Antibacterial and Antibiofilm Potential of Bacterial Cellulose Hydrogel Containing Vancomycin against Multidrug-Resistant Staphylococcus aureus and Staphylococcus epidermidis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Reagents
2.1.2. Bacterial Strains
2.2. Methods
2.2.1. Preparation of VAN-HYDROGEL
2.2.2. Morphological Analysis of the HYDROGEL by SEM
2.2.3. Antibacterial Activity
2.2.4. Time-Kill Assay
2.2.5. Determination of Biofilm Formation
2.2.6. Antibiofilm Activity
Congo Red Agar Method
Determination of Biofilm Inhibition
Determination of Biofilm Eradication
Scanning Electron Microscopy of Biofilm
3. Results
3.1. Morphological Analysis of the HYDROGEL by SEM
3.2. Antibacterial Activity
3.3. Time-Kill Assay
3.4. Biofilm Formation
3.5. Antibiofilm Activity
3.5.1. Congo Red Agar Method
3.5.2. Determination of Biofilm Inhibition and Eradication
3.5.3. Scanning Electron Microscopy of Biofilm
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bader, D.L.; Worsley, P.R.; Gefen, A. Bioengineering Considerations in the Prevention of Medical Device-Related Pressure Ulcers. Clin. Biomech. 2019, 67, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.Y.K.; Morales, S.; Okamoto, Y.; Chan, H.-K. Topical Application of Bacteriophages for Treatment of Wound Infections. Transl. Res. 2020, 220, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Pettit, C.; Trinidad, J.; Chung, C.; Patterson, A.; Kaffenberger, B.H. Hospital Triage and Skin Disease: Hospital Outcomes Are Differentially Associated with Cutaneous Morphology. Int. J. Dermatol. 2023, 62, 1034–1039. [Google Scholar] [CrossRef] [PubMed]
- Novo Relatório Pede Ação Urgente Para Evitar Crise De Resistência Antimicrobiana—OPAS/OMS|Organização Pan-Americana da Saúde. Available online: https://www.paho.org/pt/noticias/29-4-2019-novo-relatorio-pede-acao-urgente-para-evitar-crise-resistencia-antimicrobiana-0 (accessed on 1 May 2024).
- Deusenbery, C.; Wang, Y.; Shukla, A. Recent Innovations in Bacterial Infection Detection and Treatment. ACS Infect. Dis. 2021, 7, 695–720. [Google Scholar] [CrossRef] [PubMed]
- Zegadło, K.; Gieroń, M.; Żarnowiec, P.; Durlik-Popińska, K.; Kręcisz, B.; Kaca, W.; Czerwonka, G. Bacterial Motility and Its Role in Skin and Wound Infections. Int. J. Mol. Sci. 2023, 24, 1707. [Google Scholar] [CrossRef]
- Wichai, S.; Chuysinuan, P.; Chaiarwut, S.; Ekabutr, P.; Supaphol, P. Development of Bacterial cellulose/Alginate/Chitosan Composites Incorporating Copper (II) Sulfate as an Antibacterial Wound Dressing. J. Drug Deliv. Sci. Technol. 2019, 51, 662–671. [Google Scholar] [CrossRef]
- Liu, W.; Ou-Yang, W.; Zhang, C.; Wang, Q.; Pan, X.; Huang, P.; Zhang, C.; Li, Y.; Kong, D.; Wang, W. Synthetic Polymeric Antibacterial Hydrogel for Methicillin-Resistant Staphylococcus aureus—Infected Wound Healing: Nanoantimicrobial Self-Assembly, Drug- and Cytokine-Free Strategy. ACS Nano 2020, 14, 12905–12917. [Google Scholar] [CrossRef]
