Identification of Insertion/Deletion Markers for Photoperiod Sensitivity in Rice (Oryza sativa L.)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Plant Materials
2.2. Genome Sequencing and Data Analysis
2.2.1. Genomic DNA Isolation
2.2.2. Whole-Genome Sequencing
2.2.3. Data Processing
2.3. Identifying INDELs between Photoperiod-Sensitive and Non-Sensitive Rice Groups
2.4. Primer Design for Testing Improved Rice Varieties
2.5. Validation of INDEL Candidate from the Rice SNP-Seek Database
2.6. Data Analysis
3. Results
3.1. INDEL Information on Selected Landraces and Improved Accessions
3.2. Gene Related to Photoperiod Sensitivity
3.3. Differences in Photoperiod-Sensitivity Group in Gene LOC_Os01g23780
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
INDEL | Insertion/deletion |
QTL | Quantitative trait locus |
GWAS | Genome-wide association study |
SNP | Single-nucleotide polymorphism |
PHISE | Photoperiod insensitivity |
PCR | Polymorphism chain reaction |
MCR | Missing call rate |
MAF | Minor allele frequency |
HR | Heterozygosity rate |
MDI | Mekong Delta Development Research Institute |
References
- Izawa, T. Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. J. Exp. Bot. 2007, 58, 3091–3097. [Google Scholar] [CrossRef] [PubMed]
- Pathak, H.; Kumar, M.; Molla, K.A.; Chakraborty, K. Abiotic stresses in rice production: Impacts and management. Oryza-Int. J. Rice 2021, 58, 103–125. [Google Scholar] [CrossRef]
- Zong, W.; Ren, D.; Huang, M.; Sun, K.; Feng, J.; Zhao, J.; Xiao, D.; Xie, W.; Liu, S.; Zhang, H. Strong photoperiod sensitivity is controlled by cooperation and competition among Hd1, Ghd7 and DTH8 in rice heading. New Phytol. 2021, 229, 1635–1649. [Google Scholar] [CrossRef] [PubMed]
- Molla, K.A. Flowering Time and Photoperiod Sensitivity in Rice: Key Players and Their Interactions Identified; Oxford University Press: Oxford, UK, 2022. [Google Scholar]
- Padukkage, D.; Senanayake, G.; Geekiyanage, S. Photoperiod sensitivity of very early maturing Sri Lankan rice for flowering time and plant architecture. Open Agric. 2017, 2, 580–588. [Google Scholar] [CrossRef]
- Chandraratna, M.F. Genetics of photoperiod sensitivity in rice. J. Genet. 1955, 53, 215–223. [Google Scholar] [CrossRef]
- Sun, C.; Chen, D.; Fang, J.; Wang, P.; Deng, X.; Chu, C. Understanding the genetic and epigenetic architecture in complex network of rice flowering pathways. Protein Cell 2014, 5, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Ichitani, K.; Okumoto, Y.; Tanisaka, T. Photoperiod sensitivity gene of Se-1 locus found in photoperiod insensitive rice cultivars of the northern limit region of rice cultivation. Jpn. J. Breed. 1997, 47, 145–152. [Google Scholar] [CrossRef]
- Izawa, T.; Oikawa, T.; Sugiyama, N.; Tanisaka, T.; Yano, M.; Shimamoto, K. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev. 2002, 16, 2006–2020. [Google Scholar] [CrossRef] [PubMed]
- Yano, M.; Katayose, Y.; Ashikari, M.; Yamanouchi, U.; Monna, L.; Fuse, T.; Baba, T.; Yamamoto, K.; Umehara, Y.; Nagamura, Y. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 2000, 12, 2473–2483. [Google Scholar] [CrossRef]
