Physiological Stress Response and Oxidative Status in Tambaqui (Colossoma macropomum) Fed Diets Supplemented with Selenium
Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Experimental Design
2.2. Hematological, Biochemical, Immunological, and Antioxidant System Analyses
2.3. Statistical Analysis
3. Results
3.1. Water Analysis
3.2. Hematological, Biochemical, Immunological, and Antioxidant System Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barton, B.A.; Morgan, J.D.; Vijayan, M.M. Physiological and condition-related indicators of environmental stress in fish. In Biological Indicators of Aquatic Ecosystem Stress; Adams, S.M., Ed.; American Fisheries Society: Bethesda, MD, USA, 2002; pp. 111–148. [Google Scholar]
- Iwama, G.K.; Afonso, L.O.B.; Vijayan, M.M. Stress in fishes. In The Physiology of Fishes; Evans, D.H., Claiborne, J.B., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 319–342. [Google Scholar]
- Wendelaar, S. Hormonal responses to stress. In Encyclopedia of Fish Physiology; Academic Press: Cambridge, MA, USA, 2011; pp. 1515–1523. [Google Scholar] [CrossRef]
- Urbinati, E.C.; Zanuzzo, F.S.; Biller, J.D. Stress and immune system in fish. In Biology and Physiology of Fresh Water Neotropical Fish, 1st ed.; Baldisserotto, B., Urbinati, E.C., Cyrino, J.E.P., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 93–114. [Google Scholar] [CrossRef]
- Küçükbay, F.Z.; Yazlak, H.; Karaca, I.; Sahin, N.; Tuzcu, M.; Cakmak, M.N.; Sahin, K. The effects of dietary organic or inorganic selenium in rainbow trout (Oncorhynchus mykiss) under crowding conditions. Aquac. Nut. 2009, 15, 569–576. [Google Scholar] [CrossRef]
- Ibrahim, M.S.; El-gendy, G.M.; Ahmed, A.I.; Elharoun, E.R.; Hassaan, M.S. NanoSe versus bulk Se as a dietary supplement: Effects on growth, feed efficiency, intestinal histology, haemato-biochemical and oxidative stress biomarkers in Nile tilapia (Oreochromis niloticus Linnaeus, 1758) fingerlings. Aquac. Res. 2021, 52, 5642–5655. [Google Scholar] [CrossRef]
- Sumana, S.L.; Chen, H.; Shui, Y.; Zhang, C.; Yu, F.; Zhu, J.; Su, S. Effect of Dietary Selenium on the Growth and Immune Systems of Fish. Animals 2023, 13, 2978. [Google Scholar] [CrossRef] [PubMed]
- Saffari, S.; Keyvanshokooh, S.; Zakeri, M.; Johari, S.A.; Pasha-Zanoosi, H.; Mozanzadeh, M.T. Effects of dietary organic, inorganic, and nanoparticulate selenium sources on growth, hemato-immunological, and serum biochemical parameters of common carp (Cyprinus carpio). Fish Physiol. Biochem. 2018, 44, 1087–1097. [Google Scholar] [CrossRef]
- Kohshahi, A.J.; Sourinejad, I.; Sarkheil, M.; Johari, S.A. Dietary co supplementation with curcumin and diferente selenium sources (nanoparticulate, organic, and inorganic selenium): Influence on growth performance, body composition, immune responses, and glutathione peroxidase activity of rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem. 2019, 45, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Al-Deriny, S.H.; Dawood, M.A.O.; Elbialy, Z.I.; El-Tras, W.E.; Mohamed, R.A. Selenium nanoparticles and spirulina alleviate growth performance, hemato-biochemical, immune-relatedgenes, and heatshock protein in nile tilapia (Oreochromis niloticus). Biol. Trace Elem. Res. 2020, 198, 661–668. [Google Scholar] [CrossRef]
