, A.; Burford, A.; Jones, C. H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers. Acta Neuropathol. 2017, 134, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Norris, G.A.; Willard, N.; Donson, A.M.; Gaskell, A.; Milgrom, S.A.; O’Neill, B.R.; Nijmeh, H.; Haag, M.; Gilani, A.; Foreman, N.K. PDGFB: APOBEC3C fusion in congenital diffuse high-grade glioma of the brainstem. J. Neuropathol. Exp. Neurol. 2023, 82, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Perez, A.; Huse, J.T. The evolving classification of diffuse gliomas: World Health Organization updates for 2021. Curr. Neurol. Neurosci. Rep. 2021, 21, 67. [Google Scholar] [CrossRef] [PubMed]
- Huchedé, P.; Leblond, P.; Castets, M. The Intricate Epigenetic and Transcriptional Alterations in Pediatric High-Grade Gliomas: Targeting the Crosstalk as the Oncogenic Achilles’ Heel. Biomedicines 2022, 10, 1311. [Google Scholar] [CrossRef] [PubMed]
- Sturm, D.; Witt, H.; Hovestadt, V.; Khuong-Quang, D.-A.; Jones, D.T.; Konermann, C.; Pfaff, E.; Tönjes, M.; Sill, M.; Bender, S. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 2012, 22, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Broniscer, A.; McEachron, T.A.; Lu, C.; Paugh, B.S.; Becksfort, J.; Qu, C.; Ding, L.; Huether, R.; Parker, M.; et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 2012, 44, 251–253. [Google Scholar] [PubMed]
- Goldberg, A.D.; Banaszynski, L.A.; Noh, K.-M.; Lewis, P.W.; Elsaesser, S.J.; Stadler, S.; Dewell, S.; Law, M.; Guo, X.; Li, X.; et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 2010, 140, 678–691. [Google Scholar] [CrossRef] [PubMed]
- Castel, D.; Philippe, C.; Calmon, R.; Le Dret, L.; Truffaux, N.; Boddaert, N.; Pagès, M.; Taylor, K.R.; Saulnier, P.; Lacroix, L. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol. 2015, 130, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, F.; Weissmann, S.; Leblanc, B.; Pandey, D.P.; Højfeldt, J.W.; Comet, I.; Zheng, C.; Johansen, J.V.; Rapin, N.; Porse, B.T.; et al. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat. Med. 2017, 23, 483. [Google Scholar] [CrossRef] [PubMed]
- Lewis, P.W.; Müller, M.M.; Koletsky, M.S.; Cordero, F.; Lin, S.; Banaszynski, L.A.; Garcia, B.A.; Muir, T.W.; Becher, O.J.; Allis, C.D. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 2013, 340, 857–861. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.-M.; Fang, D.; Gan, H.; Hashizume, R.; Yu, C.; Schroeder, M.; Gupta, N.; Mueller, S.; James, C.D.; Jenkins, R. The histone H3. 3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev. 2013, 27, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Silveira, A.B.; Kasper, L.H.; Fan, Y.; Jin, H.; Wu, G.; Shaw, T.I.; Zhu, X.; Larson, J.D.; Easton, J.; Shao, Y.; et al. H3.3 K27M depletion increases differentiation and extends latency of diffuse intrinsic pontine glioma growth in vivo. Acta Neuropathol. 2019, 137, 637–655. [Google Scholar] [CrossRef] [PubMed]
