Associations between “Cancer Risk”, “Inflammation” and “Metabolic Syndrome”: A Scoping Review
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. MetS and Cancer Risk
1.2. Inflammation and Cancer Risk
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Peer Review
2.4. Total Records
2.5. Interventions and Outcomes
2.6. Quality Assessment and Risk of Bias
- Level I: Evidence from scoping reviews or meta-analysis of randomized control trials;
- Level II: Evidence from well-designed randomized control trials;
- Level III: Evidence from well-designed control trials that are not randomized;
- Level IV: Evidence from case-control or cohort studies;
- Level V: Evidence from scoping reviews of descriptive or qualitative studies;
- Level VI: Evidence from a single descriptive or qualitative study;
- Level VII: Evidence from expert opinions.
3. Results
3.1. The Association between “Cancer Risk”, “Inflammation”, and “Metabolic Syndrome” in Cancer
3.2. The Association between “Cancer Risk”, “Inflammation”, and “Metabolic Syndrome” in Breast Cancer
3.3. The Association between “Cancer Risk”, “Inflammation”, and “Metabolic Syndrome” in Colon Rectal Cancer
3.4. The Association between “Cancer Risk”, “Inflammation”, and “Metabolic Syndrome” in Esophageal Adenocarcinoma
3.5. The Association between “Cancer Risk”, “Inflammation”, and “Metabolic Syndrome” in HCC
3.6. The Association between “Cancer Risk”, “Inflammation” and “Metabolic Syndrome” in Prostate Cancer
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Additional Disclosure
References
- Weeden, C.E.; Hill, W.; Lim, E.L.; Grönroos, E.; Swanton, C. Impact of risk factors on early cancer evolution. Cell 2023, 186, 1541–1563. [Google Scholar] [CrossRef] [PubMed]
- Tran, K.B.; Lang, J.J.; Compton, K.; Xu, R.; Acheson, A.R.; Henrikson, H.J.; Kocarnik, J.M.; Penberthy, L.; Aali, A.; Abbas, Q.; et al. The global burden of cancer attributable to risk factors, 2010–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 563–591. [Google Scholar] [CrossRef]
- Škara, L.; Turković, A.H.; Pezelj, I.; Vrtarić, A.; Sinčić, N.; Krušlin, B.; Ulamec, M. Prostate Cancer—Focus on Cholesterol. Cancers 2021, 13, 4696. [Google Scholar] [CrossRef]
- Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, J.; Wei, D.; Yu, T.; Chen, Z.; Liu, X.; Zhu, H. Inflammatory markers predict survival in patients with postoperative urothelial carcinoma receiving tislelizumab (PD-1 inhibitor) adjuvant therapy. BMC Cancer 2024, 24, 196. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Kirichenko, T.V.; Markina, Y.V.; Bogatyreva, A.I.; Tolstik, T.V.; Varaeva, Y.R.; Starodubova, A.V. The Role of Adipokines in Inflammatory Mechanisms of Obesity. Int. J. Mol. Sci. 2022, 23, 14982. [Google Scholar] [CrossRef]
- Fujihara, S.; Mori, H.; Kobara, H.; Nishiyama, N.; Kobayashi, M.; Oryu, M.; Masaki, T. Metabolic Syndrome, Obesity, and Gastrointestinal Cancer. Gastroenterol. Res. Pract. 2012, 2012, 483623. [Google Scholar] [CrossRef]
- Extermann, M. Metabolic syndrome and cancer: From bedside to bench and back. Interdiscip. Top. Gerontol. 2013, 38, 49–60. [Google Scholar]
- Gallagher, E.J.; LeRoith, D. Epidemiology and Molecular Mechanisms Tying Obesity, Diabetes, and the Metabolic Syndrome with Cancer. Diabetes Care 2013, 36 (Suppl. 2), S233–S239. [Google Scholar] [CrossRef]
- Moller, D.E.; Kaufman, K.D. Metabolic Syndrome: A Clinical and Molecular Perspective. Annu. Rev. Med. 2005, 56, 45–62. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Cheng, Y.; Zhang, G.; Wang, B. Novel insights into the pathological mechanisms of metabolic related dyslipidemia. Mol. Biol. Rep. 2021, 48, 5675–5687. [Google Scholar] [CrossRef]
- Krogh, H.W.; Svendsen, K.; Igland, J.; Mundal, L.J.; Holven, K.B.; Bogsrud, M.P.; Leren, T.P.; Retterstøl, K. Lower risk of smoking-related cancer in individuals with familial hypercholesterolemia compared with controls: A prospective matched cohort study. Sci. Rep. 2019, 9, 19273. [Google Scholar] [CrossRef] [PubMed]