- Pessanha, F.S.; de Oliveira, B.G.R.B.; Oliveira, B.C.; Deutsch, G.; Teixeira, F.L.; Bokehi, L.C.; Calomino, M.A.; Rodrigues de Castilho, S.; Thiré, R.M.d.S.M.; Teixeira, L.A.; et al. Effectiveness of Epidermal Growth Factor Loaded Carboxymethylcellulose (EGF-CMC) Hydrogel in Biofilm Formation in Wounds of Diabetic Patients: A Randomized Clinical Trial. Gels 2023, 9, 117. [Google Scholar] [CrossRef]
- Regulski, M.; Myntti, M.F.; James, G.A. Anti-Biofilm Efficacy of Commonly Used Wound Care Products in In Vitro Settings. Antibiotics 2023, 12, 536. [Google Scholar] [CrossRef]
- Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and Virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef]
- Ronco, T.; Aragao, M.F.; Svenningsen, S.; Christensen, J.B.; Permin, A.; Saaby, L.; Bionda, N.; Lantz, E.E.; Olsen, R.H. Efficacy of a Novel Antimicrobial Hydrogel for Eradication of Staphylococcus epidermidis, Staphylococcus aureus and Cutibacterium acnes from Preformed Biofilm and Treatment Performance in an in Vivo MRSA Wound Model. JAC Antimicrob. Resist. 2021, 3, dlab108. [Google Scholar] [CrossRef]
- Buch, P.J.; Chai, Y.; Goluch, E.D. Bacterial Chatter in Chronic Wound Infections. Wound Repair Regen. 2021, 29, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-T.; Chen, E.-Z.; Yang, L.; Peng, C.; Wang, Q.; Xu, Z.; Chen, D.-Q. Emerging Resistance Mechanisms for 4 Types of Common Anti-MRSA Antibiotics in Staphylococcus aureus: A Comprehensive Review. Microb. Pathog. 2021, 156, 104915. [Google Scholar] [CrossRef]
- Torres, F.G.; Arroyo, J.J.; Troncoso, O.P. Bacterial cellulose Nanocomposites: An All-Nano Type of Material. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 98, 1277–1293. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, D.; Nag, M.; Dutta, B.; Dey, A.; Sarkar, T.; Pati, S.; Edinur, H.A.; Abdul Kari, Z.; Mohd Noor, N.H.; Ray, R.R. Bacterial cellulose: Production, Characterization, and Application as Antimicrobial Agent. Int. J. Mol. Sci. 2021, 22, 12984. [Google Scholar] [CrossRef]
- Wahid, F.; Huang, L.-H.; Zhao, X.-Q.; Li, W.-C.; Wang, Y.-Y.; Jia, S.-R.; Zhong, C. Bacterial cellulose and Its Potential for Biomedical Applications. Biotechnol. Adv. 2021, 53, 107856. [Google Scholar] [CrossRef]
- Gutierrez, E.; Burdiles, P.A.; Quero, F.; Palma, P.; Olate-Moya, F.; Palza, H. 3D Printing of Antimicrobial alginate/Bacterial-cellulose Composite Hydrogels by Incorporating Copper Nanostructures. ACS Biomater. Sci. Eng. 2019, 5, 6290–6299. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, N.; Loh, E.Y.X.; Fauzi, M.B.; Ng, M.H.; Mohd Amin, M.C.I. In Vivo Evaluation of Bacterial cellulose/Acrylic Acid Wound Dressing Hydrogel Containing Keratinocytes and Fibroblasts for Burn Wounds. Drug Deliv. Transl. Res. 2019, 9, 444–452. [Google Scholar] [CrossRef]
- Wahid, F.; Hu, X.-H.; Chu, L.-Q.; Jia, S.-R.; Xie, Y.-Y.; Zhong, C. Development of Bacterial cellulose/Chitosan Based Semi-Interpenetrating Hydrogels with Improved Mechanical and Antibacterial Properties. Int. J. Biol. Macromol. 2019, 122, 380–387. [Google Scholar] [CrossRef]
