Prediction of the Future Evolution Trends of Prunus sibirica in China Based on the Key Climate Factors Using MaxEnt Modeling
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Species Occurrence Data
2.3. Environmental Variables
2.4. Model Evaluation and Validation
2.5. Model Optimization
2.6. Data Processing
3. Results
3.1. Subsection
3.2. Geographic Distribution of Mountain Apricots in China
3.3. Changes in Suitable Distribution Area Under Future Climate Change
3.4. Key Climate Factors
4. Discussion
4.1. Key Environmental Factors Influencing Wild Apricot Growth
4.2. Changes in Wild Apricot Distribution Under Future Climate Change
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mishra, R.; de Iongh, H.H.; Leirs, H.; Lamichhane, B.R.; Subedi, N.; Kolipaka, S.S. Fishing Cat Prionailurus viverrinus Distribution and Habitat Suitability in Nepal. Ecol. Evol. 2022, 12, e8857. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chang, H.; Liu, T.; Zhang, C. The Potential Geographical Distribution of Haloxylon across Central Asia under Climate Change in the 21st Century. Agric. For. Meteorol. 2019, 275, 243–254. [Google Scholar] [CrossRef]
- He, N.; Yan, P.; Liu, C.; Xu, L.; Li, M.; Van Meerbeek, K.; Zhou, G.; Zhou, G.; Liu, S.; Zhou, X.; et al. Predicting Ecosystem Productivity Based on Plant Community Traits. Trends Plant Sci. 2023, 28, 43–53. [Google Scholar] [CrossRef]
- Yu, Q.; Chen, Q.; Elser, J.J.; He, N.; Wu, H.; Zhang, G.; Wu, J.; Bai, Y.; Han, X. Linking Stoichiometric Homoeostasis with Ecosystem Structure, Functioning and Stability. Ecol. Lett. 2010, 13, 1390–1399. [Google Scholar] [CrossRef]
- Ahmadi, M.; Hemami, M.R.; Kaboli, M.; Shabani, F. MaxEnt Brings Comparable Results When the Input Data Are Being Completed; Model Parameterization of Four Species Distribution Models. Ecol. Evol. 2023, 13, e9827. [Google Scholar] [CrossRef]
- Gong, L.; Li, X.; Liu, D.; Jiang, L.; Jiang, L.; Li, Y. Differences between Ecological Niche Models When Predicting the Potential Distribution of Soybean. Sci. Agric. 2024, 81, e20230119. [Google Scholar] [CrossRef]
- Li, D.; Li, Z.; Liu, Z.; Yang, Y.; Khoso, A.G.; Wang, L.; Liu, D. Climate Change Simulations Revealed Potentially Drastic Shifts in Insect Community Structure and Crop Yields in China’ s Farmland. J. Pest Sci. 2022, 96, 55–69. [Google Scholar] [CrossRef]
- Bosso, L.; Panzuto, R.; Balestrieri, R.; Smeraldo, S.; Chiusano, M.L.; Raffini, F.; Canestrelli, D.; Musco, L.; Gili, C. Integrating Citizen Science and Spatial Ecology to Inform Management and Conservation of the Italian Seahorses. Ecol. Inform. 2024, 79, 102402. [Google Scholar] [CrossRef]
- Chaitanya, R.; Naniwadekar, R.; Meiri, S. Why Did the Hornbill Not Cross the River? Upland Habitats Rather than a Physical Barrier Limit the Distribution of the Brown Hornbill. J. Biogeogr. 2024, 51, 2156–2169. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of Species Distributions with Maxent: New Extensions and a Comprehensive Evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Xie, C.; Tian, E.; Jim, C.Y.; Liu, D.; Hu, Z. Effects of Climate-Change Scenarios on the Distribution Patterns of Castanea Henryi. Ecol. Evol. 2022, 12, e9597. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Zhang, G. Predicting the Potential Distribution of Endangered Parrotia subaequalis in China. Forests 2022, 13, 1595. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Wang, M.; Li, Z.; Lin, S.; Chen, H. Potential Distribution Prediction of Amaranthus palmeri S. Watson in China under Current and Future Climate Scenarios. Ecol. Evol. 2022, 12, e9505. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Xu, D.; Liao, W.; Wang, R.; Zhuo, Z. Predicting the Distributions of Scleroderma guani (Hymenoptera: Bethylidae) under Climate Change in China. Ecol. Evol. 2022, 12, e9410. [Google Scholar] [CrossRef]
- Fang, B.; Zhao, Q.; Qin, Q.; Yu, J. Prediction of Potentially Suitable Distribution Areas for Prunus tomentosa in China Based on an Optimized MaxEnt Model. Forests 2022, 13, 381. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Optimized Maxent Model Predictions of Climate Change Impacts on the Suitable Distribution of Cunninghamia lanceolata in China. Forests 2020, 11, 302. [Google Scholar] [CrossRef]
- Ye, P.; Zhang, G.; Zhao, X.; Chen, H.; Si, Q.; Wu, J. Potential Geographical Distribution and Environmental Explanations of Rare and Endangered Plant Species through Combined Modeling: A Case Study of Northwest Yunnan, China. Ecol. Evol. 2021, 11, 13052–13067. [Google Scholar] [CrossRef]
- Rehan, M.; Hassan, A.; Zeb, S.; Ullah, S.; Ahmad, F.; Bohnett, E.; Bosso, L.; Fida, T.; Kabir, M. Application of Species Distribution Models to Estimate and Manage the Asiatic Black Bear (Ursus thibetanus) Habitat in the Hindu Kush Mountains, Pakistan. Eur. J. Wildl. Res. 2024, 70, 62. [Google Scholar] [CrossRef]
- Rato, C.; Sreelatha, L.B.; Gómez-Ramírez, F.; Carretero, M.A. A Pleistocene Biogeography in Miniature: The Small-Scale Evolutionary History of Podarcis lusitanicus (Squamata, Lacertidae). J. Biogeogr. 2024. [Google Scholar] [CrossRef]
- Cobos, M.E.; Townsend Peterson, A.; Barve, N.; Osorio-Olvera, L. Kuenm: An R Package for Detailed Development of Ecological Niche Models Using Maxent. PeerJ 2019, 2019, e6281. [Google Scholar] [CrossRef]
- Li, M.; Zhao, Z.; Miao, X.; Zhou, J. Genetic Diversity and Population Structure of Siberian Apricot (Prunus sibirica L.) in China. Int. J. Mol. Sci. 2014, 15, 377–400. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wang, S.; Liu, X.; Yu, H.; Yu, D.; Li, G.; Wang, L. Oil Content, Fatty Acid Composition and Biodiesel Properties among Natural Provenances of Siberian Apricot (Prunus sibirica L.) from China. GCB Bioenergy 2021, 13, 112–132. [Google Scholar] [CrossRef]
- Wang, Z.; Kang, M.; Liu, H.; Gao, J.; Zhang, Z.; Li, Y.; Wu, R.; Pang, X. High-Level Genetic Diversity and Complex Population Structure of Siberian Apricot (Prunus sibirica L.) in China as Revealed by Nuclear SSR Markers. PLoS ONE 2014, 9, e87381. [Google Scholar] [CrossRef] [PubMed]
- Kitic, D.; Miladinovic, B.; Randjelovic, M.; Szopa, A.; Sharifi-Rad, J.; Calina, D.; Seidel, V. Anticancer Potential and Other Pharmacological Properties of Prunus armeniaca L.: An Updated Overview. Plants 2022, 11, 1885. [Google Scholar] [CrossRef]
- Tang, S.; Wang, M.; Peng, Y.; Liang, Y.; Lei, J.; Tao, Q.; Ming, T.; Shen, Y.; Zhang, C.; Guo, J.; et al. Armeniacae Semen Amarum: A Review on Its Botany, Phytochemistry, Pharmacology, Clinical Application, Toxicology and Pharmacokinetics. Front. Pharmacol. 2024, 15, 1290888. [Google Scholar] [CrossRef]