- Diller, M.L.; Kudchadkar, R.R.; Delman, K.A.; Lawson, D.H.; Ford, M.L. Balancing Inflammation: The Link between Th17 and Regulatory T Cells. Mediat. Inflamm. 2016, 2016, 6309219. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Uikey, B.N.; Rathore, S.S.; Gupta, P.; Kashyap, D.; Kumar, C.; Shukla, D.; Vijayamahantesh; Chandel, A.S.; Ahirwar, B.; et al. Role of cytokine in malignant T-cell metabolism and subsequent alternation in T-cell tumor microenvironment. Front. Oncol. 2023, 13, 1235711. [Google Scholar] [CrossRef] [PubMed]
- Marshall, E.A.; Ng, K.W.; Kung, S.H.Y.; Conway, E.M.; Martinez, V.D.; Halvorsen, E.C.; Rowbotham, D.A.; Vucic, E.A.; Plumb, A.W.; Becker-Santos, D.D.; et al. Emerging roles of T helper 17 and regulatory T cells in lung cancer progression and metastasis. Mol. Cancer 2016, 15, 67. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Chung, H.; Lee, J.-E.; Kim, J.; Hwang, J.; Chung, Y. Immunologic Aspects of Dyslipidemia: A Critical Regulator of Adaptive Immunity and Immune Disorders. J. Lipid Atheroscler. 2021, 10, 184–201. [Google Scholar] [CrossRef] [PubMed]
- Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z. The metabolic syndrome. Lancet 2005, 365, 1415–1428. [Google Scholar] [CrossRef] [PubMed]
- Greten, F.R.; Grivennikov, S.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Shen, Y.; Liu, H.; Zhu, D.; Fang, J.; Pan, H.; Liu, W. Inflammatory microenvironment in gastric premalignant lesions: Implication and application. Front. Immunol. 2023, 14, 1297101. [Google Scholar] [CrossRef]
- Pollard, J.W. Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer 2004, 4, 71–78. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Melnyk, B.M.; Fineout-Overholt, E. Evidence-Based Practice in Nursing & Healthcare: A Guide to Best Practice, 3rd ed.; Wolters Kluwer Health: Philadelphia, PA, USA, 2015; pp. 10–16. [Google Scholar]
- Jee, S.H.; Kim, H.J.; Lee, J. Obesity, Insulin Resistance and Cancer Risk. Yonsei Med. J. 2005, 46, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Sumantran, V.N.; Tillu, G. Cancer, Inflammation, and Insights from Ayurveda. Evid.-Based Complement. Altern. Med. 2012, 2012, 306346. [Google Scholar] [CrossRef] [PubMed]
- Gristina, V.; Cupri, M.G.; Torchio, M.; Mezzogori, C.; Cacciabue, L.; Danova, M. Diabetes and cancer: A critical appraisal of the pathogenetic and therapeutic links. Biomed. Rep. 2015, 3, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Veniou, E.; Sofatzis, I.; Kalantzis, M.; Karakosta, M.; Logothetis, E.; Lianos, E.; Ziras, N. Metabolic syndrome and Cancer: Do they share common molecular pathways? Forum Clin. Oncol. 2016, 7, 7–15. [Google Scholar] [CrossRef]
- Battelli, M.G.; Bortolotti, M.; Polito, L.; Bolognesi, A. Metabolic syndrome and cancer risk: The role of xanthine oxidoreductase. Redox Biol. 2019, 21, 101070. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Gong, L.; Ye, J. The Role of Aberrant Metabolism in Cancer: Insights Into the Interplay Between Cell Metabolic Reprogramming, Metabolic Syndrome, and Cancer. Front. Oncol. 2020, 10, 942. [Google Scholar] [CrossRef] [PubMed]
- Heshmat-Ghahdarijani, K.; Neshat, S.; Rezaei, A.; Farid, A.; Sarallah, R.; Javanshir, S.; Ahmadian, S.; Chatrnour, G.; Daneii, P. The tangled web of dyslipidemia and cancer: Is there any association? J. Res. Med. Sci. 2022, 27, 93. [Google Scholar] [CrossRef]
- Sergeeva, E.; Ruksha, T.; Fefelova, Y. Effects of Obesity and Calorie Restriction on Cancer Development. Int. J. Mol. Sci. 2023, 24, 9601. [Google Scholar] [CrossRef]
- Pandit, P.; Shirke, C.; Bhatia, N.; Godad, A.; Belemkar, S.; Patel, J.; Zine, S. An Overview of Recent Findings that Shed Light on the Connection between Fat and Cancer. Endocr. Metab. Immune Disord. Drug Targets 2024, 24, 178–193. [Google Scholar] [CrossRef]
