Changes in Rhizosphere Soil Microorganisms and Metabolites during the Cultivation of Fritillaria cirrhosa
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Obtaining FC Rhizosphere Soil Samples
2.2. Soil Metabolome Analysis
2.3. DNA Extraction, Library Construction, and Metagenomic Sequencing
2.4. Statistical Analysis
3. Results
3.1. The Alpha and Beta Diversity of Microbial Communities in FC Rhizosphere Soil Vary with Different Cultivation Years
3.2. Composition and Changes in Bacterial Communities
3.3. Composition and Changes in Fungal Communities
3.4. Potential Functional Pathways of Rhizosphere Soil Microorganisms during FC Cultivation
3.5. Metabolomic Analysis of FC Rhizosphere Soil
3.6. Correlations between Soil Bacteria, Fungi, and Metabolism
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Song, J.; Wei, J.; Hu, Z.; Xie, C.; Luo, G. Natural Fostering in Fritillaria cirrhosa: Integrating Herbal Medicine Production with Biodiversity Conservation. Acta Pharm. Sin. B 2012, 2, 77–82. [Google Scholar] [CrossRef]
- Chen, T.; Zhong, F.; Yao, C.; Chen, J.; Xiang, Y.; Dong, J.; Yan, Z.; Ma, Y. A Systematic Review on Traditional Uses, Sources, Phytochemistry, Pharmacology, Pharmacokinetics, and Toxicity of Fritillariae cirrhosae Bulbus. Evid. Based Complement. Alternat. Med. 2020, 2020, e1536534. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Ma, J.; Li, B.; Tao, Q.; Gan, J.; Yan, Z. Effects of Different Harvesting Times and Processing Methods on the Quality of Cultivated Fritillaria cirrhosa D. Don. Food Sci. Nutr. 2021, 9, 2853–2861. [Google Scholar] [CrossRef]
- Quan, Y.; Li, L.; Yin, Z.; Chen, S.; Yi, J.; Lang, J.; Zhang, L.; Yue, Q.; Zhao, J. Bulbus Fritillariae cirrhosae as a Respiratory Medicine: Is There a Potential Drug in the Treatment of COVID-19? Front. Pharmacol. 2022, 12, 784335. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Tian, M.; Sun, Y.; Wu, C.; Liu, X. Efficacy, Chemical Composition, and Pharmacological Effects of Herbal Drugs Derived from Fritillaria cirrhosa D. Don and Fritillaria Thunbergii Miq. Front. Pharmacol. 2022, 13, 985935. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhu, J.; Wang, S.; Wang, X.; Ou, Y.; Wei, D.; Li, X. Antitussive, Expectorant and Anti-Inflammatory Alkaloids from Bulbus Fritillariae cirrhosae. Fitoterapia 2011, 82, 1290–1294. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ming, T.W.; Gaun, T.K.W.; Wang, S.; Ye, B. A Comparative Assessment of Acute Oral Toxicity and Traditional Pharmacological Activities between Extracts of Fritillaria cirrhosae Bulbus and Fritillaria pallidiflora Bulbus. J. Ethnopharmacol. 2019, 238, 111853. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Xu, L.; Zhang, S.; Li, W.; Tou, F.; He, Q.; Rao, J.; Shen, Q. Peiminine Inhibits Colorectal Cancer Cell Proliferation by Inducing Apoptosis and Autophagy and Modulating Key Metabolic Pathways. Oncotarget 2017, 8, 47619–47631. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; He, Q.; Xu, L.; Cui, W.; Bai, H.; Zhang, Z.; Rao, J.; Dou, F. The Peiminine Stimulating Autophagy in Human Colorectal Carcinoma Cells via AMPK Pathway by SQSTM1. Open Life Sci. 2016, 11, 358–366. [Google Scholar] [CrossRef]
- Cunningham, A.B.; Brinckmann, J.A.; Pei, S.-J.; Luo, P.; Schippmann, U.; Long, X.; Bi, Y.-F. High Altitude Species, High Profits: Can the Trade in Wild Harvested Fritillaria cirrhosa (Liliaceae) be Sustained? J. Ethnopharmacol. 2018, 223, 142–151. [Google Scholar] [CrossRef]