- Biller-Takahashi, J.D.; Takahashi, L.S.; Mingatto, F.E.; Urbinati, E.C. The immune system is limited by oxidative stress: Dietary selenium promotes optimal antioxidative status and greatest immune defense in pacu Piaractus mesopotamicus. Fish Shellfish Immunol. 2015, 47, 360–367. [Google Scholar] [CrossRef]
- Takahashi, L.S.; Biller-Takahashi, J.D.; Mansano, C.F.M.; Urbinati, E.C.; Gimbo, R.Y.; Saita, M.V. Long-term organic selenium supplementation overcomes the trade-off between immune and antioxidant systems in pacu (Piaractus mesopotamicus). Fish Shellfish Immunol. 2017, 60, 311–317. [Google Scholar] [CrossRef]
- Ferreira, C.M.; Sinhorin, V.D.G.; Fontinhas Netto, G.V.; Hoshiba, M.A.; Abreu, J.S. Effects of hydroxy-selenomethionine on performance, innate immune system and antioxidant defense of tambaqui (Colossoma macropomum) exposed to a physical stressor. Fish Shellfish Immunol. 2022, 121, 362–369. [Google Scholar] [CrossRef]
- Herrera, M.; Mancera, J.M.; Benjamín Costas, B. The use of dietary additives in fish stress mitigation: Comparative endocrine and physiological responses. Front. Endocrinol. 2019, 10, 447. [Google Scholar] [CrossRef]
- Long, M.; Lin, W.; Hou, J.; Guo, H.; Li, L.; Dapeng, L.; Rong, T.; Fan, Y. Dietary supplementation with selenium yeast and tea polyphenols improve growth performance and nitrite tolerance of Wuchang bream (Megalobrama amblycephala). Fish Shellfish Immunol. 2017, 68, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Mechlaoui, M.; Dominguez, D.; Robaina, L.; Geraert, P.A.; Kaushik, S.; Saleh, R.; Briens, M.; Montero, D.; Izquierdo, M. Effects of different dietary selenium sources on growth performance, liver and muscle composition, antioxidant status, stress response and expression of related genes in gilthead seabream (Sparus aurata). Aquaculture 2019, 507, 251–259. [Google Scholar] [CrossRef]
- Rider, S.A.; Davies, S.J.; Jha, A.N.; Fisher, A.A.; Knight, J.; Sweetman, J.W. Supra-nutritional dietary intake of selenite and selenium yeast in normal and stresse drain bow trout (Oncorhynchus mykiss): Implicationson selenium status and health responses. Aquaculture 2009, 295, 282–291. [Google Scholar] [CrossRef]
- Peixe, B.R. Anuário Peixe BR da Piscicultura. Available online: https://www.peixebr.com.br/anuario-2024/ (accessed on 6 September 2024).
- Carvalho, E.S.; Gomes, L.C.; Brandão, F.R.; Crescêncio, R.; Chagas, E.C.; Anselmo, A.A.S. Uso do probiótico Efinol®L durante o transporte de tambaqui (Colossoma macropomum). Arq. Bras. Med. Vet. Zootec. 2009, 61, 1322–1327. [Google Scholar] [CrossRef]
- Chagas, E.C.; Araújo, L.D.; Boijink, C.L.; Inoue, L.A.K.A. Respostas de tambaquis ao estresse por transporte após alimentação com dietas suplementadas com β-glucano. Biotemas 2012, 25, 221–227. [Google Scholar] [CrossRef]
- Barbas, L.A.L.; Pereira-Cardona, P.M.; Maltez, L.C.; Garcia, L.O.; Monserrat, J.M.; Sampaio, L.A. Anaesthesia and transport of juvenile tambaqui Colossoma macropomum (Cuvier, 1818) with tricaine methane-sulphonate: Implications on secondary and oxidative stress responses. J. Appl. Ichthyol. 2016, 33, 720–730. [Google Scholar] [CrossRef]