- Giovannucci, E.; Harlan, D.M.; Archer, M.C.; Bergenstal, R.M.; Gapstur, S.M.; Habel, L.A.; Pollak, M.; Regensteiner, J.G.; Yee, D. Diabetes and Cancer: A Consensus Report. Diabetes Care 2010, 33, 1674–1685. [Google Scholar] [CrossRef]
- Sun, G.; Kashyap, S.R. Cancer risk in type 2 diabetes mellitus: Metabolic links and therapeutic considerations. J. Nutr. Metab. 2011, 2011, 708183. [Google Scholar] [CrossRef] [PubMed]
- Vigneri, P.; Frasca, F.; Sciacca, L.; Pandini, G.; Vigneri, R. Diabetes and cancer. Endocr.-Relat. Cancer 2009, 16, 1103–1123. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Jiang, W.; Dong, X.; Yan, B.; Xu, S.; Lin, Z.; Zhuo, S.; Yan, J. Nomograms integrating the collagen signature and systemic immune-inflammation index for predicting prognosis in rectal cancer patients. BJS Open 2024, 8, zrae014. [Google Scholar] [CrossRef]
- Stine, Z.E.; Walton, Z.E.; Altman, B.J.; Hsieh, A.L.; Dang, C.V. MYC, Metabolism, and Cancer. Cancer Discov. 2015, 5, 1024–1039. [Google Scholar] [CrossRef] [PubMed]
- Kobliakov, V.A. The Mechanisms of Regulation of Aerobic Glycolysis (Warburg Effect) by Oncoproteins in Carcinogenesis. Biochemistry 2019, 84, 1117–1128. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Reséndiz, I.; Gallardo-Pérez, J.C.; López-Macay, A.; Robledo-Cadena, D.X.; García-Villa, E.; Gariglio, P.; Saavedra, E.; Moreno-Sánchez, R.; Rodríguez-Enríquez, S. Mutant p53R248Q downregulates oxidative phosphorylation and upregulates glycolysis under normoxia and hypoxia in human cervix cancer cells. J. Cell. Physiol. 2019, 234, 5524–5536. [Google Scholar] [CrossRef] [PubMed]
- Guerra, F.; Arbini, A.A.; Moro, L. Mitochondria and cancer chemoresistance. Biochim. Biophys. Acta Bioenerg. 2017, 1858, 686–699. [Google Scholar] [CrossRef]
- Jeong, H.; Kim, S.; Hong, B.-J.; Lee, C.-J.; Kim, Y.-E.; Bok, S.; Oh, J.-M.; Gwak, S.-H.; Yoo, M.Y.; Lee, M.S.; et al. Tumor-Associated Macrophages Enhance Tumor Hypoxia and Aerobic Glycolysis. Cancer Res. 2019, 79, 795–806. [Google Scholar] [CrossRef] [PubMed]
- Muir, A.; Danai, L.V.; Heiden, M.G.V. Microenvironmental regulation of cancer cell metabolism: Implications for experimental design and translational studies. Dis. Model. Mech. 2018, 11, dmm035758. [Google Scholar] [CrossRef] [PubMed]
- Matés, J.M.; Di Paola, F.J.; Campos-Sandoval, J.A.; Mazurek, S.; Márquez, J. Therapeutic targeting of glutaminolysis as an essential strategy to combat cancer. Semin. Cell Dev. Biol. 2020, 98, 34–43. [Google Scholar] [CrossRef]
- Adamek, A.; Kasprzak, A. Insulin-Like Growth Factor (IGF) System in Liver Diseases. Int. J. Mol. Sci. 2018, 19, 1308. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, J.; Zhang, X.; Zhang, M.; Fu, Y. Comprehensive Analysis of IGFBPs as Biomarkers in Gastric Cancer. Front. Oncol. 2021, 11, 723131. [Google Scholar] [CrossRef] [PubMed]
- Nur, S.I.; Ozturk, A.; Kavas, M.; Bulut, I.; Alparslan, S.; Aydogan, E.S.; Atinkaya, B.C.; Kolay, M.; Coskun, A. IGFBP-4: A promising biomarker for lung cancer. J. Med. Biochem. 2021, 40, 237–244. [Google Scholar] [CrossRef]
- Hermani, A.; Shukla, A.; Medunjanin, S.; Werner, H.; Mayer, D. Insulin-like growth factor binding protein-4 and -5 modulate ligand-dependent estrogen receptor-α activation in breast cancer cells in an IGF-independent manner. Cell. Signal. 2013, 25, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Crujeiras, A.B.; Díaz-Lagares, A.; Carreira, M.C.; Amil, M.; Casanueva, F.F. Oxidative stress associated to dysfunctional adipose tissue: A potential link between obesity, type 2 diabetes mellitus and breast cancer. Free Radic. Res. 2013, 47, 243–256. [Google Scholar] [CrossRef]
- Iacoviello, L.; Bonaccio, M.; de Gaetano, G.; Donati, M.B. Epidemiology of breast cancer, a paradigm of the “common soil” hypothesis. Semin. Cancer Biol. 2020, 72, 4–10. [Google Scholar] [CrossRef]
- Liao, S.; Li, J.; Wei, W.; Wang, L.; Zhang, Y.; Li, J.; Wang, C.; Sun, S. Association between diabetes mellitus and breast cancer risk: A meta-analysis of the literature. Asian Pac. J. Cancer Prev. 2011, 12, 1061–1065. [Google Scholar]