- Piunti, A.; Hashizume, R.; Morgan, M.A.; Bartom, E.T.; Horbinski, C.M.; Marshall, S.A.; Rendleman, E.J.; Ma, Q.; Takahashi, Y.-H.; Woodfin, A.R.; et al. Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat. Med. 2017, 23, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Krug, B.; De Jay, N.; Harutyunyan, A.S.; Deshmukh, S.; Marchione, D.M.; Guilhamon, P.; Bertrand, K.C.; Mikael, L.G.; McConechy, M.K.; Chen, C.C. Pervasive H3K27 acetylation leads to ERV expression and a therapeutic vulnerability in H3K27M gliomas. Cancer Cell 2019, 35, 782–797.e8. [Google Scholar] [CrossRef] [PubMed]
- Fontebasso, A.M.; Schwartzentruber, J.; Khuong-Quang, D.-A.; Liu, X.-Y.; Sturm, D.; Korshunov, A.; Jones, D.T.; Witt, H.; Kool, M.; Albrecht, S. Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathol. 2013, 125, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.U.; Khazaei, S.; Marchione, D.M.; Lundgren, S.M.; Wang, X.; Weinberg, D.N.; Deshmukh, S.; Juretic, N.; Lu, C.; Allis, C.D. Histone H3. 3 G34 mutations promote aberrant PRC2 activity and drive tumor progression. Proc. Natl. Acad. Sci. USA 2020, 117, 27354–27364. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zheng, Y.; Li, X.; Wang, A.; Huo, D.; Li, Q.; Wang, S.; Luo, Z.; Liu, Y.; Xu, F. Abnormal neocortex arealization and Sotos-like syndrome–associated behavior in Setd2 mutant mice. Sci. Adv. 2021, 7, eaba1180. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Wang, S.; Li, M.; Diao, L.; Pan, X.; Chen, J.; Zou, W.; Zhang, X.; Feng, W.; Bao, L. α-TubK40me3 is required for neuronal polarization and migration by promoting microtubule formation. Nat. Commun. 2021, 12, 4113. [Google Scholar] [CrossRef] [PubMed]
- Monje, M.; Mitra, S.S.; Freret, M.E.; Raveh, T.B.; Kim, J.; Masek, M.; Attema, J.L.; Li, G.; Haddix, T.; Edwards, M.S. Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proc. Natl. Acad. Sci. USA 2011, 108, 4453–4458. [Google Scholar] [CrossRef] [PubMed]
- Cage, T.A.; Samagh, S.P.; Mueller, S.; Nicolaides, T.; Haas-Kogan, D.; Prados, M.; Banerjee, A.; Auguste, K.I.; Gupta, N. Feasibility, safety, and indications for surgical biopsy of intrinsic brainstem tumors in children. Child’s Nerv. Syst. 2013, 29, 1313–1319. [Google Scholar] [CrossRef] [PubMed]
- Carai, A.; Mastronuzzi, A.; De Benedictis, A.; Messina, R.; Cacchione, A.; Miele, E.; Randi, F.; Esposito, G.; Trezza, A.; Colafati, G.S. Robot-assisted stereotactic biopsy of diffuse intrinsic pontine glioma: A single-center experience. World Neurosurg. 2017, 101, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.J.; Rao, L.; Bhambhani, K.; Miller, K.; Poulik, J.; Altinok, D.; Sood, S. Diffuse intrinsic pontine glioma biopsy: A single institution experience. Pediatr. Blood Cancer 2015, 62, 163–165. [Google Scholar] [CrossRef] [PubMed]
- Qin, E.Y.; Cooper, D.D.; Abbott, K.L.; Lennon, J.; Nagaraja, S.; Mackay, A.; Jones, C.; Vogel, H.; Jackson, P.K.; Monje, M. Neural precursor-derived pleiotrophin mediates subventricular zone invasion by glioma. Cell 2017, 170, 845–859.e19. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Liu, H.; Pirozzi, C.J.; Chen, L.H.; Greer, P.K.; Diplas, B.H.; Zhang, L.; Waitkus, M.S.; He, Y.; Yan, H. TP53 wild-type/PPM1D mutant diffuse intrinsic pontine gliomas are sensitive to a MDM2 antagonist. Acta Neuropathol. Commun. 2021, 9, 178. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Kaplan, J.P.; Nguyen, H.; Stopka, S.A.; Savani, M.R.; Regan, M.S.; Nguyen, Q.-D.; Jones, K.L.; Moreau, L.A.; Peng, J. A druggable addiction to de novo pyrimidine biosynthesis in diffuse midline glioma. Cancer Cell 2022, 40, 957–972.e10. [Google Scholar] [CrossRef] [PubMed]