- Wang, D.; Chen, X.; Atanasov, A.G.; Yi, X.; Wang, S. Plant Resource Availability of Medicinal Fritillaria Species in Traditional Producing Regions in Qinghai-Tibet Plateau. Front. Pharmacol. 2017, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mu, M.; Zhang, D.; Zhang, H.; Yang, M.; Guo, D.; Zhou, N. Correlation between rhizospheric microorganisms distribution and alkaloid content of Fritillaria taipaiensis. China J. Chin. Mater. Medica 2019, 44, 2231–2235. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Mu, M.; Yang, M.; Yang, X.; Zhang, H.; Guo, D.; Zhou, N. The Rhizospheric Bacterial Diversity of Fritillaria taipaiensis under Single Planting Pattern over Five Years. Sci. Rep. 2022, 12, 22544. [Google Scholar] [CrossRef] [PubMed]
- Pang, Q.; Alami, M.M.; Yu, W.; Ouyang, Z.; Shu, S.; Tu, D.; Alami, M.J.; Wang, X. A Meta-Analysis in Nine Different Continuous Cropping Fields to Find the Relationship between Plant Species and Rhizosphere Fungal Community. Agronomy 2023, 13, 1827. [Google Scholar] [CrossRef]
- Chen, Y.; Du, J.; Li, Y.; Tang, H.; Yin, Z.; Yang, L.; Ding, X. Evolutions and Managements of Soil Microbial Community Structure Drove by Continuous Cropping. Front. Microbiol. 2022, 13, 839494. [Google Scholar] [CrossRef]
- Ul Haq, M.Z.; Yu, J.; Yao, G.; Yang, H.; Iqbal, H.A.; Tahir, H.; Cui, H.; Liu, Y.; Wu, Y. A Systematic Review on the Continuous Cropping Obstacles and Control Strategies in Medicinal Plants. Int. J. Mol. Sci. 2023, 24, 12470. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Guan, Z.; Liu, Q.; Hu, Y.; Liu, L.; Wang, B.; Huang, L.; Li, H.; Yang, Y.; Han, M.; et al. Obstacles in Continuous Cropping: Mechanisms and Control Measures. Adv. Agron. 2023, 179, 205–256. [Google Scholar]
- Zuppinger-Dingley, D.; Schmid, B.; Petermann, J.S.; Yadav, V.; De Deyn, G.B.; Flynn, D.F.B. Selection for Niche Differentiation in Plant Communities Increases Biodiversity Effects. Nature 2014, 515, 108–111. [Google Scholar] [CrossRef]
- Tan, G.; Liu, Y.; Peng, S.; Yin, H.; Meng, D.; Tao, J.; Gu, Y.; Li, J.; Yang, S.; Xiao, N.; et al. Soil Potentials to Resist Continuous Cropping Obstacle: Three Field Cases. Environ. Res. 2021, 200, 111319. [Google Scholar] [CrossRef]
- Li, H.; Li, C.; Song, X.; Liu, Y.; Gao, Q.; Zheng, R.; Li, J.; Zhang, P.; Liu, X. Impacts of Continuous and Rotational Cropping Practices on Soil Chemical Properties and Microbial Communities during Peanut Cultivation. Sci. Rep. 2022, 12, 2758. [Google Scholar] [CrossRef]
- Li, C.; Chen, G.; Zhang, J.; Zhu, P.; Bai, X.; Hou, Y.; Zhang, X. The Comprehensive Changes in Soil Properties Are Continuous Cropping Obstacles Associated with American Ginseng (Panax quinquefolius) Cultivation. Sci. Rep. 2021, 11, 5068. [Google Scholar] [CrossRef]
- Chen, B.; Shao, G.; Zhou, T.; Fan, Q.; Yang, N.; Cui, M.; Zhang, J.; Wu, X.; Zhang, B.; Zhang, R. Dazomet Changes Microbial Communities and Improves Morel Mushroom Yield under Continuous Cropping. Front. Microbiol. 2023, 14, 1200226. [Google Scholar] [CrossRef] [PubMed]
- Lyu, F.; Zhang, Z.; Wang, R.; Yuan, Z.; Lin, H.; Wei, L.; Xiao, Y. Response of sesame root exudates at different growing stages to continuous cropping and its autotoxicity. Chin. J. Oil Crop Sci. 2021, 43, 1087–1098. [Google Scholar] [CrossRef]