- Takahashi, Y.; Shomura, A.; Sasaki, T.; Yano, M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2. Proc. Natl. Acad. Sci. USA 2001, 98, 7922–7927. [Google Scholar] [CrossRef]
- Kojima, S.; Takahashi, Y.; Kobayashi, Y.; Monna, L.; Sasaki, T.; Araki, T.; Yano, M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol. 2002, 43, 1096–1105. [Google Scholar] [CrossRef] [PubMed]
- Doi, K.; Izawa, T.; Fuse, T.; Yamanouchi, U.; Kubo, T.; Shimatani, Z.; Yano, M.; Yoshimura, A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev. 2004, 18, 926–936. [Google Scholar] [CrossRef]
- Xue, W.; Xing, Y.; Weng, X.; Zhao, Y.; Tang, W.; Wang, L.; Zhou, H.; Yu, S.; Xu, C.; Li, X. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 2008, 40, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Xu, J.; Guo, H.; Jiang, L.; Chen, S.; Yu, C.; Zhou, Z.; Hu, P.; Zhai, H.; Wan, J. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol. 2010, 153, 1747–1758. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.-H.; Wang, P.; Chen, H.-X.; Zhou, H.-J.; Li, Q.-P.; Wang, C.-R.; Ding, Z.-H.; Zhang, Y.-S.; Yu, S.-B.; Xing, Y.-Z. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol. Plant 2011, 4, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.; Liu, X.; Zhao, Z.; Jiang, L.; Gao, H.; Zhang, Y.; Zheng, M.; Chen, L.; Liu, S.; Zhai, H. Heading date gene, dth3 controlled late flowering in O. Glaberrima Steud. by down-regulating Ehd1. Plant Cell Rep. 2011, 30, 2243–2254. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, K.; Ogiso-Tanaka, E.; Hori, K.; Ebana, K.; Ando, T.; Yano, M. Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant Cell Physiol. 2012, 53, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Zheng, X.-M.; Fei, G.; Chen, J.; Jin, M.; Ren, Y.; Wu, W.; Zhou, K.; Sheng, P.; Zhou, F. Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice. PLoS Genet. 2013, 9, e1003281. [Google Scholar] [CrossRef] [PubMed]
- Hori, K.; Ogiso-Tanaka, E.; Matsubara, K.; Yamanouchi, U.; Ebana, K.; Yano, M. H d16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response. Plant J. 2013, 76, 36–46. [Google Scholar] [CrossRef]
- Ogiso-Tanaka, E.; Matsubara, K.; Yamamoto, S.-i.; Nonoue, Y.; Wu, J.; Fujisawa, H.; Ishikubo, H.; Tanaka, T.; Ando, T.; Matsumoto, T. Natural variation of the RICE FLOWERING LOCUS T 1 contributes to flowering time divergence in rice. PLoS ONE 2013, 8, e75959. [Google Scholar] [CrossRef]
- Wu, W.; Zheng, X.-M.; Lu, G.; Zhong, Z.; Gao, H.; Chen, L.; Wu, C.; Wang, H.-J.; Wang, Q.; Zhou, K. Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proc. Natl. Acad. Sci. USA 2013, 110, 2775–2780. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Jin, M.; Zheng, X.-M.; Chen, J.; Yuan, D.; Xin, Y.; Wang, M.; Huang, D.; Zhang, Z.; Zhou, K. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc. Natl. Acad. Sci. USA 2014, 111, 16337–16342. [Google Scholar] [CrossRef] [PubMed]