- Metselaar, D.S.; du Chatinier, A.; Meel, M.H.; Ter Huizen, G.; Waranecki, P.; Goulding, J.R.; Bugiani, M.; Koster, J.; Kaspers, G.J.; Hulleman, E. AURKA and PLK1 inhibition selectively and synergistically block cell cycle progression in diffuse midline glioma. Iscience 2022, 25, 104398. [Google Scholar] [CrossRef] [PubMed]
- Khadka, P.; Reitman, Z.J.; Lu, S.; Buchan, G.; Gionet, G.; Dubois, F.; Carvalho, D.M.; Shih, J.; Zhang, S.; Greenwald, N.F. PPM1D mutations are oncogenic drivers of de novo diffuse midline glioma formation. Nat. Commun. 2022, 13, 604. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.X.; Daniel, P.; Bradshaw, G.; Shi, H.; Loi, M.; Chew, N.; Parackal, S.; Tsui, V.; Liang, Y.; Koptyra, M. Generation and multi-dimensional profiling of a childhood cancer cell line atlas defines new therapeutic opportunities. Cancer Cell 2023, 41, 660–677. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.L.; Wilson, K.M.; Ceribelli, M.; Stanton, B.Z.; Woo, P.J.; Kreimer, S.; Qin, E.Y.; Zhang, X.; Lennon, J.; Nagaraja, S. Therapeutic strategies for diffuse midline glioma from high-throughput combination drug screening. Sci. Transl. Med. 2019, 11, eaaw0064. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Nesvick, C.L.; Day, C.A.; Choi, J.; Lu, V.M.; Peterson, T.; Power, E.A.; Anderson, J.B.; Hamdan, F.H.; Decker, P.A. STAT3 is a biologically relevant therapeutic target in H3K27M-mutant diffuse midline glioma. Neuro-Oncol. 2022, 24, 1700–1711. [Google Scholar] [CrossRef] [PubMed]
- Grasso, C.S.; Tang, Y.; Truffaux, N.; Berlow, N.E.; Liu, L.; Debily, M.-A.; Quist, M.J.; Davis, L.E.; Huang, E.C.; Woo, P.J.; et al. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat. Med. 2015, 21, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Nyga, A.; Cheema, U.; Loizidou, M. 3D tumour models: Novel in vitro approaches to cancer studies. J. Cell Commun. Signal. 2011, 5, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Mudassar, F.; Shen, H.; O’Neill, G.; Hau, E. Targeting tumor hypoxia and mitochondrial metabolism with anti-parasitic drugs to improve radiation response in high-grade gliomas. J. Exp. Clin. Cancer Res. 2020, 39, 208. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Esfahani, D.; Huang, T.; Ozark, P.; Bartom, E.; Hashizume, R.; Bonner, E.; An, S.; Horbinski, C.; James, C. Tenascin-C expression contributes to pediatric brainstem glioma tumor phenotype and represents a novel biomarker of disease. Acta Neuropathol. Commun. 2019, 7, 75. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Meel, M.H.; Breur, M.; Bugiani, M.; Hulleman, E.; Phoenix, T.N. Defining tumor-associated vascular heterogeneity in pediatric high-grade and diffuse midline gliomas. Acta Neuropathol. Commun. 2021, 9, 142. [Google Scholar] [CrossRef] [PubMed]
- Price, G.; Bouras, A.; Hambardzumyan, D.; Hadjipanayis, C.G. Current knowledge on the immune microenvironment and emerging immunotherapies in diffuse midline glioma. EBioMedicine 2021, 69, 103453. [Google Scholar] [CrossRef]