- Barbas, L.A.L.; Araújo, E.R.L.; Torres, M.F.; Maltez, L.C.; Garcia, L.O.; Heinzmann, B.M.; Sampaio, L.A. Stress relieving potential of two plant-based sedatives in the transport of juvenile tambaqui Colossoma macropomum. Aquaculture 2020, 520, 734681. [Google Scholar] [CrossRef]
- Silva, H.N.P.; Souza, R.N.; Sousa, E.M.O.; Mourão, R.H.V.; Baldisserotto, B.; Silva, L.V.F. Citral chemotype of the Lippia alba essential oil as an additive in simulated transport with different loading densities of tambaqui juveniles. Cienc. Rural 2020, 50, 20190815. [Google Scholar] [CrossRef]
- Santos, L.; Pereira Filho, M.; Sobreira, C.; Ituassú, D.F.; Fonseca, F.A.L. Exigência proteica de juvenis de tambaqui (Colossoma macropomum) após privação alimentar. Acta Amaz. 2010, 40, 597–604. [Google Scholar] [CrossRef]
- Emerson, K.; Russo, R.C.; Lund, R.E.; Thurston, R.V. Aqueous ammonia equilibrium calculations: Effect of pH and temperature. J. Fish. Res. Board Can. 1975, 32, 2379–2383. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Kumari, J.; Mishra, B.K. Non-specific immune responses in juveniles of Indian major carps. J. Appl. Ichthyol. 2005, 21, 151–155. [Google Scholar] [CrossRef]
- Tavares-Dias, M.; Moraes, F.R. Características hematológicas da Tilápia rendalli Boulenger,1896 (Osteichthyes: Cichlidae) capturada em “Pesque-Pague” de Franca, São Paulo, Brasil. Biosci. J. 2003, 19, 103–110. [Google Scholar]
- Misra, H.P.; Fridovich, I. The role of superoxide anion in the auto-oxidation o epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972, 247, 3170–3175. Available online: https://pubmed.ncbi.nlm.nih.gov/4623845/ (accessed on 8 July 2024). [CrossRef] [PubMed]
- Nelson, D.P.; Kiesow, L.A. Enthalphy of decomposition of hydrogen peroxide by catalase at 25 degrees C (with molar extinction coefficients of H2O2 solution in the UV). Anal. Biochem. 1972, 49, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. Available online: https://pubmed.ncbi.nlm.nih.gov/6066618/ (accessed on 7 July 2024). [PubMed]
- Habig, W.H.; Pabst, M.J.; Jacoby, W.B. Glutathione S-transferase, the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. Available online: https://pubmed.ncbi.nlm.nih.gov/4436300/ (accessed on 18 July 2024). [CrossRef]
- Sedlack, J.; Lindsay, R.H. Estimation of total, protein-bound, and non protein sulfhydryl groups in tissue with Ellman’sreagent. Anal. Biochem. 1968, 25, 192–205. [Google Scholar] [CrossRef]
- Moro, G.V.; Torati, L.S.; Luiz, D.B.; Matos, F.T. Monitoramento e manejo da qualidade da água em pisciculturas. In Piscicultura de Água Doce: Multiplicando Conhecimentos, 1st ed.; Embrapa Pesca e Aquicultura: Palmas, Brazil, 2013; pp. 141–169. [Google Scholar]
- Gomes, L.C.; Araújo-Lima, C.A.R.M.; Roubach, R.; Chippari-Gomes, A.R.; Lopes, N.P.; Urbinati, E.C. Effect of fish density during transportation on stress and mortality of juvenile tambaqui (Colossoma macropomum). J. World Aquacult. Soc. 2003, 34, 76–84. [Google Scholar] [CrossRef]
- Araújo, J.G.; Santos, M.A.S.; Rebello, F.K.; Isaac, V.J. Cadeia comercial de peixes ornamentais do Rio Xingu, Pará, Brasil. Bol. Inst. Pesca 2017, 43, 297–307. [Google Scholar] [CrossRef]