- Brandt, P.A.v.D. Diabetes and the risk of bladder cancer subtypes in men and women: Results from the Netherlands Cohort Study. Eur. J. Epidemiol. 2024; 1–13, Advance online publication. [Google Scholar] [CrossRef]
- Bonaccio, M.; Cerletti, C.; Iacoviello, L.; De Gaetano, G. Mediterranean Diet and Low-grade Subclinical Inflammation: The Moli-sani Study. Endocr. Metab. Immune Disord. Drug Targets 2015, 15, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Gouveri, E.; Papanas, N.; Maltezos, E. The female breast and diabetes. Breast 2011, 20, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.-H.; Syu, D.-K.; Chen, Y.-C.; Liu, C.-K.; Sun, C.-A.; Chen, M. The Association between Hypertriglyceridemia and Colorectal Cancer: A Long-Term Community Cohort Study in Taiwan. Int. J. Environ. Res. Public Health 2022, 19, 7804. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Noda, M.; Kurahashi, N.; Iwasaki, M.; Sasazuki, S.; Iso, H.; Tsugane, S. Impact of metabolic factors on subsequent cancer risk: Results from a large-scale population-based cohort study in Japan. Eur. J. Cancer Prev. 2009, 18, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Agnoli, C.; Grioni, S.; Sieri, S.; Sacerdote, C.; Vineis, P.; Tumino, R.; Giurdanella, M.C.; Pala, V.; Mattiello, A.; Chiodini, P.; et al. Colorectal cancer risk and dyslipidemia: A case–cohort study nested in an Italian multicentre cohort. Cancer Epidemiol. 2014, 38, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Strohmaier, S.; Edlinger, M.; Manjer, J.; Stocks, T.; Bjørge, T.; Borena, W.; Häggström, C.; Engeland, A.; Nagel, G.; Almquist, M.; et al. Total Serum Cholesterol and Cancer Incidence in the Metabolic Syndrome and Cancer Project (Me-Can). PLoS ONE 2013, 8, e54242. [Google Scholar] [CrossRef] [PubMed]
- Bowers, K.; Albanes, D.; Limburg, P.; Pietinen, P.; Taylor, P.R.; Virtamo, J.; Stolzenberg-Solomon, R. A Prospective Study of Anthropometric and Clinical Measurements Associated with Insulin Resistance Syndrome and Colorectal Cancer in Male Smokers. Am. J. Epidemiol. 2006, 164, 652–664. [Google Scholar] [CrossRef] [PubMed]
- Rouillier, P.; Senesse, P.; Cottet, V.; Valléau, A.; Faivre, J.; Boutron-Ruault, M.-C. Dietary patterns and the adenomacarcinoma sequence of colorectal cancer. Eur. J. Nutr. 2004, 44, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Theodoropoulos, P.C.; Eskiocak, U.; Wang, W.; Moon, Y.-A.; Posner, B.; Williams, N.S.; Wright, W.E.; Kim, S.B.; Nijhawan, D.; et al. Selective targeting of mutant adenomatous polyposis coli (APC) in colorectal cancer. Sci. Transl. Med. 2016, 8, 361ra140. [Google Scholar] [CrossRef]
- Liang, X.; Fan, X.; Tan, K.; Zhang, L.; Jian, L.; Yu, L. Peroxisome proliferators-activated receptor gamma polymorphisms and colorectal cancer risk. J. Cancer Res. Ther. 2018, 14, S306–S310. [Google Scholar] [CrossRef]
- Vekic, J.; Zeljkovic, A. Obesity and dyslipidemia. Metabolism 2019, 92, 71–81. [Google Scholar] [CrossRef]
- Pagliassotti, M.J.; Kim, P.Y.; Estrada, A.L.; Stewart, C.M.; Gentile, C.L. Endoplasmic reticulum stress in obesity and obesity-related disorders: An expanded view. Metabolism 2016, 65, 1238–1246. [Google Scholar] [CrossRef]
- Rolando, V.; Luca, D.L. Hints on ATGL implications in cancer: Beyond bioenergetic clues. Cell Death Dis. 2018, 9, 316. [Google Scholar]
- Ryan, A.M.; Duong, M.; Healy, L.; Ryan, S.A.; Parekh, N.; Reynolds, J.V.; Power, D.G. Obesity, metabolic syndrome and esophageal adenocarcinoma: Epidemiology, etiology and new targets. Cancer Epidemiol. 2011, 35, 309–319. [Google Scholar] [CrossRef]
- Engel, L.S.; Chow, W.; Vaughan, T.L.; Gammon, M.D.; Risch, H.A.; Stanford, J.L.; Schoenberg, J.B.; Mayne, S.T.; Dubrow, R.; Rotterdam, H.; et al. Population Attributable Risks of Esophageal and Gastric Cancers. JNCI J. Natl. Cancer Inst. 2003, 95, 1404–1413. [Google Scholar] [CrossRef]