- Korsakova, S.; Korzin, V.; Plugatar, Y.; Kazak, A.; Gorina, V.; Korzina, N.; Khokhlov, S.; Makoveichuk, K. Modelling of Climate Change’s Impact on Prunus armeniaca L.’s Flowering Time. Inventions 2023, 8, 65. [Google Scholar] [CrossRef]
- Bartolini, S.; Lo Piccolo, E.; Remorini, D. Different Summer and Autumn Water Deficit Affect The Floral Differentiation and Flower Bud Growth in Apricot (Prunus armeniaca L.). Agronomy 2020, 10, 914. [Google Scholar] [CrossRef]
- Sun, R.; Tong, G.; Zhang, Q.; Xu, L.; Sang, Z.; Li, Y. A Study on the Suitable Areas for Growing Apricot Kernels in China Based on the MaxEnt Model. Sustainability 2023, 15, 9635. [Google Scholar] [CrossRef]
- Fang, H. Water Erosion Research in China: A Review. Hydrol. Earth Syst. Sci. Discuss. 2020, 26, 1–53. [Google Scholar] [CrossRef]
- Wang, T.; Xue, X.; Zhou, L.; Guo, J. Combating Aeolian Desertification in Northern China. Land Degrad. Dev. 2015, 26, 118–132. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Paruelo, J.; Raskin, R.G.; Sutton, P.; et al. The value of the world’s ecosystem services and natural capital. Ecol. Econ. 1998, 25, 3–15. [Google Scholar] [CrossRef]
- Bradshaw, A.D. Underlying principles of restoration. Restor. Ecol. 1996, 4, 77–88. [Google Scholar] [CrossRef]
- Li, Y.; Shao, W.; Huang, S.; Zhang, Y.; Fang, H.; Jiang, J. Prediction of Suitable Habitats for Sapindus delavayi Based on the MaxEnt Model. Forests 2022, 13, 1611. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, X.; Jiang, X.; Fan, T.; Liang, X.; Yan, W. MaxEnt Modeling for Predicting Suitable Habitat for Endangered Tree Keteleeria davidiana (Pinaceae) in China. Forests 2023, 14, 394. [Google Scholar] [CrossRef]
- Song, W.; Kim, E.; Lee, D.; Lee, M.; Jeon, S.W. The Sensitivity of Species Distribution Modeling to Scale Differences. Ecol. Model. 2013, 248, 113–118. [Google Scholar] [CrossRef]
- Li, Y.; Ding, C. Effects of Sample Size, Sample Accuracy and Environmental Variables on Predictive Performance of MaxEnt Model. Pol. J. Ecol. 2016, 64, 303–312. [Google Scholar] [CrossRef]
- Fourcade, Y.; Engler, J.O.; Rödder, D.; Secondi, J. Mapping Species Distributions with MAXENT Using a Geographically Biased Sample of Presence Data: A Performance Assessment of Methods for Correcting Sampling Bias. PLoS ONE 2014, 9, e97122. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the Accuracy of Species Distribution Models: Prevalence, Kappa and the True Skill Statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- ElShahed, S.M.; Mostafa, Z.K.; Radwan, M.H.; Hosni, E.M. Modeling the Potential Global Distribution of the Egyptian Cotton Leafworm, Spodoptera Littoralis under Climate Change. Sci. Rep. 2023, 13, 17314. [Google Scholar] [CrossRef]
- Al-Khalaf, A.A.; Nasser, M.G.; Hosni, E.M. Global Potential Distribution of Sarcophaga dux and Sarcophaga haemorrhoidalis under Climate Change. Diversity 2023, 15, 903. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, L.; Zhou, X.; Chen, R.; Zhao, G.; Zhang, F. Prediction of the Potentially Suitable Areas of Leonurus japonicus in China Based on Future Climate Change Using the Optimized MaxEnt Model. Ecol. Evol. 2023, 13, e10597. [Google Scholar] [CrossRef] [PubMed]