- Araujo-Lima, C.A.R.M.; Gomes, L.C. Tambaqui (Colossoma macropomum). In Espécies Nativas Para Piscicultura no Brasil, 1st ed.; Baldisserotto, B., Gomes, L.C., Eds.; UFSM: Santa Maria, Brazil, 2005; pp. 67–104. [Google Scholar]
- Kohrle, J.; Jakob, F.; Contempre, B.; Dumont, J. Selenium, the thyroid, and the endocrine system. Endocr. Rev. 2005, 26, 944–984. [Google Scholar] [CrossRef]
- McDonald, D.G.; Milligan, C.L. Chemical properties of the blood. In Fish Physiology; Hoar, W.S., Randall, D.J., Farrel, A.P., Eds.; Academic Press: San Diego, CA, USA, 1992; Volume 12, pp. 56–113. [Google Scholar] [CrossRef]
- Silva, R.D.; Rocha, L.O.; Fortes, B.D.A.; Vieira, D.; Fioravanti, M.C.S. Parâmetros hematológicos e bioquímicos da tilápia-do-Nilo (Oreochromis niloticus L.) sob estresse por exposição ao ar. Pesqu. Vet. Bras. 2012, 32, 99–107. [Google Scholar] [CrossRef]
- Duman, S. The effect of anesthetic (2-phenoxyethanol) applicationon some biochemical and hematological parameters in Russian sturgeon (Acipenser gueldenstaedtii) and Siberian sturgeon (Acipenser baerii) during transport. Turk. J. Vet. Anim. Sci. 2019, 43, 825–833. [Google Scholar] [CrossRef]
- Manzandarani, M.; Hossein, S.M.; Ghomshami, M.D. Effects of linaloolon physiological responses of Cyprinus carpio (Linnaeus, 1758) and water physico-chemical parameters during transportation. Aquac. Res. 2017, 48, 5775–5781. [Google Scholar] [CrossRef]
- Santos, F.L.R.; Rezende, F.P.; Moron, S.E. Stress-related physiological and histological responses of tambaqui (Colossoma macropomum) to transportation in water with tea tree and clove essential oil anesthetics. Aquaculture 2020, 523, 735164. [Google Scholar] [CrossRef]
- Klan, K.V.; Zuberi, A.; Nazir, S.; Vllah, I.; Jamil, Z.; Sawar, H. Synergistic effects of dietary nano selenium and vitamin C on growth, feeding, and physiological parameters of mahseer fish (Tor putitora). Aquac. Rep. 2017, 5, 70–75. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S.; Zaineldin, A.T.; Doan, H.V.; Ahmed, H.A.; Elsabagh, M.; Abdel-Daim, M. Anevaluation of dietary selenium nanoparticles for red sea bream (Pagrus major) aquaculture: Growth, tissue bioaccumulation, and antioxidative responses. Environ. Sci. Pollut. Res. Int. 2019, 26, 30876–30884. [Google Scholar] [CrossRef]
- Tavana, B.G.Z.; Banaee, M.; Jourdehi, Y.A.; Haghi, N.B.; Hassani, S.M. Effects of dietary Sel-Plex supplement on growth performance, hematological and immunological parameters in Siberian sturgeon (Acipenser baerii Brandt, 1869). Iran. J. Fish. 2019, 18, 830–846. [Google Scholar] [CrossRef]
- Sang, H.M.; Thuy, N.T.T.; Hoang, D.H. Effects of dietary organic selenium on growth, survival, physiological and hematology conditions of Snub-Nose Dart (Trachinotus blochii Lacepide, 1801). Isr. J. Aquac.-Bamid. 2015, 67, 1181. [Google Scholar] [CrossRef]
- Dhabhar, F. SStress-induced augmentation of immune function-the role of stress hormones, leukocyte trafficking, and cytokines. Brain Behav. Immun. 2002, 16, 785–798. [Google Scholar] [CrossRef]
- Swain, P.; Das, R.; Das, A.; Padhi, S.K.; Das, K.C.; Mishra, S.S. Effects of dietary zinc oxide and selenium nanoparticles on growth performance, immune responses and enzyme activity in rohu, Labeo rohita (Hamilton). Aquac. Nut. 2018, 25, 486–494. [Google Scholar] [CrossRef]