- Caretti, V.; Sewing, A.C.P.; Lagerweij, T.; Schellen, P.; Bugiani, M.; Jansen, M.H.; van Vuurden, D.G.; Navis, A.C.; Horsman, I.; Vandertop, W.P. Human pontine glioma cells can induce murine tumors. Acta Neuropathol. 2014, 127, 897–909. [Google Scholar] [CrossRef] [PubMed]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Green, A.L.; Ramkissoon, S.H.; McCauley, D.; Jones, K.; Perry, J.A.; Hsu, J.H.-R.; Ramkissoon, L.A.; Maire, C.L.; Hubbell-Engler, B.; Knoff, D.S. Preclinical antitumor efficacy of selective exportin 1 inhibitors in glioblastoma. Neuro-Oncol. 2015, 17, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Meel, M.H.; Sewing, A.C.P.; Waranecki, P.; Metselaar, D.S.; Wedekind, L.E.; Koster, J.; van Vuurden, D.G.; Kaspers, G.J.; Hulleman, E. Culture methods of diffuse intrinsic pontine glioma cells determine response to targeted therapies. Exp. Cell Res. 2017, 360, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Veringa, S.J.; Biesmans, D.; van Vuurden, D.G.; Jansen, M.H.; Wedekind, L.E.; Horsman, I.; Wesseling, P.; Vandertop, W.P.; Noske, D.P.; Kaspers, G.J. In vitro drug response and efflux transporters associated with drug resistance in pediatric high grade glioma and diffuse intrinsic pontine glioma. PLoS ONE 2013, 8, e61512. [Google Scholar] [CrossRef] [PubMed]
- Taylor, I.C.; Hütt-Cabezas, M.; Brandt, W.D.; Kambhampati, M.; Nazarian, J.; Chang, H.T.; Warren, K.E.; Eberhart, C.G.; Raabe, E.H. Disrupting NOTCH slows diffuse intrinsic pontine glioma growth, enhances radiation sensitivity, and shows combinatorial efficacy with bromodomain inhibition. J. Neuropathol. Exp. Neurol. 2015, 74, 778–790. [Google Scholar] [CrossRef] [PubMed]
- Hashizume, R.; Smirnov, I.; Liu, S.; Phillips, J.J.; Hyer, J.; McKnight, T.R.; Wendland, M.; Prados, M.; Banerjee, A.; Nicolaides, T. Characterization of a diffuse intrinsic pontine glioma cell line: Implications for future investigations and treatment. J. Neuro-Oncol. 2012, 110, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, C.; Diplas, B.H.; Moure, C.J.; Chen, C.-P.J.; Chen, L.H.; Du, C.; Zhu, H.; Greer, P.K.; Zhang, L. Targeting mutant PPM1D sensitizes diffuse intrinsic pontine glioma cells to the PARP inhibitor olaparib. Mol. Cancer Res. 2020, 18, 968–980. [Google Scholar] [CrossRef] [PubMed]
- Jansen, M.H.; Lagerweij, T.; Sewing, A.C.P.; Vugts, D.J.; Van Vuurden, D.G.; Molthoff, C.F.; Caretti, V.; Veringa, S.J.; Petersen, N.; Carcaboso, A.M. Bevacizumab targeting diffuse intrinsic pontine glioma: Results of 89Zr-bevacizumab PET imaging in brain tumor models. Mol. Cancer Ther. 2016, 15, 2166–2174. [Google Scholar] [CrossRef] [PubMed]
- Cockle, J.; Picton, S.; Levesley, J.; Ilett, E.; Carcaboso, A.; Short, S.; Steel, L.; Melcher, A.; Lawler, S.; Brüning-Richardson, A. Cell migration in paediatric glioma; characterisation and potential therapeutic targeting. Br. J. Cancer 2015, 112, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Sanders, L.M.; Cheney, A.; Seninge, L.; van den Bout, A.; Chen, M.; Beale, H.C.; Kephart, E.T.; Pfeil, J.; Learned, K.; Lyle, A.G. Identification of a differentiation stall in epithelial mesenchymal transition in histone H3–mutant diffuse midline glioma. Gigascience 2020, 9, giaa136. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, I.; Takaki, T.; Kuramitsu, M.; Nagasaka, S.; Machi, T.; Ogawa, H.; Egami, H.; Mannoji, H.; Fukui, M.; Kitamura, K. Characteristics of an established human glioma cell line, KNS-42. Neurol. Med.-Chir. 1987, 27, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Becher, O.J.; Hambardzumyan, D.; Walker, T.R.; Helmy, K.; Nazarian, J.; Albrecht, S.; Hiner, R.L.; Gall, S.; Huse, J.T.; Jabado, N. Preclinical evaluation of radiation and perifosine in a genetically and histologically accurate model of brainstem glioma. Cancer Res. 2010, 70, 2548–2557. [Google Scholar] [CrossRef] [PubMed]
- Misuraca, K.L.; Hu, G.; Barton, K.L.; Chung, A.; Becher, O.J. A novel mouse model of diffuse intrinsic pontine glioma initiated in Pax3-expressing cells. Neoplasia 2016, 18, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Tomita, Y.; Shimazu, Y.; Somasundaram, A.; Tanaka, Y.; Takata, N.; Ishi, Y.; Gadd, S.; Hashizume, R.; Angione, A.; Pinero, G. A novel mouse model of diffuse midline glioma initiated in neonatal oligodendrocyte progenitor cells highlights cell-of-origin dependent effects of H3K27M. Glia 2022, 70, 1681–1698. [Google Scholar] [CrossRef] [PubMed]
- Fortin, J.; Tian, R.; Zarrabi, I.; Hill, G.; Williams, E.; Sanchez-Duffhues, G.; Thorikay, M.; Ramachandran, P.; Siddaway, R.; Wong, J.F. Mutant ACVR1 arrests glial cell differentiation to drive tumorigenesis in pediatric gliomas. Cancer Cell 2020, 37, 308–323.e12. [Google Scholar] [CrossRef] [PubMed]
- McNicholas, M.; De Cola, A.; Bashardanesh, Z.; Foss, A.; Lloyd, C.B.; Hébert, S.; Faury, D.; Andrade, A.F.; Jabado, N.; Kleinman, C.L. A Compendium of Syngeneic, Transplantable Pediatric High-Grade Glioma Models Reveals Subtype-Specific Therapeutic Vulnerabilities. Cancer Discov. 2023, 13, OF1–OF24. [Google Scholar] [CrossRef] [PubMed]
- Jallo, G.I.; Penno, M.; Sukay, L.; Liu, J.Y.; Tyler, B.; Lee, J.; Carson, B.S.; Guarnieri, M. Experimental models of brainstem tumors: Development of a neonatal rat model. Child’s Nerv. Syst. 2005, 21, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Jallo, G.I.; Volkov, A.; Wong, C.; Carson, B.S.; Penno, M.B. A novel brainstem tumor model: Functional and histopathological characterization. Child’s Nerv. Syst. 2006, 22, 1519–1525. [Google Scholar] [CrossRef]
- Lee, J.; Jallo, G.I.; Guarnieri, M.; Carson, B.S.; Penno, M.B. A novel brainstem tumor model: Guide screw technology with functional, radiological, and histopathological characterization. Neurosurg. Focus 2005, 18, 1–6. [Google Scholar] [CrossRef]
- Sho, A.; Kondo, S.; Kamitani, H.; Otake, M.; Watanabe, T. Establishment of experimental glioma models at the intrinsic brainstem region of the rats. Neurol. Res. 2007, 29, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, R.; Kashyap, M.V.; Agarwal, R.; Shi, X.e.; Wang, C.-c.; Yang, S.-H. Brainstem glioma progression in juvenile and adult rats. J. Neurosurg. 2008, 109, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Hashizume, R.; Ozawa, T.; Dinca, E.B.; Banerjee, A.; Prados, M.D.; James, C.D.; Gupta, N. A human brainstem glioma xenograft model enabled for bioluminescence imaging. J. Neuro-Oncol. 