- Kubo, A.; Corley, D.A. Body Mass Index and Adenocarcinomas of the Esophagus or Gastric Cardia: A Systematic Review and Meta-analysis. Cancer Epidemiol. Biomark. Prev. 2006, 15, 872–878. [Google Scholar] [CrossRef]
- Frühbeck, G.; Gómez-Ambrosi, J.; Muruzábal, F.J.; Burrell, M.A.; Xi, L.; Liu, Y.; Tang, Z.; Sheng, X.; Zhang, H.; Weng, Q.; et al. The adipocyte: A model for integration of endocrine and metabolic signaling in energy metabolism regulation. Am. J. Physiol.-Endocrinol. Metab. 2001, 280, E827–E847. [Google Scholar] [CrossRef]
- Cowey, S.; Hardy, R.W. The metabolic syndrome: A high-risk state for cancer? Am. J. Pathol. 2006, 169, 1505–1522. [Google Scholar] [CrossRef]
- Khandwala, H.M.; McCutcheon, I.E.; Flyvbjerg, A.; Friend, K.E. The Effects of Insulin-Like Growth Factors on Tumorigenesis and Neoplastic Growth. Endocr. Rev. 2000, 21, 215–244. [Google Scholar] [CrossRef]
- Pocha, C.; Xie, C. Hepatocellular carcinoma in alcoholic and non-alcoholic fatty liver disease—One of a kind or two different enemies? Transl. Gastroenterol. Hepatol. 2019, 4, 72. [Google Scholar] [CrossRef]
- Gutiérrez-Cuevas, J.; Lucano-Landeros, S.; López-Cifuentes, D.; Santos, A.; Armendariz-Borunda, J. Epidemiologic, Genetic, Pathogenic, Metabolic, Epigenetic Aspects Involved in NASH-HCC: Current Therapeutic Strategies. Cancers 2022, 15, 23. [Google Scholar] [CrossRef]
- Montesi, L.; Mazzotti, A.; Moscatiello, S.; Forlani, G.; Marchesini, G. Insulin resistance: Mechanism and implications for carcinogenesis and hepatocellular carcinoma in NASH. Hepatol. Int. 2013, 7 (Suppl. 2), 814–822. [Google Scholar] [CrossRef]
- Nakatsuka, T.; Tateishi, R. Development and prognosis of hepatocellular carcinoma in patients with diabetes. Clin. Mol. Hepatol. 2023, 29, 51–64. [Google Scholar] [CrossRef]
- Phoolchund, A.G.S.; Khakoo, S.I. MASLD and the Development of HCC: Pathogenesis and Therapeutic Challenges. Cancers 2024, 16, 259. [Google Scholar] [CrossRef]
- Haldar, D.; Kern, B.; Hodson, J.; Armstrong, M.J.; Adam, R.; Berlakovich, G.; Fritz, J.; Feurstein, B.; Popp, W.; Karam, V.; et al. Outcomes of liver transplantation for non-alcoholic steatohepatitis: A European Liver Transplant Registry study. J. Hepatol. 2019, 71, 313–322. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef]
- Targher, G.; Byrne, C.D.; Tilg, H. NAFLD and increased risk of cardiovascular disease: Clinical associations, pathophysiological mechanisms and pharmacological implications. Gut 2020, 69, 1691–1705. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Ann. Hepatol. 2024, 29, 101133. [Google Scholar] [CrossRef]
- Poonawala, A.; Nair, S.P.; Thuluvath, P.J. Prevalence of Obesity and Diabetes in Patients with Cryptogenic Cirrhosis: A Case-Control Study. Hepatology 2000, 32, 689–692. [Google Scholar] [CrossRef]
- Dyal, H.K.; Aguilar, M.; Bhuket, T.; Liu, B.; Holt, E.W.; Torres, S.; Cheung, R.; Wong, R.J. Concurrent Obesity, Diabetes, and Steatosis Increase Risk of Advanced Fibrosis Among HCV Patients: A Systematic Review. Dig. Dis. Sci. 2015, 60, 2813–2824. [Google Scholar] [CrossRef]
- Wainwright, P.; Byrne, C.D. Bidirectional Relationships and Disconnects between NAFLD and Features of the Metabolic Syndrome. Int. J. Mol. Sci. 2016, 17, 367. [Google Scholar] [CrossRef]
- Targher, G.; Tilg, H.; Byrne, C.D. Non-alcoholic fatty liver disease: A multisystem disease requiring a multidisciplinary and holistic approach. Lancet Gastroenterol. Hepatol. 2021, 6, 578–588. [Google Scholar] [CrossRef]
- Mantovani, A.; Taverna, A.; Cappelli, D.; Beatrice, G.; Csermely, A.; Sani, E.; Byrne, C.D.; Targher, G. Long-Term Adverse Effect of Liver Stiffness on Glycaemic Control in Type 2 Diabetic Patients with Nonalcoholic Fatty Liver Disease: A Pilot Study. Int. J. Mol. Sci. 2022, 23, 12481. [Google Scholar] [CrossRef]
- Buzzetti, E.; Pinzani, M.; Tsochatzis, E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 2016, 65, 1038–1048. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 8 March 2024).