- Handelsman, J.; Rondon, M.R.; Brady, S.F.; Clardy, J.; Goodman, R.M. Molecular Biological Access to the Chemistry of Unknown Soil Microbes: A New Frontier for Natural Products. Chem. Biol. 1998, 5, R245–R249. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, S.; Liu, T.; Guo, B.; Li, F.; Bai, X. Identification of the Rhizospheric Microbe and Metabolites That Led by the Continuous Cropping of Ramie (Boehmeria nivea L. Gaud). Sci. Rep. 2020, 10, 20408. [Google Scholar] [CrossRef]
- Pang, Z.; Dong, F.; Liu, Q.; Lin, W.; Hu, C.; Yuan, Z. Soil Metagenomics Reveals Effects of Continuous Sugarcane Cropping on the Structure and Functional Pathway of Rhizospheric Microbial Community. Front. Microbiol. 2021, 12, 627569. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Mu, X.; Liu, J.; Li, B.; Liu, H.; Zhang, B.; Xiao, P. Plant Metabolomics: A New Strategy and Tool for Quality Evaluation of Chinese Medicinal Materials. Chin. Med. 2022, 17, 45. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.B.; Kim, W.J.; Kim, H.U.; Lee, S.Y. Machine Learning Applications in Systems Metabolic Engineering. Curr. Opin. Biotechnol. 2020, 64, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Ding, X.; Wang, J. Soil Metabolome Correlates with Bacterial Diversity and Co-Occurrence Patterns in Root-Associated Soils on the Tibetan Plateau. Sci. Total Environ. 2020, 735, 139572. [Google Scholar] [CrossRef]
- Sun, Y.; Duan, C.; Cao, N.; Ding, C.; Huang, Y.; Wang, J. Biodegradable and Conventional Microplastics Exhibit Distinct Microbiome, Functionality, and Metabolome Changes in Soil. J. Hazard. Mater. 2022, 424, 127282. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, G.; Jiang, S.; Liu, Y.-X. Wekemo Bioincloud: A User-Friendly Platform for Meta-Omics Data Analyses. iMeta 2024, 3, e175. [Google Scholar] [CrossRef]
- Jiao, N.; Song, X.; Song, R.; Yin, D.; Deng, X. Diversity and Structure of the Microbial Community in Rhizosphere Soil of Fritillaria ussuriensis at Different Health Levels. PeerJ 2022, 10, e12778. [Google Scholar] [CrossRef]
- Liu, C.; Yu, J.; Ying, J.; Zhang, K.; Hu, Z.; Liu, Z.; Chen, S. Integrated Metagenomics and Metabolomics Analysis Reveals Changes in the Microbiome and Metabolites in the Rhizosphere Soil of Fritillaria unibracteata. Front. Plant Sci. 2023, 14, 1223720. [Google Scholar] [CrossRef]
- Maitra, P.; Hrynkiewicz, K.; Szuba, A.; Jagodziński, A.M.; Al-Rashid, J.; Mandal, D.; Mucha, J. Metabolic Niches in the Rhizosphere Microbiome: Dependence on Soil Horizons, Root Traits and Climate Variables in Forest Ecosystems. Front. Plant Sci. 2024, 15, 1344205. [Google Scholar] [CrossRef] [PubMed]
- Ge, A.H.; Li, Q.Y.; Liu, H.W.; Zhang, Z.K.; Lu, Y.; Liang, Z.H.; Singh, B.K.; Han, L.L.; Xiang, J.F.; Xiao, J.L.; et al. Streptomyces-triggered coordination between rhizosphere microbiomes and plant transcriptome enables watermelon Fusarium wilt resistance. Microb. Biotechnol. 2024, 17, e14435. [Google Scholar] [CrossRef]
- Xiong, B.; Zhang, Y.; Hou, Y.; Arp, H.P.H.; Reid, B.J.; Cai, C. Enhanced Biodegradation of PAHs in Historically Contaminated Soil by M. Gilvum Inoculated Biochar. Chemosphere 2017, 182, 316–324. [Google Scholar] [CrossRef]
- Fang, H. Exploring Bacterial Community Structure and Function Associated with Atrazine Biodegradation in Repeatedly Treated Soils. J. Hazard. Mater. 2015, 286, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Di, H.; Wang, R.; Tan, J.; Peng, W. Comparison on Differences of Bacteria Community between Tobacco Continuous Cropping Diseased Soil and Continuous Cropping Non-Diseased Soil. Hubei Agric. Sci. 2023, 62, 47–51. [Google Scholar] [CrossRef]