2010, 96, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Aoki, Y.; Hashizume, R.; Ozawa, T.; Banerjee, A.; Prados, M.; James, C.D.; Gupta, N. An experimental xenograft mouse model of diffuse pontine glioma designed for therapeutic testing. J. Neuro-Oncol. 2012, 108, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Tsoli, M.; Shen, H.; Mayoh, C.; Franshaw, L.; Ehteda, A.; Upton, D.; Carvalho, D.; Vinci, M.; Meel, M.H.; van Vuurden, D. International experience in the development of patient-derived xenograft models of diffuse intrinsic pontine glioma. J. Neuro-Oncol. 2019, 141, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.-G.; Jeong, Y.H.; Kim, Y.; Choi, Y.-J.; Moon, H.E.; Park, S.H.; Kang, K.S.; Bae, M.; Jang, J.; Youn, H. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nat. Biomed. Eng. 2019, 3, 509–519. [Google Scholar] [CrossRef]
- Verduin, M.; Hoeben, A.; De Ruysscher, D.; Vooijs, M. Patient-derived cancer organoids as predictors of treatment response. Front. Oncol. 2021, 820, 641980. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.H.; Siu, H.C.; Law, S.; Ho, S.L.; Yue, S.S.; Tsui, W.Y.; Chan, D.; Chan, A.S.; Ma, S.; Lam, K.O. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell 2018, 23, 882–897.e11. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Xu, X.; Yang, L.; Zhu, J.; Wan, J.; Shen, L.; Xia, F.; Fu, G.; Deng, Y.; Pan, M. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell 2020, 26, 17–26.e6. [Google Scholar] [CrossRef] [PubMed]
- LeSavage, B.L.; Suhar, R.A.; Broguiere, N.; Lutolf, M.P.; Heilshorn, S.C. Next-generation cancer organoids. Nat. Mater. 2022, 21, 143–159. [Google Scholar] [CrossRef] [PubMed]
- Azzarelli, R.; Ori, M.; Philpott, A.; Simons, B.D. Three-dimensional model of glioblastoma by co-culturing tumor stem cells with human brain organoids. Biol. Open 2021, 10, bio056416. [Google Scholar] [CrossRef] [PubMed]
- Linkous, A.; Balamatsias, D.; Snuderl, M.; Edwards, L.; Miyaguchi, K.; Milner, T.; Reich, B.; Cohen-Gould, L.; Storaska, A.; Nakayama, Y. Modeling patient-derived glioblastoma with cerebral organoids. Cell Rep. 2019, 26, 3203–3211.e5. [Google Scholar] [CrossRef]
- Roth, J.G.; Brunel, L.G.; Huang, M.S.; Liu, Y.; Cai, B.; Sinha, S.; Yang, F.; Pașca, S.P.; Shin, S.; Heilshorn, S.C. Spatially controlled construction of assembloids using bioprinting. Nat. Commun. 2023, 14, 4346. [Google Scholar] [CrossRef] [PubMed]
- Osswald, M.; Jung, E.; Sahm, F.; Solecki, G.; Venkataramani, V.; Blaes, J.; Weil, S.; Horstmann, H.; Wiestler, B.; Syed, M. Brain tumour cells interconnect to a functional and resistant network. Nature 2015, 528, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, H.S.; Johung, T.B.; Caretti, V.; Noll, A.; Tang, Y.; Nagaraja, S.; Gibson, E.M.; Mount, C.W.; Polepalli, J.; Mitra, S.S. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 2015, 161, 803–816. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, H.S.; Morishita, W.; Geraghty, A.C.; Silverbush, D.; Gillespie, S.M.; Arzt, M.; Tam, L.T.; Espenel, C.; Ponnuswami, A.; Ni, L. Electrical and synaptic integration of glioma into neural circuits. Nature 2019, 573, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Tye, K.M.; Deisseroth, K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat. Rev. Neurosci. 2012, 13, 251–266. [Google Scholar] [CrossRef] [PubMed]