- Zhebentyayeva, T.N.; Reighard, G.L.; Gorina, V.M.; Abbott, A.G. Simple Sequence Repeat (SSR) Analysis for Assessment of Genetic Variability in Apricot Germplasm. Theor. Appl. Genet. 2003, 106, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Vintsek, L.; Klichowska, E.; Nowak, A.; Nobis, M. Insight into the Phylogeny and Responses of Species from the Genus Sergia (Campanulaceae) to the Climate Changes Predicted for the Mountains of Central Asia (a World Biodiversity Hotspot). BMC Plant Biol. 2024, 24, 228. [Google Scholar] [CrossRef]
- Zhang, P.; Kong, X.; Bakker, E.S.; Xu, J.; Zhang, M. Temperature Affects Carbon and Nitrogen Stable Isotopic Signatures of Aquatic Plants. Aquat. Sci. 2021, 83, 39. [Google Scholar] [CrossRef]
- Xiong, Y.; Xiong, Y.; Shu, X.; Yu, Q.; Lei, X.; Li, D.; Yan, J.; Bai, S.; Ma, X. Molecular Phylogeography and Intraspecific Divergences in Siberian Wildrye (Elymus sibiricus L.) Wild Populations in China, Inferred From Chloroplast DNA Sequence and CpSSR Markers. Front. Plant Sci. 2022, 13, 862759. [Google Scholar] [CrossRef]
- Chaves, M.M.; Oliveira, M.M. Mechanisms Underlying Plant Resilience to Water Deficits: Prospects for Water-Saving Agriculture. J. Exp. Bot. 2004, 55, 2365–2384. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant Drought Stress: Effects, Mechanisms and Management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef]
- Brennan, A.N.; Uscola, M.; Joly, R.J.; Jacobs, D.F. Cold and Heat Tolerances of Hybrids for Restoration of the Endangered Juglans cinerea L. Ann. For. Sci. 2021, 78, 36. [Google Scholar] [CrossRef]
- Liu, M.Z.; Osborne, C.P. Leaf Cold Acclimation and Freezing Injury in C3 and C4 Grasses of the Mongolian Plateau. J. Exp. Bot. 2008, 59, 4161–4170. [Google Scholar] [CrossRef]
- Souto, C.P.; Kitzberger, T.; Arbetman, M.P.; Premoli, A.C. How Do Cold-Sensitive Species Endure Ice Ages? Phylogeographic and Paleodistribution Models of Postglacial Range Expansion of the Mesothermic Drought-Tolerant Conifer Austrocedrus Chilensis. New Phytol. 2015, 208, 960–972. [Google Scholar] [CrossRef]
- Yin, H.; Wang, L.; Shi, Y.; Qian, C.; Zhou, H.; Wang, W.; Ma, X.F.; Tran, L.S.P.; Zhang, B. The East Asian Winter Monsoon Acts as a Major Selective Factor in the Intraspecific Differentiation of Drought-Tolerant Nitraria tangutorum in Northwest China. Plants 2020, 9, 1100. [Google Scholar] [CrossRef] [PubMed]
- Hallingbäck, H.R.; Burton, V.; Vizcaíno-Palomar, N.; Trotter, F.; Liziniewicz, M.; Marchi, M.; Berlin, M.; Ray, D.; Benito Garzón, M. Managing Uncertainty in Scots Pine Range-Wide Adaptation Under Climate Change. Front. Ecol. Evol. 2021, 9, 724051. [Google Scholar] [CrossRef]
- Ding, Y.; Schiestl-Aalto, P.; Helmisaari, H.S.; Makita, N.; Ryhti, K.; Kulmala, L. Temperature and Moisture Dependence of Daily Growth of Scots Pine (Pinus sylvestris L.) Roots in Southern Finland. Tree Physiol. 2020, 40, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Liyaqat, I.; Balzano, A.; Niccoli, F.; Kabala, J.P.; Merela, M.; Battipaglia, G. Xylogenesis Responses to a Mediterranean Climate in Holm Oak (Quercus ilex L.). Forests 2024, 15, 1386. [Google Scholar] [CrossRef]
- Peguero-Pina, J.J.; Sancho-Knapik, D.; Barrón, E.; Camarero, J.J.; Vilagrosa, A.; Gil-Pelegrín, E. Morphological and Physiological Divergences within Quercus ilex Support the Existence of Different Ecotypes Depending on Climatic Dryness. Ann. Bot. 2014, 114, 301–313. [Google Scholar] [CrossRef]