- Yi, X.; He, J.; Wei, X.; Li, H.; Liu, X.; Cheng, F. A Polyphenol and ε-Polylysine Functionalized Bacterial cellulose/PVA Multifunctional Hydrogel for Wound Healing. Int. J. Biol. Macromol. 2023, 247, 125663. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro-Barbosa, F.D.A.; Aguiar, J.L.D.A.; Lira, M.M.D.M.; Pontes Filho, N.T.D.; Bernardino-Araújo, S. Use of a Gel Biopolymer for the Treatment of Eviscerated Eyes: Experimental Model in Rabbits. Arq. Bras. Oftalmol. 2012, 75, 267–272. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.G.M.; Pinto, F.C.M.; de Oliveira, G.M.; da Silva, A.A.; Júnior, O.C.; da Silva, R.O.; Teixeira, V.W.; de Melo, I.M.F.; Paumgartten, F.J.R.; de Souza, T.P.; et al. Non-Clinical Safety Study of a Sugarcane Bacterial cellulose Hydrogel. Res. Soc. Dev. 2020, 9, e960997932. [Google Scholar] [CrossRef]
- Oliveira, M.H.; Pinto, F.C.M.; Ferraz-Carvalho, R.S.; Albuquerque, A.V.; Aguiar, J.L. BIO-NAIL: A Bacterial cellulose Dressing as a New Alternative to Preserve the Nail Bed after Avulsion. J. Mater. Sci. Mater. Med. 2020, 31, 121. [Google Scholar] [CrossRef]
- Silva, L.G.; Albuquerque, A.V.; Pinto, F.C.M.; Ferraz-Carvalho, R.S.; Aguiar, J.L.A.; Lins, E.M. Bacterial cellulose an Effective Material in the Treatment of Chronic Venous Ulcers of the Lower Limbs. J. Mater. Sci. Mater. Med. 2021, 32, 79. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Sun, Y.; Zheng, Y.-D.; He, W.; Yang, Y.-Y.; Xie, Y.-J.; Feng, Z.-X.; Qiao, K. A Biocompatible Bacterial cellulose/Tannic Acid Composite with Antibacterial and Anti-Biofilm Activities for Biomedical Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 106, 110249. [Google Scholar] [CrossRef] [PubMed]
- Tudoroiu, E.-E.; Dinu-Pîrvu, C.-E.; Albu Kaya, M.G.; Popa, L.; Anuța, V.; Prisada, R.M.; Ghica, M.V. An Overview of Cellulose Derivatives-Based Dressings for Wound-Healing Management. Pharmaceuticals 2021, 14, 1215. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Huang, Y.; Chen, S.; Han, Z.; Han, Z.; Jin, M.; Qu, X.; Wang, B.; Wang, H.; Gu, S. Bacterial cellulose-Based Hydrogel with Antibacterial Activity and Vascularization for Wound Healing. Carbohydr. Polym. 2023, 308, 120647. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.-H.; Chen, C.S.; Chen, Y.-C.; Jiang, N.-E.; Farn, C.J.; Shen, Y.-S.; Hsu, M.-L.; Chang, C.-H. Vancomycin-Loaded Oxidized Hyaluronic Acid and Adipic Acid Dihydrazide Hydrogel: Bio-Compatibility, Drug Release, Antimicrobial Activity, and Biofilm Model. J. Microbiol. Immunol. Infect. 2020, 53, 525–531. [Google Scholar] [CrossRef]
- Li, J.; Leung, S.S.Y.; Chung, Y.L.; Chow, S.K.H.; Alt, V.; Rupp, M.; Brochhausen, C.; Chui, C.S.; Ip, M.; Cheung, W.-H.; et al. Hydrogel Delivery of DNase I and Liposomal Vancomycin to Eradicate Fracture-Related Methicillin-Resistant Staphylococcus aureus Infection and Support Osteoporotic Fracture Healing. Acta Biomater. 2023, 164, 223–239. [Google Scholar] [CrossRef]