- Klan, K.U.; Zuberi, A.; Nazir, S.; Fernandes, J.B.K.; Jamil, Z.; Sawar, H. Effects of dietary selenium nanoparticles on physiological and biochemical aspects of juvenile Torputitora. Turk. J. Zool. 2016, 40, 704–712. [Google Scholar] [CrossRef]
- Mansour, A.T.E.; Goda, A.A.; Omar, E.A.; Khalil, H.S.; Esteban, M.A. Dietary supplementation of organic selenium improves growth, survival, antioxidant, and immune status of meagre, Argyrosomus regius, juveniles. Fish Shellfish Immunol. 2017, 68, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Jingyuan, H.; Yan, L.; Wenjing, P.; Wenqiang, J.; Bo, L.; Linghong, M.; Qunhang, Z.; Huanliang, L.; Xianping, G. Dietary selenium enhances the growth and anti-oxidant capacity of juvenile blunt snout bream (Megalobrama amblycephala). Fish Shellfish Immunol. 2020, 101, 115–125. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, N.P. Effect of dietary selenium on immuno-biochemical plasticity and resistance against Aeromonas veronii biovarsóbria in fish readed under multiple stressors. Fish Shellfish Immunol. 2019, 84, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, D.A.; Rantini, F.T.; Kalinin, A.L. Uso do selênio na dieta de matrinxã, Brycon cephalus. Rev. Bras. Saúde Prod. Anim. 2007, 8, 32–47. [Google Scholar]
- Chen, H.; Li, J.; Yan, L.; Cao, J.; Li, D.; Huang, G.Y.; Shi, W.J.; Dong, W.; Zha, J.; Ying, G.G.; et al. Subchronic effects of dietary selenium yeast and selenite on growth performance and the immune and antioxidant systems in Nile tilapia Oreochromis niloticus. Fish Shellfish Immunol. 2020, 97, 283–293. [Google Scholar] [CrossRef]
Sampling Times | ||||
---|---|---|---|---|
Parameters | mg Se/kg | BT | AT | 24 h AT |
Dissolved oxygen (mg/L) | 0.0 | 6.59 ± 0.44 A | 2.41 ± 0.97 B | 6.19 ± 0.15 A |
0.3 | 6.80 ± 0.20 A | 2.70 ± 0.66 B | 6.83 ± 0.31 A | |
0.6 | 5.42 ± 0.32 A | 1.08 ± 0.11 B | 6.65 ± 0.30 A | |
0.9 | 6.25 ± 0.11 A | 4.82 ± 2.14 A | 6.04 ± 0.05 A | |
1.2 | 6.94 ± 0.47 A | 2.23 ± 0.73 B | 6.46 ± 0.31 A | |
Temperature (°C) | 0.0 | 29.23 ± 0.41 A | 27.73 ± 0.19 B | 26.73 ± 0.09 B |
0.3 | 29.50 ± 0.57 A | 27.47 ± 0.03 B | 26.97 ± 0.03 B | |
0.6 | 29.44 ± 0.24 A | 27.57 ± 0.03 B | 26.70 ± 0.20 B | |
0.9 | 29.10 ± 0.06 A | 27.07 ± 0.39 B | 26.97 ± 0.03 B | |
1.2 | 29.73 ± 0.68 A | 27.50 ± 0.06 B | 26.83 ± 0.03 B | |
pH | 0.0 | 8.35 ± 0.02 A | 7.02 ± 0.07 B | 8.39 ± 0.02 A |
0.3 | 8.34 ± 0.01 A | 7.00 ± 0.05 B | 8.34 ± 0.01 A | |
0.6 | 8.37 ± 0.01 A | 7.00 ± 0.02 B | 8.37 ± 0.01 A | |
0.9 | 8.34 ± 0.02 A | 7.05 ± 0.08 B | 8.34 ± 0.01 A | |
1.2 | 8.37 ± 0.01 A | 7.03 ± 0.06 B | 8.35 ± 0.01 A | |
Alkalinity (mg CaCO3/L) | 0.0 | 306.67 ± 50.34 A | 173.00 ± 2.08 B | 229.33 ± 6.69 AB |
0.3 | 234.00 ± 15.88 A | 175.00 ± 0.58 A | 228.67 ± 3.48 A | |
0.6 | 243.33 ± 1.76 AB | 180.00 ± 1.53 B | 276.67 ± 9.68 A | |
0.9 | 260.60 ± 34.64 A | 176.67 ± 2.67 A | 251.00 ± 9.29 A | |
1.2 | 288.67 ± 28.30 A | 175.00 ± 2.08 B | 257.67 ± 12.25 AB | |
Non-ionized ammonia (mg NH3/L) | 0.0 | 0.0483 ± 0.014 | 0.0247 ± 0.004 | 0.0333 ± 0.002 |
0.3 | 0.0360 ± 0.001 | 0.0236 ± 0.003 | 0.0306 ± 0.003 | |