- McPherson, S.; Hardy, T.; Henderson, E.; Burt, A.D.; Day, C.P.; Anstee, Q.M. Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: Implications for prognosis and clinical management. J. Hepatol. 2015, 62, 1148–1155. [Google Scholar] [CrossRef]
- Harrison, S.A. Liver Disease in Patients with Diabetes Mellitus. J. Clin. Gastroenterol. 2006, 40, 68–76. [Google Scholar] [CrossRef]
- Kaplan, D.E.; Serper, M.; John, B.V.; Tessiatore, K.M.; Lerer, R.; Mehta, R.; Fox, R.; Aytaman, A.; Baytarian, M.; Hunt, K.; et al. Effects of Metformin Exposure on Survival in a Large National Cohort of Patients with Diabetes and Cirrhosis. Clin. Gastroenterol. Hepatol. 2021, 19, 2148–2160.e14. [Google Scholar] [CrossRef]
- Quagliariello, V.; Rossetti, S.; Cavaliere, C.; Di Palo, R.; Lamantia, E.; Castaldo, L.; Nocerino, F.; Ametrano, G.; Cappuccio, F.; Malzone, G.; et al. Metabolic syndrome, endocrine disruptors and prostate cancer associations: Biochemical and pathophysiological evidences. Oncotarget 2017, 8, 30606–30616, Erratum in Oncotarget 2017, 8, 62816. [Google Scholar] [CrossRef]
- Hsing, A.W.; Deng, J.; Sesterhenn, I.A.; Mostofi, F.K.; Stanczyk, F.Z.; Benichou, J.; Xie, T.; Gao, Y.T. Body size and prostate cancer: A population-based case-control study in China. Cancer Epidemiol. Biomark. Prev. 2000, 9, 1335–1341. [Google Scholar]
- Hsing, A.W.; Devesa, S.S. Trends and patterns of prostate cancer: What do they suggest? Epidemiol. Rev. 2001, 23, 3–13. [Google Scholar] [CrossRef]
- Esposito, K.; Chiodini, P.; Colao, A.; Lenzi, A.; Giugliano, D. Metabolic syndrome and risk of cancer: A systematic review and meta-analysis. Diabetes Care 2012, 35, 2402–2411. [Google Scholar] [CrossRef]
- Kiwata, J.L.; Dorff, T.B.; Schroeder, E.T.; Gross, M.E.; Dieli-Conwright, C.M. A review of clinical effects associated with metabolic syndrome and exercise in prostate cancer patients. Prostate Cancer Prostatic Dis. 2016, 19, 323–332. [Google Scholar] [CrossRef]
- Conteduca, V.; Caffo, O.; Derosa, L.; Veccia, A.; Petracci, E.; Chiuri, V.E.; Santoni, M.; Santini, D.; Fratino, L.; Maines, F.; et al. Metabolic syndrome in castration-resistant prostate cancer patients treated with abiraterone. Prostate 2015, 75, 1329–1338. [Google Scholar] [CrossRef]
- De Nunzio, C.; Simone, G.; Brassetti, A.; Mastroianni, R.; Collura, D.; Muto, G.; Gallucci, M.; Tubaro, A. Metabolic syndrome is associated with advanced prostate cancer in patients treated with radical retropubic prostatectomy: Results from a multicentre prospective study. BMC Cancer 2016, 16, 407. [Google Scholar] [CrossRef]
- Li, H.; Stampfer, M.J.; Mucci, L.; Rifai, N.; Qiu, W.; Kurth, T.; Ma, J. A 25-Year Prospective Study of Plasma Adiponectin and Leptin Concentrations and Prostate Cancer Risk and Survival. Clin. Chem. 2010, 56, 34–43. [Google Scholar] [CrossRef]
- Khansari, N.; Shakiba, Y.; Mahmoudi, M. Chronic Inflammation and Oxidative Stress as a Major Cause of Age- Related Diseases and Cancer. Recent Pat. Inflamm. Allergy Drug Discov. 2009, 3, 73–80. [Google Scholar] [CrossRef]
Author(s) Publication Year Level of Evidence | Oncogenesis or Cancer Typology | Biomarkers Assessed | Conditions Assessed | Findings |
---|---|---|---|---|
Jee et al., 2005 [24] level I | Cervix Colon/Rectum Breast Esophagus Leukemia Liver Pancreas Stomach | AP-1 CRP FFA IGFBP3 IGF1 IL-6 IL-1β Insulin MCP-1 MMP-9 NF-κB PAI-1 TF TNF-α | Central obesity Dyslipidemia, hyperglycemia Hypertension | A high BMI increased the risk of colon cancer but was not associated with rectal cancer. Triglyceride levels in the blood did not increase the risk of colorectal cancer. |
Sumantran and Tillu 2012 [25] level I | Oncogenesis | Ama COX-2 HIF-1 alpha IL-6 iNOS MCP-1 NF-κB NO OLR-1 PPARs Prostaglandins STAT-3 TNF-α | Abnormal lipid metabolism Chronic inflammation Diet Obesity T2DM | Tumor-infiltrating leukocytes and TAMs were recognized in the tumor stroma. The inflammatory microenvironment directly improved tumor progression, evasion, of apoptosis, and accelerated the processes of angiogenesis, invasion, and metastasis. |