- Magrini, E.; Rando, E.; Del Giacomo, P.; Matteini, E.; Leanza, G.M.; Sanmartin, F.; Carbone, A.; Maiuro, G.; Dusina, A.; Cingolani, A. Cerebrospinal Fluid Drain Infection Caused by Pandrug-Resistant Staphylococcus epidermidis Successfully Treated with Ceftaroline in Combination with Fosfomycin and Vancomycin. Diagn. Microbiol. Infect. Dis. 2024, 109, 116205. [Google Scholar] [CrossRef] [PubMed]
- Lima, F.d.M.T.; Pinto, F.C.M.; Andrade-da-Costa, B.L.d.S.; da Silva, J.G.M.; Campos Júnior, O.; Aguiar, J.L.d.A. Biocompatible Bacterial cellulose Membrane in Dural Defect Repair of Rat. J. Mater. Sci. Mater. Med. 2017, 28, 37. [Google Scholar] [CrossRef] [PubMed]
- Pinto, F.C.M.; De-Oliveira, A.C.A.X.; De-Carvalho, R.R.; Gomes-Carneiro, M.R.; Coelho, D.R.; Lima, S.V.C.; Paumgartten, F.J.R.; Aguiar, J.L.A. Acute Toxicity, Cytotoxicity, Genotoxicity and Antigenotoxic Effects of a Cellulosic Exopolysaccharide Obtained from Sugarcane Molasses. Carbohydr. Polym. 2016, 137, 556–560. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; CLSI: Wayne, PA, USA, 2023. [Google Scholar]
- Appiah, T.; Boakye, Y.D.; Agyare, C. Antimicrobial Activities and Time-Kill Kinetics of Extracts of Selected Ghanaian Mushrooms. Evid. Based Complement. Altern. Med. 2017, 2017, 4534350. [Google Scholar] [CrossRef] [PubMed]
- Boswell, F.J.; Andrews, J.M.; Wise, R.; Dalhoff, A. Bactericidal Properties of Moxifloxacin and Post-Antibiotic Effect. J. Antimicrob. Chemother. 1999, 43 (Suppl. SB), 43–49. [Google Scholar] [CrossRef] [PubMed]
- Stepanovic, S.; Vukovic, D.; Dakic, I.; Savic, B.; Svabic-Vlahovic, M. A Modified Microtiter-Plate Test for Quantification of Staphylococcal Biofilm Formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, E.M.P.; Martins, C.C.B.; de Oliveira Santos, J.V.; da Silva, W.R.C.; Silva, S.B.C.; Pelagio-Flores, M.A.; Galembeck, A.; Cavalcanti, I.M.F. Silver Nanoparticles-Chitosan Composites Activity against Resistant Bacteria: Tolerance and Biofilm Inhibition. J. Nanopart Res. 2021, 23, 196. [Google Scholar] [CrossRef] [PubMed]
- Albano, M.; Crulhas, B.P.; Alves, F.C.B.; Pereira, A.F.M.; Andrade, B.F.M.T.; Barbosa, L.N.; Furlanetto, A.; Lyra, L.P.d.S.; Rall, V.L.M.; Júnior, A.F. Antibacterial and Anti-Biofilm Activities of Cinnamaldehyde against S. Epidermidis. Microb. Pathog. 2019, 126, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Yang, X.-P.; Ma, L.Z. Analysis of Biosurfactants from Industrially Viable Pseudomonas Strain Isolated from Crude Oil Suggests How Rhamnolipids Congeners Affect Emulsification Property and Antimicrobial Activity. Front. Microbiol. 2014, 5, 00696. [Google Scholar] [CrossRef]
- Lara, H.H.; Lopez-Ribot, J.L. Inhibition of Mixed Biofilms of Candida Albicans and Methicillin-Resistant Staphylococcus aureus by Positively Charged Silver Nanoparticles and Functionalized Silicone Elastomers. Pathogens 2020, 9, 784. [Google Scholar] [CrossRef]