- Nishida, H.; Inoue, H.; Okumoto, Y.; Tanisaka, T. A novel gene ef1-h conferring an extremely long basic vegetative growth period in rice. Crop. Sci. 2002, 42, 348–354. [Google Scholar] [CrossRef]
- Yang, H.; Tao, Y.; Zheng, Z.; Li, C.; Sweetingham, M.W.; Howieson, J.G. Application of next-generation sequencing for rapid marker development in molecular plant breeding: A case study on anthracnose disease resistance in Lupinus angustifolius L. BMC Genom. 2012, 13, 318. [Google Scholar] [CrossRef]
- Shavrukov, Y.; Suchecki, R.; Eliby, S.; Abugalieva, A.; Kenebayev, S.; Langridge, P. Application of next-generation sequencing technology to study genetic diversity and identify unique SNP markers in bread wheat from Kazakhstan. BMC Plant Biol. 2014, 14, 258. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.; Satya, P. Next generation sequencing technologies for next generation plant breeding. Front. Plant Sci. 2014, 5, 367. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.M.; Arif, M.; Aslam, K.; Shabir, G.; Thomson, M.J. Genetic diversity analysis of Pakistan rice (Oryza sativa) germplasm using multiplexed single nucleotide polymorphism markers. Genet. Resour. Crop. Evol. 2016, 63, 1113–1126. [Google Scholar] [CrossRef]
- Chen, K.; Luan, M.; Xiong, H.; Chen, P.; Chen, J.; Gao, G.; Huang, K.; Zhu, A.; Yu, C. Genome-wide association study discovered favorable single nucleotide polymorphisms and candidate genes associated with ramet number in ramie (Boehmeria nivea L.). BMC Plant Biol. 2018, 18, 345. [Google Scholar] [CrossRef]
- Wu, D.-H.; Wu, H.-P.; Wang, C.-S.; Tseng, H.-Y.; Hwu, K.-K. Genome-wide InDel marker system for application in rice breeding and mapping studies. Euphytica 2013, 192, 131–143. [Google Scholar] [CrossRef]
- Steele, K.A.; Ogden, R.; McEwing, R.; Briggs, H.; Gorham, J. InDel markers distinguish Basmatis from other fragrant rice varieties. Field Crops Res. 2008, 105, 81–87. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhang, S.; Wang, Y.; Ford-Lloyd, B.V.; Tu, M.; Jin, X.; Wu, Y.; Yan, H.; Yang, X.; Liu, P. Differentiation and distribution of indica and japonica rice varieties along the altitude gradients in Yunnan Province of China as revealed by InDel molecular markers. Genet. Resour. Crop. Evol. 2010, 57, 891–902. [Google Scholar] [CrossRef]
- Ji, Q.; Lu, J.; Chao, Q.; Zhang, Y.; Zhang, M.; Gu, M.; Xu, M. Two sequence alterations, a 136 bp InDel and an A/C polymorphic site, in the S5 locus are associated with spikelet fertility of indica-japonica hybrid in rice. J. Genet. Genom. 2010, 37, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Yoshida, H.; Ashikawa, I. Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes. Theor. Appl. Genet. 2006, 113, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Rao, I.S.; Srikanth, B.; Kishore, V.H.; Suresh, P.B.; Chaitanya, U.; Vemireddy, L.; Voleti, S.; Subbarao, L.; Rani, N.S.; Sundaram, R. Indel polymorphism in sugar translocation and transport genes associated with grain filling of rice (Oryza sativa L.). Mol. Breed. 2011, 28, 683–691. [Google Scholar]