Gristina et al., 2015 [20] level I | CRC HCC | C-Reactive IGF1 IL-6 PI3K TNF-α | BMI Hyperinsulinemia Obesity T2DM | T2DM and MetS were directly associated to obesity-related hyperinsulinemia and increasing levels of IGF-1. These mechanisms were considered as key factors in carcinogenesis. |
Veniou et al., 2016 [27] level I | Bladder Breast Colon Colorectal Endometrium Gastric HCC Lung Ovary Pancreas Prostate Rectal Thyroid | Adiponectin AMPK IGF-1 IGFBP-3 IR HDLc Leptin mTOR Triglycerides | Aromatase BMI Cytotoxic products inducing insulin resistance Dysglycemia Hyperinsulinemia Hypertension Inflammation MetS Obesity | Insulin stimulated the production of IGF-1 by upregulating the GH receptors in the liver. Activation of IGF-1R stimulated cell proliferation through RAS/MAPK signaling pathway with anti-apoptotic consequence via the PI3K/AKT pathway. Among patients with wild-type RAS cancers, the prognosis was dismal in the obese subgroup. |
Battelli et al., 2019 [28] level I | Oncogenesis | COX-2 HIF-1α Insulin LDL NF-kβ NO ROS Uric Acid VEGF XOR | Inflammation MetS Oncogenesis Oxidative stress T2DM | XOR was involved in the pathogenesis of both MetS and cancer through the inflammatory response and the oxidative stress. ROS and nitrogen species and the uric acid derived from XOR improved hypertension, dyslipidemia and insulin resistance, participating in cell transformation and proliferation and also in the progression and metastasis process. |
Yu et al., 2020 [29] level I | General | GDH1 K-ras mTOR MAPK MYC P53 Statins TNF-α | Cell signaling pathways Chronic inflammation Dyslipidemia Hyperglycemia Inflammation MetS Obesity Oxidative stress ROS | Increased ROS production, chronic inflammation, and aberrant activation of oncogenic signaling pathways represent important links between metabolic disorders and cancer. |
Neshat et al., 2022 [30] level I | Breast Cervical Colon Endometrial Epithelial Esophageal General Gastric Hematological Liver Lung Ovarian Prostate | HDL-C LDL-C Statins TG | CVD Dyslipidemia Hypercholesterolemia | Cholesterol, HDL-C, LDL-C, and TG levels and statins could positively impact on the incidence, progression, and prognosis of different types of cancer, such as lung, prostate, ovary, breast, and gastrointestinal cancers. |
Sergeeva et al., 2023 [31] level I | Adrenocortical Breast Colon CRC Endometrium Esophageal HCC Melanoma | Estrogens HbA1c IGFBP IGFBPL1 MAPK mTOR PI3K | Chronic inflammation Hyperinsulinemia Hypoxia Inflammation Lipid metabolism Obesity Oxidative stress | Obesity and cancer development was based on several alterations of metabolism. Increased levels of glucose, fructose, and lipids could be linked to increased food uptake with altered expression of factors regulating metabolic processes under obesity. Obesity was associated with IGF axis alterations and increased estrogen levels. Low-grade chronic inflammation, deregulation of adipokines levels, and hypoxia associated to obesity were very important in cancer genesis and its progression. |
Pandit et al., 2024 [32] level I | CRC General | AMPK FFAs HER2 Hsp90 IGFs IL-1 IL-6 IL-8 NF-kβ STAT3 TNF-α | BMI Leptins STA-3-mediated | Higher BMI scores was associated to increased risks of malignancies. |
Author(s) Publication Year Level of Evidence | Biomarkers Assessed | Conditions Assessed | Findings |
---|---|---|---|
Crujeiras et al., 2013 [49] level II | HIFIα IGFs IL-1β IL-6 IL-8 NF-κ B TNF-α STAT3 | Obesity Oxidative stress T2DM | Obesity-related oxidative stress could be a direct cause of neoplastic transformation associated with obesity and T2DM in breast cancer cells. |
Iacoviello et al., 2021 [50] level I | CRP NF-κ B PAI-1 t-PA TF u-PA | Environmental Inflammation Lifestyle Reproductive factors | Breast cancer was a typically hormone-dependent tumor and was affected from the susceptibility to common pathogenetic triggers and intermediate phenotypes (T2DM). |
Author(s) Publication Year Level of Evidence | Biomarkers Assessed | Conditions Assessed | Findings |