- Gupta, A.; Low, W.L.; Radecka, I.; Britland, S.T.; Mohd Amin, M.C.I.; Martin, C. Characterisation and in Vitro Antimicrobial Activity of Biosynthetic Silver-Loaded Bacterial cellulose Hydrogels. J. Microencapsul. 2016, 33, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Jiji, S.; Udhayakumar, S.; Rose, C.; Muralidharan, C.; Kadirvelu, K. Thymol Enriched Bacterial cellulose Hydrogel as Effective Material for Third Degree Burn Wound Repair. Int. J. Biol. Macromol. 2019, 122, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Badshah, M.; Ullah, H.; Khan, A.R.; Khan, S.; Park, J.K.; Khan, T. Surface Modification and Evaluation of Bacterial cellulose for Drug Delivery. Int. J. Biol. Macromol. 2018, 113, 526–533. [Google Scholar] [CrossRef]
- Nunes, D.; Andrade, S.; Ramalho, M.J.; Loureiro, J.A.; Pereira, M.C. Polymeric Nanoparticles-Loaded Hydrogels for Biomedical Applications: A Systematic Review on In Vivo Findings. Polymers 2022, 14, 1010. [Google Scholar] [CrossRef]
- Ao, H.; Jiang, W.; Nie, Y.; Zhou, C.; Zong, J.; Liu, M.; Liu, X.; Wan, Y. Engineering Quaternized Chitosan in the 3D Bacterial cellulose Structure for Antibacterial Wound Dressings. Polym. Test. 2020, 86, 106490. [Google Scholar] [CrossRef]
- Chanabodeechalermrung, B.; Chaiwarit, T.; Sommano, S.R.; Rachtanapun, P.; Kantrong, N.; Chittasupho, C.; Jantrawut, P. Dual Crosslinked Ion-Based Bacterial cellulose Composite Hydrogel Containing Polyhexamethylene Biguanide. Membranes 2022, 12, 825. [Google Scholar] [CrossRef] [PubMed]
- Morrisette, T.; Lev, K.L.; Kebriaei, R.; Abdul-Mutakabbir, J.C.; Stamper, K.C.; Morales, S.; Lehman, S.M.; Canfield, G.S.; Duerkop, B.A.; Arias, C.A.; et al. Bacteriophage-Antibiotic Combinations for Enterococcus Faecium with Varying Bacteriophage and Daptomycin Susceptibilities. Antimicrob. Agents Chemother. 2020, 64, e00993-20. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Gascón, A.; Solinís, M.Á.; Isla, A. The Role of PK/PD Analysis in the Development and Evaluation of Antimicrobials. Pharmaceutics 2021, 13, 833. [Google Scholar] [CrossRef]
- Purwoningsih, E.; Endraswari, P.; Widodo, A.; Widodo, A. Vancomycin, Linezolid, and Ceftaroline In Vitro Activity Against Methicillin Susceptible Staphylococcus aureus (MSSA) and Methicillin-Resistant Staphylococcus aureus (MRSA) Isolates. Pharmacogn. J. 2022, 14, 671–674. [Google Scholar] [CrossRef]
- Jia, R.; Tian, W.; Bai, H.; Zhang, J.; Wang, S.; Zhang, J. Amine-Responsive Cellulose-Based Ratiometric Fluorescent Materials for Real-Time and Visual Detection of Shrimp and Crab Freshness. Nat. Commun. 2019, 10, 795. [Google Scholar] [CrossRef]
- Sharip, N.S.; Ariffin, H.; Andou, Y.; Shirosaki, Y.; Bahrin, E.K.; Jawaid, M.; Tahir, P.M.; Ibrahim, N.A. Process Optimization of Ultra-High Molecular Weight Polyethylene/Cellulose Nanofiber Bionanocomposites in Triple Screw Kneading Extruder by Response Surface Methodology. Molecules 2020, 25, 4498. [Google Scholar] [CrossRef] [PubMed]