0.6 | 0.0503 ± 0.012 | 0.0230 ± 0.001 | 0.0317 ± 0.003 | |
0.9 | 0.0460 ± 0.011 | 0.0257 ± 0.005 | 0.0413 ± 0.011 | |
1.2 | 0.0387 ± 0.002 | 0.0260 ± 0.001 | 0.0310 ± 0.001 |
Cortisol (ηg/mL) | Blood Glucose (mmol/L) | ||
---|---|---|---|
Selenium concentration (mg Se/kg diet) | 0.0 | 61.99 ± 4.21 b | 6.09 ± 1.07 |
0.3 | 74.04 ± 3.01 a | 4.21 ± 0.82 | |
0.6 | 68.99 ± 2.91 ab | 5.05 ± 0.91 | |
0.9 | 71.88 ± 3.39 a | 4.54 ± 1.14 | |
1.2 | 62.30 ± 3.80 b | 4.56 ± 1.10 | |
Sampling times | BT | 50.48 ± 3.70 C | 2.76 ± 0.15 B |
AT | 78.81 ± 1.20 A | 9.68 ± 0.40 A | |
24 h AT | 62.63 ± 2.02 B | 1.57 ± 0.08 C |
Hematocrit (%) | Erythrocyte Number (Cells × 106/µL) | Hemoglobin Concentration (g/dL) | MCHC (g/dL) | MCH (µg) | ||
---|---|---|---|---|---|---|
Selenium concentration (mg Se/kg diet) | 0.0 | 35.15 ± 1.17 | 1.67 ± 0.19 | 10.29 ± 0.48 | 28.09 ± 1.09 | 84.59 ± 15.43 |
0.3 | 36.76 ± 0.85 | 1.52 ± 0.22 | 10.01 ± 0.54 | 27.18 ± 1.41 | 99.43 ± 19.38 | |
0.6 | 36.36 ± 0.67 | 1.50 ± 0.18 | 9.87 ± 0.44 | 27.70 ± 1.03 | 77.81 ± 11.77 | |
0.9 | 35.92 ± 1.28 | 1.50 ± 0.16 | 9.82 ± 0.60 | 27.22 ± 1.21 | 83.13 ± 13.47 | |
1.2 | 33.02 ± 1.44 | 1.55 ± 0.18 | 9.81 ± 0.54 | 27.74 ± 1.17 | 69.01 ± 10.65 | |
Sampling times | BT | 34.18 ± 0.76 B | 1.83 ± 0.10 A | 8.20 ± 0.28 B | 24.16 ± 0.75 B | 48.45 ± 3.02 B |
AT | 38.28 ± 0.88 A | 2.17 ± 0.13 A | 12.64 ± 0.25 A | 32.82 ± 0.64 A | 70.10 ± 5.81 B | |
24 h AT | 33.62 ± 0.84 B | 0.68 ± 0.08 B | 8.90 ± 0.28 B | 25.78 ± 0.63 B | 150.97 ± 18.14 A |
Total Proteins (g/dL) | Globulin (g/dL) | A:G Ratio | ||
---|---|---|---|---|
Selenium concentration (mg Se/kg diet) | 0.0 | 3.98 ± 0.19 | 3.29 ± 0.18 | 1.23 ± 0.02 bc |
0.3 | 3.73 ± 0.16 | 3.09 ± 0.14 | 1.25 ± 0.02 ab | |
0.6 | 4.02 ± 0.18 | 3.38 ± 0.15 | 1.19 ± 0.02 c | |
0.9 | 4.01 ± 0.19 | 3.06 ± 0.16 | 1.29 ± 0.02 a | |
1.2 | 3.91 ± 0.18 | 3.09 ± 0.15 | 1.20 ± 0.01 bc | |
Sampling times | BT | 3.66 ± 0.09 B | 3.10 ± 0.09 B | 1.19 ± 0.01 B |
AT | 4.89 ± 0.10 A | 3.85 ± 0.10 A | 1.24 ± 0.01 A | |
24 h AT | 3.27 ± 0.06 C | 2.55 ± 0.06 C | 1.28 ± 0.02 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, C.M.; Sinhorin, V.D.G.; Hoshiba, M.A.; Abreu, J.S.d. Physiological Stress Response and Oxidative Status in Tambaqui (Colossoma macropomum) Fed Diets Supplemented with Selenium. Biology 2024, 13, 959. https://doi.org/10.3390/biology13120959
Ferreira CM, Sinhorin VDG, Hoshiba MA, Abreu JSd. Physiological Stress Response and Oxidative Status in Tambaqui (Colossoma macropomum) Fed Diets Supplemented with Selenium. Biology. 2024; 13(12):959. https://doi.org/10.3390/biology13120959
Chicago/Turabian StyleFerreira, Celma Maria, Valéria Dornelles Gindri Sinhorin, Márcio Aquio Hoshiba, and Janessa Sampaio de Abreu. 2024. "Physiological Stress Response and Oxidative Status in Tambaqui (Colossoma macropomum) Fed Diets Supplemented with Selenium" Biology 13, no. 12: 959. https://doi.org/10.3390/biology13120959
APA StyleFerreira, C. M., Sinhorin, V. D. G., Hoshiba, M. A., & Abreu, J. S. d. (2024). Physiological Stress Response and Oxidative Status in Tambaqui (Colossoma macropomum) Fed Diets Supplemented with Selenium. Biology, 13(12), 959. https://doi.org/10.3390/biology13120959