---|---|---|---|
Hsu et al., 2022 [55] level I | HDL LDL TG | BMI Hyperglycemia, hyperlipidemia Hypertension MetS T2DM | Patients with DM should monitor TG and cholesterol level through diet, exercise, or taking medications more aggressively, not only for preventing cardiovascular disease but also for first prevention of CRC. |
Author(s) Publication Year Level of Evidence | Biomarkers Assessed | Conditions Assessed | Findings |
---|---|---|---|
Rayan et al., 2011 [66] level I | Adiponectin Adipsin Angiotensinogen Cholesterol transfer protein FFAs Galectin-12 IL-6 Lactate Leptin Lipoprotein lipase Monobutyrin Phospholipid transfer plasminogen activator inhibitor-1 Prostaciclin Protein Prostaglandin Resistin TNF-α | BMI Obesity | Obesity was positively associated with EA. The systemic inflammatory condition induced the production of adipocytokines and pro-coagulant factors released by adipocytes. |
Author(s) Publication Year Level of Evidence | Biomarkers Assessed | Conditions Assessed | Findings |
---|---|---|---|
Pocha et al., 2019 [72] level I | DAMP mTOR NF-kβ PAMOs ROS SCGA TLR TMA TNF-α VEGF | ALD BMI HBV HCV IR MetS NAFLD | In diabetic patients, heavy alcohol use of greater than 80 g/day increased the risk of HCC from 2.4 to 9.9. Obesity also had a synergistically effect. |
Gutiérrez-Cuevas 2022 [73] level I | MetS Obesity Insulin resistance T2DM | NASH and HCC were closely associated with obesity and diabetes, including metabolic syndrome and NAFLD. | |
Montesi et al., 2013 [74] level I | ChREBP FFA G6PC GCKR GLP-1 LDL LPL MAP-K PI3-K | Hyperinsulinemia Insulin resistance NAFLD Obesity T2DM | Insulin resistance (reduced flux of PI3-K) was followed by compensatory hyperinsulinemia, as stimulus for carcinogenesis, along the MAP-K pathway and adaptive mechanisms chronically maintained in an obesiogenic environment favored oxidative stress and inflammation, improving the immune responses and increasing the carcinogenic potential. |
Nakatsuka and Tateishi 2023 [75] level I | AKT HCV IGF-1 IL-6 NF-kβ PI3K mTOR ROS TNF-α | Chronic inflammation DNA damage Hepatocarcinogenesis, hyperinsulinemia IR Obesity Oxidative stress NAFLD Steatosis T2DM | More than 50% of cases of NAFLD-caused HCC, with a strong association with MetS and T2DM, may be due to its unique nature of increasing lipotoxicity-mediated chronic inflammation. |
Phoolchund and Khakoo 2024 [76] level I | Genetic polymorphisms ROS | Inflammation MASDL MASH NAFLD Obesity | MASLD-HCC could develop at an earlier phase of fibrosis. |
Author(s) Publication Year Level of Evidence | Biomarkers Assessed | Conditions Assessed | Findings |
---|---|---|---|
Quagliarello et al., 2017 [91] level I | Adiponectin levels IGF-1 Leptin | Endocrine disruptors Nutrition | Chronic inflammation of prostate gland, which was common in patients affected by MetS, was associated with a higher concentration of cytokines, interleukins, and growth factors that induced prostate cell division with accumulating point mutations and epigenetic modification like DNA hypermethylation of caretaker genes GSTP1, RASSF1A, and APC. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitale, E.; Rizzo, A.; Santa, K.; Jirillo, E. Associations between “Cancer Risk”, “Inflammation” and “Metabolic Syndrome”: A Scoping Review. Biology 2024, 13, 352. https://doi.org/10.3390/biology13050352
Vitale E, Rizzo A, Santa K, Jirillo E. Associations between “Cancer Risk”, “Inflammation” and “Metabolic Syndrome”: A Scoping Review. Biology. 2024; 13(5):352. https://doi.org/10.3390/biology13050352
Chicago/Turabian StyleVitale, Elsa, Alessandro Rizzo, Kazuki Santa, and Emilio Jirillo. 2024. "Associations between “Cancer Risk”, “Inflammation” and “Metabolic Syndrome”: A Scoping Review" Biology 13, no. 5: 352. https://doi.org/10.3390/biology13050352
APA StyleVitale, E., Rizzo, A., Santa, K., & Jirillo, E. (2024). Associations between “Cancer Risk”, “Inflammation” and “Metabolic Syndrome”: A Scoping Review. Biology, 13(5), 352. https://doi.org/10.3390/biology13050352