- Barja, F. Bacterial Nanocellulose Production and Biomedical Applications. J. Biomed. Res. 2021, 35, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Chowdhry, S.A. Use of Oxidized Regenerated Cellulose (ORC)/Collagen/Silver-ORC Dressings to Help Manage Skin Graft Donor Site Wounds. JPRAS Open 2019, 22, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Gebreyohannes, G.; Nyerere, A.; Bii, C.; Sbhatu, D.B. Challenges of Intervention, Treatment, and Antibiotic Resistance of Biofilm-Forming Microorganisms. Heliyon 2019, 5, e02192. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.A.; Khan, H.M.; Khan, A.A.; Cameotra, S.S.; Pal, R. Antibiofilm Efficacy of Silver Nanoparticles against Biofilm of Extended Spectrum β-Lactamase Isolates of Escherichia coli and Klebsiella pneumoniae. Appl. Nanosci. 2014, 4, 859–868. [Google Scholar] [CrossRef]
- Ramachandran, R.; Sangeetha, D. Antibiofilm Efficacy of Silver Nanoparticles against Biofilm Forming Multidrug Resistant Clinical Isolates. Pharma Innov. 2017, 6, 36–43. [Google Scholar]
- McGuinness, W.A.; Malachowa, N.; DeLeo, F.R. Vancomycin Resistance in Staphylococcus aureus. Yale J. Biol. Med. 2017, 90, 269–281. [Google Scholar] [PubMed]
- Malaekeh-Nikouei, B.; Fazly Bazzaz, B.S.; Mirhadi, E.; Tajani, A.S.; Khameneh, B. The Role of Nanotechnology in Combating Biofilm-Based Antibiotic Resistance. J. Drug Deliv. Sci. Technol. 2020, 60, 101880. [Google Scholar] [CrossRef]
- Maleki, A.; Ghomi, M.; Nikfarjam, N.; Akbari, M.; Sharifi, E.; Shahbazi, M.; Kermanian, M.; Seyedhamzeh, M.; Nazarzadeh Zare, E.; Mehrali, M.; et al. Biomedical Applications of MXene-Integrated Composites: Regenerative Medicine, Infection Therapy, Cancer Treatment, and Biosensing. Adv. Funct. Mater. 2022, 32, 2203430. [Google Scholar] [CrossRef]
- He, W.; Zhang, Z.; Chen, J.; Zheng, Y.; Xie, Y.; Liu, W.; Wu, J.; Mosselhy, D.A. Evaluation of the Anti-Biofilm Activities of Bacterial cellulose-Tannic Acid-Magnesium Chloride Composites Using an in Vitro Multispecies Biofilm Model. Regen. Biomater. 2021, 8, rbab054. [Google Scholar] [CrossRef]
- Fasiku, V.O.; Omolo, C.A.; Devnarain, N.; Ibrahim, U.H.; Rambharose, S.; Faya, M.; Mocktar, C.; Singh, S.D.; Govender, T. Chitosan-Based Hydrogel for the Dual Delivery of Antimicrobial Agents Against Bacterial Methicillin-Resistant Staphylococcus aureus Biofilm-Infected Wounds. ACS Omega 2021, 6, 21994–22010. [Google Scholar] [CrossRef] [PubMed]
- Zmejkoski, D.Z.; Zdravković, N.M.; Trišić, D.D.; Budimir, M.D.; Marković, Z.M.; Kozyrovska, N.O.; Todorović Marković, B.M. Chronic Wound Dressings—Pathogenic Bacteria Anti-Biofilm Treatment with Bacterial cellulose-Chitosan Polymer or Bacterial cellulose-Chitosan Dots Composite Hydrogels. Int. J. Biol. Macromol. 