- Tam, N.T.; Dwiyanti, M.S.; Koide, Y.; Nagano, A.J.; Ky, H.; Tin, H.Q.; Hien, N.L.; Dung, L.V.; Kishima, Y. Profiling SNP and Nucleotide Diversity to Characterize Mekong Delta Rice Landraces in Southeast Asian Populations. Plant Genome 2019, 12, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, U357–U359. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; del Angel, G.; Rivas, M.A.; Hanna, M.; et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011, 43, 491. [Google Scholar] [CrossRef]
- Adedze, Y.M.N.; Lu, X.; Xia, Y.; Sun, Q.; Nchongboh, C.G.; Alam, M.A.; Liu, M.; Yang, X.; Zhang, W.; Deng, Z.; et al. Agarose-resolvable InDel markers based on whole genome re-sequencing in cucumber. Sci. Rep. 2021, 11, 3872. [Google Scholar] [CrossRef] [PubMed]
- Mansueto, L.; Fuentes, R.R.; Borja, F.N.; Detras, J.; Abriol-Santos, J.M.; Chebotarov, D.; Sanciangco, M.; Palis, K.; Copetti, D.; Poliakov, A.; et al. Rice SNP-seek database update: New SNPs, indels, and queries. Nucleic Acids Res. 2016, 45, D1075–D1081. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Arora, R.; Agarwal, P.; Ray, S.; Singh, A.K.; Singh, V.P.; Tyagi, A.K.; Kapoor, S. MADS-box gene family in rice: Genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genom. 2007, 8, 242. [Google Scholar] [CrossRef]
- Li, C.-C. Te-Tzu Chang International Rice Research Institute. In Rice: Volume I. Production; Spring Science+Business Media, LLC: Berlin/Heidelberg, Germany, 2013; p. 23. [Google Scholar]
- Poonyarit, M.; Mackill, D.; Vergara, B. Genetics of photoperiod sensitivity and critical daylength in rice. Crop. Sci. 1989, 29, 647–652. [Google Scholar] [CrossRef]
- Le Coq, J.-F.; Trébuil, G.; Dufumier, M. History of rice production in the Mekong Delta. In Smallholders and Stockbreeders; Brill: Leyton, The Netherlands, 2004; pp. 163–185. [Google Scholar]
- Yoshitake, Y.; Yokoo, T.; Saito, H.; Tsukiyama, T.; Quan, X.; Zikihara, K.; Katsura, H.; Tokutomi, S.; Aboshi, T.; Mori, N. The effects of phytochrome-mediated light signals on the developmental acquisition of photoperiod sensitivity in rice. Sci. Rep. 2015, 5, 7709. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wei, H.; Cheng, W.; Yang, S.; Zhao, Y.; Li, X.; Luo, D.; Zhang, H.; Feng, X. Development of INDEL Markers for Genetic Mapping Based on Whole Genome Resequencing in Soybean. G3 Genes|Genomes|Genet. 2015, 5, 2793–2799. [Google Scholar] [CrossRef]
- Kuchel, H.; Fox, R.; Reinheimer, J.; Mosionek, L.; Willey, N.; Bariana, H.; Jefferies, S. The successful application of a marker-assisted wheat breeding strategy. Mol. Breed. 2007, 20, 295–308. [Google Scholar] [CrossRef]
No. | Accession Codes | Accession Names | Provinces | Sensitivity |
---|---|---|---|---|
1 | MDI-1 | BO LIEP 2 | Ca Mau | Sensitive |
2 | MDI-7 | LUN VANG | Ca Mau | Sensitive |
3 | MDI-18 | NEP SUA | Ca Mau | Sensitive |
4 | MDI-21 | DOC PHUNG | Ben Tre | Sensitive |
5 | MDI-22 | TRA LONG 2 | Ca Mau | Sensitive |
6 | MDI-31 | MOT BUI DO CAO CA MAU | Ca Mau | Sensitive |
7 | MDI-41 | THOM MUA 1 | Ca Mau | Sensitive |
8 | MDI-42 | HUYET RONG LONG AN | Long An | Sensitive |