- Barton, K.L.; Misuraca, K.; Cordero, F.; Dobrikova, E.; Min, H.D.; Gromeier, M.; Kirsch, D.G.; Becher, O.J. PD-0332991, a CDK4/6 inhibitor, significantly prolongs survival in a genetically engineered mouse model of brainstem glioma. PLoS ONE 2013, 8, e77639. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, K.M.; Hoeman, C.M.; Becher, O.J. Children are not just little adults: Recent advances in understanding of diffuse intrinsic pontine glioma biology. Pediatr. Res. 2014, 75, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Calles, A.; Rubio-Viqueira, B.; Hidalgo, M. Primary Human Non-Small Cell Lung and Pancreatic Tumorgraft Models—Utility and Applications in Drug Discovery and Tumor Biology. Curr. Protoc. Pharmacol. 2013, 61, 14.26.11–14.26.21. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Seol, H.S.; Chang, S. The generation and application of patient-derived xenograft model for cancer research. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2018, 50, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tian, Y.; Wan, H.; Li, D.; Wu, W.; Yin, L.; Jiang, J.; Wan, W.; Zhang, L. Differences between brainstem gliomas in juvenile and adult rats. Oncol. Lett. 2013, 6, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, J.; Siu, I.-M.; Thomale, U.-W.; Jallo, G.I. The effects of temozolomide delivered by prolonged intracerebral microinfusion against the rat brainstem GBM allograft model. Child’s Nerv. Syst. 2012, 28, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Hubert, C.G.; Rivera, M.; Spangler, L.C.; Wu, Q.; Mack, S.C.; Prager, B.C.; Couce, M.; McLendon, R.E.; Sloan, A.E.; Rich, J.N. A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivobrain cancer stem cell organoids. Cancer Res. 2016, 76, 2465–2477. [Google Scholar] [CrossRef] [PubMed]
- Anastas, J.N.; Zee, B.M.; Kalin, J.H.; Kim, M.; Guo, R.; Alexandrescu, S.; Blanco, M.A.; Giera, S.; Gillespie, S.M.; Das, J. Re-programing chromatin with a bifunctional LSD1/HDAC inhibitor induces therapeutic differentiation in DIPG. Cancer Cell 2019, 36, 528–544.e10. [Google Scholar] [CrossRef] [PubMed]
- Mueller, T.; Laternser, S.; Stücklin, A.S.G.; Gerber, N.U.; Mourabit, S.; Rizo, M.; Rushing, E.J.; Kottke, R.; Grotzer, M.; Krayenbühl, N. Real-time drug testing of paediatric diffuse midline glioma to support clinical decision making: The Zurich DIPG/DMG centre experience. Eur. J. Cancer 2023, 178, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Fontebasso, A.M.; Papillon-Cavanagh, S.; Schwartzentruber, J.; Nikbakht, H.; Gerges, N.; Fiset, P.-O.; Bechet, D.; Faury, D.; De Jay, N.; Ramkissoon, L.A.; et al. Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat. Genet. 2014, 46, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Cordero, F.J.; Huang, Z.; Grenier, C.; He, X.; Hu, G.; McLendon, R.E.; Murphy, S.K.; Hashizume, R.; Becher, O.J. Histone H3.3K27M Represses p16 to Accelerate Gliomagenesis in a Murine Model of DIPG. Mol. Cancer Res. MCR 2017, 15, 1243–1254. [Google Scholar] [CrossRef] [PubMed]