2021, 191, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Pandian, M.; Selvaprithviraj, V.; Pradeep, A.; Rangasamy, J. In-Situ Silver Nanoparticles Incorporated N, O-Carboxymethyl Chitosan Based Adhesive, Self-Healing, Conductive, Antibacterial and Anti-Biofilm Hydrogel. Int. J. Biol. Macromol. 2021, 188, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Idrees, M.; Sawant, S.; Karodia, N.; Rahman, A. Staphylococcus aureus Biofilm: Morphology, Genetics, Pathogenesis and Treatment Strategies. Int. J. Environ. Res. Public. Health 2021, 18, 7602. [Google Scholar] [CrossRef] [PubMed]
- Konduri, R.; Saiabhilash, C.R.; Shivaji, S. Biofilm-Forming Potential of Ocular Fluid Staphylococcus aureus and Staphylococcus epidermidis on Ex Vivo Human Corneas from Attachment to Dispersal Phase. Microorganisms 2021, 9, 1124. [Google Scholar] [CrossRef]
- Muthuchamy, M.; Govindan, R.; Shine, K.; Thangasamy, V.; Alharbi, N.S.; Thillaichidambaram, M.; Khaled, J.M.; Wen, J.-L.; Alanzi, K.F. Anti-Biofilm Investigation of Graphene/Chitosan Nanocomposites against Biofilm Producing P. aeruginosa and K. pneumoniae. Carbohydr. Polym. 2020, 230, 115646. [Google Scholar] [CrossRef]
Bacteria | HYDROGEL | VAN | VAN-HYDROGEL | |||
---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | |
(%) | μg/mL | VAN (μg/mL)/HYDROGEL (%) | ||||
MRSA ATCC 33591 | >0.5 | >0.5 | 1 | 8 | 0.5/0.002 | 1/0.002 |
C047 | >0.5 | >0.5 | 0.5 | 2 | ≤0.5/0.001 | 1/0.002 |
C074 | >0.5 | >0.5 | 0.5 | 4 | ≤0.5/0.001 | 1/0.002 |
C115 | >0.5 | >0.5 | 0.5 | 4 | ≤0.5/0.001 | 2/0.004 |
C128 | >0.5 | >0.5 | 0.5 | 16 | ≤0.5/0.001 | 2/0.004 |
C137 | >0.5 | >0.5 | 0.5 | 8 | ≤0.5/0.001 | 2/0.004 |
Bacteria | HYDROGEL | VAN | VAN-HYDROGEL | |||
---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | |
(%) | μg/mL | VAN (μg/mL)/HYDROGEL (%) | ||||
S. epidermidis ATCC 12228 (INCQS 00016) | >0.5 | >0.5 | 1 | 4 | 1/0.003 | 2/0.0078 |
C233 | >0.5 | >0.5 | 2 | 4 | 2/0.0078 | 4/0.0156 |
C266 | >0.5 | >0.5 | 2 | 4 | 2/0.0078 | 4/0.0156 |
C271 | >0.5 | >0.5 | 2 | 4 | 2/0.0078 | 4/0.0156 |
C276 | >0.5 | >0.5 | 2 | 4 | 2/0.0078 | 4/0.0156 |
C277 | >0.5 | >0.5 | 2 | 4 | 2/0.0078 | 4/0.0156 |
C281 | >0.5 | >0.5 | 2 | 8 | 2/0.0078 | 4/0.0156 |
C387 | >0.5 | >0.5 | 2 | 4 | 2/0.0078 | 4/0.0156 |
C389 | >0.5 | >0.5 | 1 | 4 | 2/0.0078 | 4/0.0156 |
C417 | >0.5 | >0.5 | 2 | 4 | 2/0.0078 | 2/0.0078 |
Bacteria | Biofilm Production |
---|---|
MSSA ATCC 25923 | Strong |
MRSA ATCC 33591 | Strong |
C047 | Strong |
C074 | Strong |
C115 | Strong |
C128 | Strong |
C137 | Moderate |
Bacteria | Biofilm Production |
---|---|
S. epidermidis ATCC 12228 (INCQS 00016) | Strong |
C233 | Strong |
C266 | Strong |
C271 | Strong |
C276 | Moderate |
C277 | Moderate |
C281 | Moderate |
C387 | Moderate |
C389 | Moderate |
C417 | Moderate |
HYDROGEL | VAN | VAN-HYDROGEL | ||||
---|---|---|---|---|---|---|
Bacteria | MBIC | MBEC | MBIC | MBEC | MBIC | MBEC |
(%) | μg/mL | VAN (μg/mL)/HYDROGEL (%) | ||||
MSSA ATCC 25923 | 0.5 | >0.5 | 0.015 | >16 | 0.015/0.01 | 16/0.5 |
MRSA ATCC 33591 | 0.5 | >0.5 | >0.5 | >16 | 0.12/0.12 | 16/0.5 |