- Liu, B. Allelopaty and Extomycorrhiza of Different Walnut Agroforestry Systems in the Loess Area of Northern Wei River. Doctoral Dissertation, Northwest A&F University, Xianyang, China, 2022. [Google Scholar]
- Zhang, J. Characteristics of the Rhizosphere Soil Microbial Community of Fritillaria taipaiensis in Chongqing. Master’s Thesis, Southwest University, El Paso, TX, USA, 2024. [Google Scholar]
- Chen, W.; Teng, Y.; Li, Z.; Liu, W.; Ren, W.; Luo, Y.; Christie, P. Mechanisms by Which Organic Fertilizer and Effective Microbes Mitigate Peanut Continuous Cropping Yield Constraints in a Red Soil of South China. Appl. Soil Ecol. 2018, 128, 23–34. [Google Scholar] [CrossRef]
- Yang, L.; Tan, L.; Zhang, F.; Gale, W.J.; Cheng, Z.; Sang, W. Duration of Continuous Cropping with Straw Return Affects the Composition and Structure of Soil Bacterial Communities in Cotton Fields. Can. J. Microbiol. 2018, 64, 167–181. [Google Scholar] [CrossRef]
- Kanfra, X.; Wrede, A.; Moll, J.; Heuer, H. Nematode-Microbe Complexes in Soils Replanted with Apple. Microorganisms 2022, 10, 157. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Ren, Z.; Liu, L.; Yu, J.; Yuan, H. Effects of Engineered Soil Lmprovement Combined with Biofertilizer on Rhizosphere Soil Microbial Community in Replanted Apple (Malus domestica). J. Agric. Biotechnol. 2023, 31, 1262–1274. [Google Scholar]
- Nam, M.H.; Park, M.S.; Kim, H.S.; Kim, T.I.; Kim, H.G. Cladosporium cladosporioides and C. tenuissimum Cause Blossom Blight in Strawberry in Korea. Mycobiology 2015, 43, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Lyu, H.; He, L.; Chi, M.; Wang, W.; Xie, C.; Zhang, X.; Zhang, B.; Zhou, C.; Xu, S. First Report of Cladosporium cladosporioides Causing Leaf Blight on Sambucus chinensis in China. Plant Dis. 2023, 107, 950. [Google Scholar] [CrossRef] [PubMed]
- AbuQamar, S.F.; Moustafa, K.; Tran, L.-S.P. “Omics” and Plant Responses to Botrytis Cinerea. Front. Plant Sci. 2016, 7, 1658. [Google Scholar] [CrossRef] [PubMed]
- Bi, K.; Liang, Y.; Mengiste, T.; Sharon, A. Killing Softly: A Roadmap of Botrytis cinerea Pathogenicity. Trends Plant Sci. 2023, 28, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Rufty, T.; Shi, W. Predominant Microbial Colonizers in the Root Endosphere and Rhizosphere of Turfgrass Systems: Pseudomonas veronii, Janthinobacterium lividum, and Pseudogymnoascus Spp. Front. Microbiol. 2021, 12, 643904. [Google Scholar] [CrossRef] [PubMed]
- Yue, Z.; Chen, C.; Liu, Y.; Chen, X.; Chen, Y.; Hu, C.; Zheng, M.; Zhang, J.; He, L.; Ma, K.; et al. Phosphorus Solubilizing Bacillus Altitudinis WR10 Alleviates Wheat Phosphorus Deficiency via Remodeling Root System Architecture, Enhancing Phosphorus Availability, and Activating the ASA-GSH Cycle. Plant Soil 2023, 492, 367–379. [Google Scholar] [CrossRef]
- Dong, L.; Li, X.; Huang, L.; Gao, Y.; Zhong, L.; Zheng, Y.; Zuo, Y. Lauric Acid in Crown Daisy Root Exudate Potently Regulates Root-Knot Nematode Chemotaxis and Disrupts Mi-Flp-18 Expression to Block Infection. J. Exp. Bot. 2014, 65, 131–141. [Google Scholar] [CrossRef]