- Khuong-Quang, D.-A.; Buczkowicz, P.; Rakopoulos, P.; Liu, X.-Y.; Fontebasso, A.M.; Bouffet, E.; Bartels, U.; Albrecht, S.; Schwartzentruber, J.; Letourneau, L.; et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 2012, 124, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Svoboda, K.K.; Feng, J.Q.; Jiang, X. The biological function of type I receptors of bone morphogenetic protein in bone. Bone Res. 2016, 4, 16005. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sridurongrit, S.; Dudas, M.; Thomas, P.; Nagy, A.; Schneider, M.D.; Epstein, J.A.; Kaartinen, V. Atrioventricular cushion transformation is mediated by ALK2 in the developing mouse heart. Dev. Biol. 2005, 286, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Visser, J.A.; Olaso, R.; Verhoef-Post, M.; Kramer, P.; Themmen, A.P.; Ingraham, H.A. The serine/threonine transmembrane receptor ALK2 mediates Müllerian inhibiting substance signaling. Mol. Endocrinol 2001, 15, 936–945. [Google Scholar] [CrossRef] [PubMed]
- Wamstad, J.A.; Corcoran, C.M.; Keating, A.M.; Bardwell, V.J. Role of the transcriptional corepressor Bcor in embryonic stem cell differentiation and early embryonic development. PLoS ONE 2008, 3, e2814. [Google Scholar] [CrossRef] [PubMed]
- Huynh, K.D.; Fischle, W.; Verdin, E.; Bardwell, V.J. BCoR, a novel corepressor involved in BCL-6 repression. Genes Dev. 2000, 14, 1810–1823. [Google Scholar] [CrossRef] [PubMed]
- Van den Boom, V.; Maat, H.; Geugien, M.; López, A.R.; Sotoca, A.M.; Jaques, J.; Brouwers-Vos, A.Z.; Fusetti, F.; Groen, R.W.; Yuan, H. Non-canonical PRC1. 1 targets active genes independent of H3K27me3 and is essential for leukemogenesis. Cell Rep. 2016, 14, 332–346. [Google Scholar] [CrossRef] [PubMed]
- Dickler, M.N.; Saura, C.; Richards, D.A.; Krop, I.E.; Cervantes, A.; Bedard, P.L.; Patel, M.R.; Pusztai, L.; Oliveira, M.; Cardenas, A.K. Phase II study of taselisib (GDC-0032) in combination with fulvestrant in patients with her2-negative, hormone receptor–positive advanced breast cancer. Clin. Cancer Res. 2018, 24, 4380–4387. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furst, L.M.; Roussel, E.M.; Leung, R.F.; George, A.M.; Best, S.A.; Whittle, J.R.; Firestein, R.; Faux, M.C.; Eisenstat, D.D. The Landscape of Pediatric High-Grade Gliomas: The Virtues and Pitfalls of Pre-Clinical Models. Biology 2024, 13, 424. https://doi.org/10.3390/biology13060424
Furst LM, Roussel EM, Leung RF, George AM, Best SA, Whittle JR, Firestein R, Faux MC, Eisenstat DD. The Landscape of Pediatric High-Grade Gliomas: The Virtues and Pitfalls of Pre-Clinical Models. Biology. 2024; 13(6):424. https://doi.org/10.3390/biology13060424
Chicago/Turabian StyleFurst, Liam M., Enola M. Roussel, Ryan F. Leung, Ankita M. George, Sarah A. Best, James R. Whittle, Ron Firestein, Maree C. Faux, and David D. Eisenstat. 2024. "The Landscape of Pediatric High-Grade Gliomas: The Virtues and Pitfalls of Pre-Clinical Models" Biology 13, no. 6: 424. https://doi.org/10.3390/biology13060424
APA StyleFurst, L. M., Roussel, E. M., Leung, R. F., George, A. M., Best, S. A., Whittle, J. R., Firestein, R., Faux, M. C., & Eisenstat, D. D. (2024). The Landscape of Pediatric High-Grade Gliomas: The Virtues and Pitfalls of Pre-Clinical Models. Biology, 13(6), 424. https://doi.org/10.3390/biology13060424