9 | MDI-44 | MTL110 | Ben Tre | Insensitive |
10 | MDI-61 | MTL938 | Can Tho | Insensitive |
11 | MDI-64 | MTL930 | Can Tho | Insensitive |
12 | MDI-66 | MTL372 | Can Tho | Insensitive |
13 | MDI-72 | CHAU HANG VO | Kien Giang | Sensitive |
14 | MDI-88 | NANG KEO BA TU | Tra Vinh | Sensitive |
15 | MDI-96 | NEP MO 3 | Ca Mau | Sensitive |
16 | MDI-102 | SOI DO | Tra Vinh | Sensitive |
17 | MDI-123 | NEP AO GIA | Kien Giang | Sensitive |
18 | MDI-125 | NHO HUONG | Ben Tre | Sensitive |
19 | MDI-126 | NANG THOM CHO DAO | Long An | Sensitive |
20 | MDI-133 | CHO BIEN | Kien Giang | Sensitive |
Chr. | 20 Accessions | Landraces | Improved Varieties |
---|---|---|---|
1 | 2970 | 1623 | 2559 |
2 | 641 | 4 | 193 |
3 | 978 | 123 | 658 |
4 | 604 | 220 | 434 |
5 | 311 | 6 | 126 |
6 | 1300 | 171 | 748 |
7 | 289 | 43 | 164 |
8 | 659 | 34 | 261 |
9 | 241 | 0 | 55 |
10 | 600 | 0 | 248 |
11 | 528 | 9 | 178 |
12 | 569 | 7 | 116 |
Total | 9690 | 2240 | 5740 |
INDEL Candidate | Alleles | Reference | Alternative | Chr. | Position | Alleles of Landrace Group | Alleles of Improved Group | Number of Alleles from Reference | Number of Alleles from Alternative |
---|---|---|---|---|---|---|---|---|---|
S01_13373751 | G/- | AGACGGCGGCGGTGCGGTGTC | A | 1 | 13,373,751 | G | - | 21 | 1 |
S01_14359423 | -/G | A | AGATCGCATCGTCTTCTTTCCCG | 1 | 14,359,423 | - | G | 1 | 23 |
S01_14804579 | G/- | AGAGCCACGCGTCCGAATCCGGGT | A | 1 | 14,804,579 | G | - | 24 | 1 |
S01_17388348 | A/- | AAACTCTTTAACTTTTTTAAGT | A | 1 | 17,388,348 | A | - | 22 | 1 |
S01_17952375 | A/- | AATTTGAGTTGAAAATTTTCAAT | A | 1 | 17,952,375 | A | - | 23 | 1 |
S01_18759075 | G/- | AGGTTAATTTTTTATGGGAC | A | 1 | 18,759,075 | G | - | 20 | 1 |
S01_19437208 | C/- | CCCGCCGCCGGGCCATTGTCGCCACCT | C | 1 | 19,437,208 | C | - | 27 | 1 |
S01_20258054 | C/- | TCTTAGGCAAATAGTAAATTCTCCC | T | 1 | 20,258,054 | C | - | 25 | 1 |
S01_20267277 | C/- | TCCCTTTGATTTTCAACATTTG | T | 1 | 20,267,277 | C | - | 22 | 1 |
S01_20340904 | T/- | ATTGAAAATAAATGAAACTGGTT | A | 1 | 20,340,904 | T | - | 23 | 1 |
S01_20539068 | T/- | ATCTAACCTATATTTATAGAG | A | 1 | 20,539,068 | T | - | 21 | 1 |
S01_42275186 | C/- | GCAAATGTTTACTATAGCAC | G | 1 | 42,275,186 | C | - | 20 | 1 |
S01_42299024 | C/- | ACTTTCTTCTCATATGTCACTTC | A | 1 | 42,299,024 | C | - | 23 | 1 |
S01_42380745 | A/- | TACATAAGCTTTCAACATTTTCCTTCA | T | 1 | 42,380,745 | A | - | 27 | 1 |
S03_26306533 | A/- | AAAAACTCAAAGCGGCAGGTATTTTAT | A | 3 | 26,306,533 | A | - | 27 | 1 |
S04_27748597 | T/- | CTATAAACATATTTTAAAGA | C | 4 | 27,748,597 | T | - | 20 | 1 |
S04_27795695 | T/- | ATCTGTCATCTCATCTTTAAAGT | A | 4 | 27,795,695 | T | - | 23 | 1 |
S06_19237696 | A/- | GAGATCCATGCTTGGCACCCTTC | G | 6 | 19,237,696 | A | - | 23 | 1 |
S06_24284080 | -/C | CCTGTCCATCTCACCGGAGATGCTCT | C | 6 | 24,284,080 | - | C | 26 | 1 |
S07_1972486 | -/G | TGGACTAAAGTTTTACTTTAGG | T | 7 | 1,972,486 | - | G | 22 | 1 |
S07_26941649 | T/- | GTAGTGATAAAATGAGAACC | G | 7 | 26,941,649 | T | - | 20 | 1 |
S07_5102539 | G/- | GGGCGGCGGCGGCGCGGCGTC | G | 7 | 5,102,539 | G | - | 21 | 1 |