- LiRong, C.; Kai, P.; Wu, F.Z.; Tao, L.; Wang, Y. Effects of Hexadecanoic Acid on Fusarium oxysporum f. Sp. Niveum Control and on Growth of Watermelon (Citrullus lanatus). Allelopathy J. 2014, 34, 241–252. [Google Scholar]
- Liu, S.; Ruan, W.; Li, J.; Xu, H.; Wang, J.; Gao, Y.; Wang, J. Biological Control of Phytopathogenic Fungi by Fatty Acids. Mycopathologia 2008, 166, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhou, B.; Zhang, X.; Zhang, Z.; Wu, Y.; Zhang, Y.; Lü, S.; Zou, Q.; Gao, Y.; Teng, L. Effects of Tomato Root Exudates on Meloidogyne Incognita. PLoS ONE 2016, 11, e0154675. [Google Scholar] [CrossRef] [PubMed]
- Xin, A.; Jin, H.; Yang, X.; Guan, J.; Hui, H.; Liu, H.; Cui, Z.; Dun, Z.; Qin, B. Allelochemicals from the Rhizosphere Soil of Potato (Solanum tuberosum L.) and Their Interactions with the Soilborne Pathogens. Plants 2022, 11, 1934. [Google Scholar] [CrossRef]
- Pervaiz, Z.H.; Iqbal, J.; Zhang, Q.; Chen, D.; Wei, H.; Saleem, M. Continuous Cropping Alters Multiple Biotic and Abiotic Indicators of Soil Health. Soil Syst. 2020, 4, 59. [Google Scholar] [CrossRef]
- Li, L.; Wilson, C.B.; He, H.; Zhang, X.; Zhou, F.; Schaeffer, S.M. Physical, Biochemical, and Microbial Controls on Amino Sugar Accumulation in Soils under Long-Term Cover Cropping and No-Tillage Farming. Soil Biol. Biochem. 2019, 135, 369–378. [Google Scholar] [CrossRef]
- Liang, X.; Xin, Y.; Jia, X.; Yan, X.; Wei, Y.; Zhao, H. Response of Antioxidative Enzymes Activities and Amino Acids Concentrations in Leaf Tissues of Lycium barbarum L. Seedlings under Cadmium Stress. Asian J. Ecotoxicol. 2021, 16, 222–233. [Google Scholar] [CrossRef]
Sample ID | Raw Reads (#) | Raw Base (GB) | %GC | Raw Q20 (%) | Raw Q30 (%) | Clean Reads (#) | Cleaned (%) | Clean Q20 (%) | Clean Q30 (%) |
---|---|---|---|---|---|---|---|---|---|
FC1a | 23,485,550 | 7.05 | 63 | 95.75 | 89.71 | 21,890,302 | 93.21 | 97.73 | 92.72 |
FC1b | 22,148,275 | 6.64 | 63 | 95.76 | 89.74 | 20,665,303 | 93.30 | 97.73 | 92.72 |
FC1c | 20,894,601 | 6.27 | 62 | 95.67 | 89.61 | 19,299,670 | 92.37 | 97.75 | 92.76 |
FC2a | 24,805,971 | 7.44 | 63 | 95.55 | 89.39 | 22,862,774 | 92.17 | 97.69 | 92.65 |
FC2b | 22,057,972 | 6.62 | 63 | 95.64 | 89.52 | 20,372,676 | 92.36 | 97.72 | 92.69 |
FC2c | 21,136,778 | 6.34 | 63 | 95.24 | 88.81 | 19,629,586 | 92.87 | 97.47 | 92.15 |
FC3a | 26,133,973 | 7.84 | 64 | 95.46 | 89.24 | 24,232,350 | 92.72 | 97.63 | 92.51 |
FC3b | 24,475,606 | 7.34 | 64 | 95.51 | 89.33 | 22,811,364 | 93.20 | 97.63 | 92.51 |
FC3c | 22,025,034 | 6.61 | 64 | 95.34 | 88.98 | 20,330,366 | 92.31 | 97.56 | 92.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Ying, J.; Liu, C. Changes in Rhizosphere Soil Microorganisms and Metabolites during the Cultivation of Fritillaria cirrhosa. Biology 2024, 13, 334. https://doi.org/10.3390/biology13050334
Liu Z, Ying J, Liu C. Changes in Rhizosphere Soil Microorganisms and Metabolites during the Cultivation of Fritillaria cirrhosa. Biology. 2024; 13(5):334. https://doi.org/10.3390/biology13050334
Chicago/Turabian StyleLiu, Zhixiang, Jizhe Ying, and Chengcheng Liu. 2024. "Changes in Rhizosphere Soil Microorganisms and Metabolites during the Cultivation of Fritillaria cirrhosa" Biology 13, no. 5: 334. https://doi.org/10.3390/biology13050334
APA StyleLiu, Z., Ying, J., & Liu, C. (2024). Changes in Rhizosphere Soil Microorganisms and Metabolites during the Cultivation of Fritillaria cirrhosa. Biology, 13(5), 334. https://doi.org/10.3390/biology13050334