C047 | 0.25 | >0.5 | >0.5 | >16 | 0.25/0.25 | 16/0.5 |
C074 | 0.5 | >0.5 | >0.5 | >16 | 0.5/0.5 | 16/0.5 |
C115 | 0.25 | >0.5 | >0.5 | >16 | 0.25/0.25 | 16/0.5 |
C128 | 0.25 | >0.5 | >0.5 | >16 | 0.12/0.12 | 16/0.5 |
C137 | 0.5 | >0.5 | >0.5 | >16 | 0.25/0.25 | 16/0.5 |
HYDROGEL | VAN | VAN-HYDROGEL | ||||
---|---|---|---|---|---|---|
Bacteria | MBIC | MBEC | MBIC | MBEC | MBIC | MBEC |
(%) | μg/mL | VAN (μg/mL)/HYDROGEL (%) | ||||
Staphylococcus epidermidis ATCC 12228 (INCQS 00016) | 0.03 | >0.5 | 0.062 | >16 | 0.031/0.015 | 8/0.25 |
C233 | 0.03 | >0.5 | 0.12 | >16 | 0.12/0.03 | 16/0.5 |
C266 | 0.03 | >0.5 | 0.12 | >16 | 0.12/0.03 | 16/0.5 |
C271 | 0.03 | >0.5 | 0.12 | >16 | 0.12/0.03 | 16/0.5 |
C276 | 0.03 | >0.5 | 0.12 | >16 | 0.12/0.03 | 8/0.25 |
C277 | 0.03 | >0.5 | 0.12 | >16 | 0.12/0.03 | 16/0.5 |
C281 | 0.03 | >0.5 | 0.12 | >16 | 0.12/0.03 | 16/0.5 |
C387 | 0.03 | >0.5 | 0.12 | >16 | 0.12/0.03 | 16/0.5 |
C389 | 0.03 | >0.5 | 0.12 | >16 | 0.06/0.03 | 16/0.5 |
C417 | 0.03 | >0.5 | 0.12 | >16 | 0.12/0.03 | 8/0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correia, A.A.V.; de Almeida Campos, L.A.; de Queiroz Macêdo, H.L.R.; de Lacerda Coriolano, D.; Agreles, M.A.A.; Xavier, D.E.; de Siqueira Ferraz-Carvalho, R.; de Andrade Aguiar, J.L.; Cavalcanti, I.M.F. Antibacterial and Antibiofilm Potential of Bacterial Cellulose Hydrogel Containing Vancomycin against Multidrug-Resistant Staphylococcus aureus and Staphylococcus epidermidis. Biology 2024, 13, 354. https://doi.org/10.3390/biology13050354
Correia AAV, de Almeida Campos LA, de Queiroz Macêdo HLR, de Lacerda Coriolano D, Agreles MAA, Xavier DE, de Siqueira Ferraz-Carvalho R, de Andrade Aguiar JL, Cavalcanti IMF. Antibacterial and Antibiofilm Potential of Bacterial Cellulose Hydrogel Containing Vancomycin against Multidrug-Resistant Staphylococcus aureus and Staphylococcus epidermidis. Biology. 2024; 13(5):354. https://doi.org/10.3390/biology13050354
Chicago/Turabian StyleCorreia, Ana Alice Venancio, Luís André de Almeida Campos, Hanne Lazla Rafael de Queiroz Macêdo, Davi de Lacerda Coriolano, Maria Anndressa Alves Agreles, Danilo Elias Xavier, Rafaela de Siqueira Ferraz-Carvalho, José Lamartine de Andrade Aguiar, and Isabella Macário Ferro Cavalcanti. 2024. "Antibacterial and Antibiofilm Potential of Bacterial Cellulose Hydrogel Containing Vancomycin against Multidrug-Resistant Staphylococcus aureus and Staphylococcus epidermidis" Biology 13, no. 5: 354. https://doi.org/10.3390/biology13050354
APA StyleCorreia, A. A. V., de Almeida Campos, L. A., de Queiroz Macêdo, H. L. R., de Lacerda Coriolano, D., Agreles, M. A. A., Xavier, D. E., de Siqueira Ferraz-Carvalho, R., de Andrade Aguiar, J. L., & Cavalcanti, I. M. F. (2024). Antibacterial and Antibiofilm Potential of Bacterial Cellulose Hydrogel Containing Vancomycin against Multidrug-Resistant Staphylococcus aureus and Staphylococcus epidermidis. Biology, 13(5), 354. https://doi.org/10.3390/biology13050354