- Xu, W.; Bao, W.; Liu, H.; Chen, C.; Bai, H.; Huang, M.; Zhu, G.; Zhao, H.; Gou, N.; Chen, Y.; et al. Insights Into the Molecular Mechanisms of Late Flowering in Prunus sibirica by Whole-Genome and Transcriptome Analyses. Front. Plant Sci. 2022, 12, 802827. [Google Scholar] [CrossRef]
- Bledý, M.; Vacek, S.; Brabec, P.; Vacek, Z.; Cukor, J.; Černý, J.; Ševčík, R.; Brynychová, K. Silver Fir (Abies alba Mill.): Review of Ecological Insights, Forest Management Strategies, and Climate Change’s Impact on European Forests. Forests 2024, 15, 998. [Google Scholar] [CrossRef]
- Aouinti, H.; Moutahir, H.; Touhami, I.; Bellot, J.; Khaldi, A. Observed and Predicted Geographic Distribution of Acer monspessulanum L. Using the MaxEnt Model in the Context of Climate Change. Forests 2022, 13, 2049. [Google Scholar] [CrossRef]
- Beniston, M. Climatic Change in Mountain Regions: A Review of Possible Impacts. Clim. Chang. 2003, 59, 5–31. [Google Scholar] [CrossRef]
- Dolan, R.J. The Human Amygdala and Orbital Prefrontal Cortex in Behavioural Regulation. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 787–799. [Google Scholar] [CrossRef]
- Piermattei, A.; Garbarino, M.; Renzaglia, F.; Urbinati, C. Climate Influence on the Expansion and Tree-Ring Growth of Pinus nigra L. at High Altitude in the Central Apennines. Open For. Sci. J. 2013, 6, 54–56. [Google Scholar]
- Kermavnar, J.; Kutnar, L.; Marinšek, A. More Losses than Gains? Distribution Models Predict Species-Specific Shifts in Climatic Suitability for European Beech Forest Herbs under Climate Change. Front. For. Glob. Chang. 2023, 6, 1236842. [Google Scholar] [CrossRef]
- Kujala, H.; Moilanen, A.; Araújo, M.B.; Cabeza, M. Conservation Planning with Uncertain Climate Change Projections. PLoS ONE 2013, 8, e53315. [Google Scholar] [CrossRef] [PubMed]
Regularization Multiplier | Feature Combination | Omission Rate at 5% | Delta AICc | Mean AUC | TSS |
---|---|---|---|---|---|
0.4 | LQP | 0.061 | 0 | 0.884 | 0.638 |
0.1 | LQ | 0.061 | 0.683 | 0.896 | 0.625 |
0.2 | LQ | 0.061 | 1.155 | 0.882 | 0.645 |
0.3 | LQ | 0.061 | 1.669 | 0.899 | 0.670 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Cheng, J.; Zhang, C.; Feng, Y.; Jin, L.; Wei, S.; Yang, H.; Cao, Z.; Peng, J.; Luo, Y. Prediction of the Future Evolution Trends of Prunus sibirica in China Based on the Key Climate Factors Using MaxEnt Modeling. Biology 2024, 13, 973. https://doi.org/10.3390/biology13120973
Wang J, Cheng J, Zhang C, Feng Y, Jin L, Wei S, Yang H, Cao Z, Peng J, Luo Y. Prediction of the Future Evolution Trends of Prunus sibirica in China Based on the Key Climate Factors Using MaxEnt Modeling. Biology. 2024; 13(12):973. https://doi.org/10.3390/biology13120973
Chicago/Turabian StyleWang, Jiazhi, Jiming Cheng, Chao Zhang, Yingqun Feng, Lang Jin, Shuhua Wei, Hui Yang, Ziyu Cao, Jiuhui Peng, and Yonghong Luo. 2024. "Prediction of the Future Evolution Trends of Prunus sibirica in China Based on the Key Climate Factors Using MaxEnt Modeling" Biology 13, no. 12: 973. https://doi.org/10.3390/biology13120973
APA StyleWang, J., Cheng, J., Zhang, C., Feng, Y., Jin, L., Wei, S., Yang, H., Cao, Z., Peng, J., & Luo, Y. (2024). Prediction of the Future Evolution Trends of Prunus sibirica in China Based on the Key Climate Factors Using MaxEnt Modeling. Biology, 13(12), 973. https://doi.org/10.3390/biology13120973