INDEL Markers | Alleles | Gene Names | Gene Positions | Functions |
---|---|---|---|---|
S01_13373751 | G/- | LOC_Os01g23780 | chr01:13373620..13374665 (+ strand) | OsMADS95—MADS-box family gene with M-beta type-box, expressed |
S01_14359423 | -/G | - | - | - |
S01_14804579 | G/- | - | - | - |
S01_17388348 | A/- | LOC_Os01g31760 | chr01:17384240..17389590 (+ strand) | Acyl-ACP thioesterase, putative, expressed |
S01_17952375 | A/- | - | - | - |
S01_18759075 | G/- | - | - | - |
S01_19437208 | C/- | LOC_Os01g35110 | chr01:19436943..19437437 (- strand) | Expressed protein |
S01_20258054 | C/- | LOC_Os01g36500 | chr01:20256262..20260718 (- strand) | TKL_IRAK_DUF26-lh.5—DUF26 kinases have homology to DUF26-containing loci, expressed |
S01_20267277 | C/- | - | - | - |
S01_20340904 | T/- | LOC_Os01g36660 | chr01:20338108..20341899 (- strand) | Carboxyl-terminal peptidase, putative, expressed |
S01_20539068 | T/- | - | - | - |
S01_42275186 | C/- | - | - | - |
S01_42299024 | C/- | LOC_Os01g72930 | chr01:42297255..42300253 (+ strand) | Pentatricopeptide, putative, expressed |
S01_42380745 | A/- | LOC_Os01g73040 | chr01:42377194..42381600 (+ strand) | CBS domain-containing protein, putative, expressed |
S03_26306533 | A/- | - | - | - |
S04_27748597 | T/- | LOC_Os04g46350 | chr04:27477579..27479717 (- strand) | Homeobox-associated leucine zipper, putative, expressed |
S04_27795695 | T/- | LOC_Os04g46892 | chr04:27795138..27798763 (- strand) | WD domain, G-beta repeat domain-containing protein, expressed |
S06_19237696 | A/- | - | - | - |
S06_24284080 | -/C | - | - | - |
S07_1972486 | -/G | - | - | - |
S07_26941649 | T/- | - | - | - |
S07_5102539 | G/- | LOC_Os07g09610 | chr07:5102509..5107298 (+ strand) | CAMK_KIN1/SNF1/Nim1_like_AMPKh.1—CAMK includes calcium/calmodulin-dependent protein kinases, expressed |
Sub-Populations | Number of Accessions | Deletion Accessions | |
---|---|---|---|
Number | % | ||
Ind1A | 209 | 18 | 8.6 |
Ind1B | 205 | 16 | 7.8 |
Ind2 | 285 | 42 | 14.7 |
Ind3 | 475 | 34 | 7.2 |
Indx | 615 | 51 | 8.3 |
admix | 103 | 4 | 3.9 |
aus | 201 | 54 | 26.9 |
aro | 76 | 0 | 0 |
japx | 83 | 0 | 0 |
subtrop | 112 | 0 | 0 |
temp | 288 | 0 | 0 |
trop | 372 | 0 | 0 |
Total | 3024 | 219 | 7.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tam, N.T.; Nhan, D.K. Identification of Insertion/Deletion Markers for Photoperiod Sensitivity in Rice (Oryza sativa L.). Biology 2024, 13, 358. https://doi.org/10.3390/biology13050358
Tam NT, Nhan DK. Identification of Insertion/Deletion Markers for Photoperiod Sensitivity in Rice (Oryza sativa L.). Biology. 2024; 13(5):358. https://doi.org/10.3390/biology13050358
Chicago/Turabian StyleTam, Nguyen Thanh, and Dang Kieu Nhan. 2024. "Identification of Insertion/Deletion Markers for Photoperiod Sensitivity in Rice (Oryza sativa L.)" Biology 13, no. 5: 358. https://doi.org/10.3390/biology13050358
APA StyleTam, N. T., & Nhan, D. K. (2024). Identification of Insertion/Deletion Markers for Photoperiod Sensitivity in Rice (Oryza sativa L.). Biology, 13(5), 358. https://doi.org/10.3390/biology13050358