In-Depth Analysis of Olea europaea L. Leaf Extract: Alleviating Pulmonary Histological Disturbances, Pro-Inflammatory Responses, and Oxidative Stress from Isolated or Combined Exposure to Inhaled Toluene and Noise in Rats
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Preparation of the Olea europaea L. Leaf Extract
2.2. HPLC Analysis
2.3. Biological Activities of Olea europaea L. Leaf Extract
2.3.1. DPPH Free Radical Scavenging Activity
2.3.2. Reducing Power Assay
2.3.3. Chelating Capacity Assessment of Ferrous Ion
2.3.4. Evaluation of In Vitro Anti-Inflammatory Activity Using the Bovine Serum Albumin (BSA) Denaturation Assay
2.3.5. Evaluation of In Vitro Anti-Inflammatory Activity Using the Egg Albumin Denaturation Assay
2.4. In Vivo Protocol
2.4.1. Toluene Exposure Protocol
2.4.2. Noise Exposure Protocol
2.4.3. Toluene and Noise Combined Exposure Protocol
2.4.4. Toluene Sampling and Analysis
2.5. Animal Subjects and Experimental Design
2.5.1. Ethical Considerations
2.5.2. Group Allocation and Experimental Design
2.5.3. Justification for Selecting Noise Intensity, Toluene Concentration, and O. europaea L. Leaf Extract Dosage
2.6. Sample Collection
2.7. Macroscopic Observation
2.8. Oxidative Stress Markers Determination
2.8.1. Lipid Peroxidation Determination
2.8.2. Assessment of Catalase Activity
2.8.3. Assessment of Superoxide Dismutase (SOD) Activity
2.8.4. Total Protein Level Determination
2.9. Histological Study
2.10. Immunohistochemistry Study
2.11. Measurement of Pro-Inflammatory Parameters in the Serum
2.12. Statistical Analyses
3. Results
3.1. Profiling and Identification of Bioactive Molecules in O. europaea Leaf Extract
3.2. Extract In Vitro Antioxidant Efficacy of O. europaea Leaf Extract
3.3. In Vitro Efficacy of Olea europaea Leaf Extract for Anti-Inflammatory Activity
3.4. Olea europaea Leaf Extract Preserves Antioxidant Activity and Mitigates Lipid Peroxidation in Lung Tissues Due to Noise and Toluene Exposure
3.5. Olea europaea Leaf Extract Preserves Lung Tissue Against Damage from Toluene and Noise Exposure
3.6. Protective Effects of Olea europaea Leaf Extract on Macrophage Response in Rat Lung Tissues Exposed to Toluene and Noise
3.7. Anti-Inflammatory Potential of Olea europaea Leaf Extract: Reduction in Serum TNF-α, IL-1β, and IL-6 Levels Following Noise and Toluene Exposure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murata, M.; Tsujikawa, M.; Kawanishi, S. Oxidative DNA damage by minor metabolites of toluene may lead to carcinogenesis and reproductive dysfunction. Biochem. Biophys. Res. Commun. 1999, 261, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Cruz, S.L.; Rivera-García, M.T.; Woodward, J.J. Review of toluene actions: Clinical evidence, animal studies, and molecular targets. J. Drug Alcohol Res. 2014, 3, 35840. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Filley, C.M.; Halliday, W.; Kleinschmidt-Demasters, B.K. The effects of toluene on the central nervous system. J. Neuropathol. Exp. Neurol. 2004, 63, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lammers, J.H.; van Asperen, J.; de Groot, D.; Rijcken, W.R.P. Behavioural effects and kinetics in brain in response to inhalation of constant or fluctuating toluene concentrations in the rat. Environ. Toxicol. Pharmacol. 2005, 19, 625–634. [Google Scholar] [CrossRef]
- Denault, G.; Chahdi, H.O.; Patry, L.; Costa, J.-P. A Case of Dilated Cardiomyopathy Associated with Chronic Toluene Exposure. CJC Open 2022, 4, 1024–1026. [Google Scholar] [CrossRef]
- Halifeoglu, I.; Canatan, H.; Ustundag, B.; Ilhan, N.; Inanc, F. Effect of thinner inhalation on lipid peroxidation and some antioxidant enzymes of people working with paint thinner. Cell Biochem. Funct. 2000, 18, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.; Stansfeld, S. Auditory and non-auditory effects of noise on health. Lancet 2014, 383, 1325–1332. [Google Scholar] [CrossRef]
- Le, T.N.; Straatman, L.V.; Lea, J.; Westerberg, B. Current insights in noise-induced hearing loss: A literature review of the underlying mechanism, pathophysiology, asymmetry, and management options. J. Otolaryngol.-Head Neck Surg. 2017, 46, 41. [Google Scholar] [CrossRef]
- Münzel, T.; Schmidt, F.P.; Steven, S.; Herzog, J.; Daiber, A.; Sørensen, M. Environmental Noise and the Cardiovascular System. Environ. Noise Cardiovasc. Syst. 2018, 71, 688–697. [Google Scholar] [CrossRef]
- Skogstad, M.; Johannessen, H.A.; Tynes, T.; Mehlum, I.S.; Nordby, K.-C.; Lie, A. Systematic review of the cardiovascular effects of occupational noise. Occup. Med. 2016, 66, 10–16. [Google Scholar] [CrossRef]
- Hahad, O.; Prochaska, J.H.; Daiber, A.; Muenzel, T. Environmental Noise-Induced Effects on Stress Hormones, Oxidative Stress, and Vascular Dysfunction: Key Factors in the Relationship between Cerebrocardiovascular and Psychological Disorders. Oxid. Med. Cell Longev. 2019, 2019, 4623109. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ben Attia, T.; Ben Ali, R.; Nahdi, A.; Galai, S.; Ghali, R.; Rammeh, S.; El May, M.V.; Mhamdi, A. Olea europaea L. leaf extract mitigates oxidative and histological damage in rat heart tissue exposed to combined noise and toluene: An experimental study. Saudi Pharm. J. 2023, 31, 101683. [Google Scholar] [CrossRef] [PubMed]
- Ben Attia, T.; Horchani, M.; Salhi, M.; Ben Ali, R.; Ben Jannet, H.; Kacem, L.B.H.; El May, M.V.; López-Maldonado, E.A.; Mhamdi, A. Neuroprotective Effects of Olea europaea L. Leaf Extract on Neuroinflammation and Memory Impairment Induced by Toluene and Noise Exposure: Assessing Brain Changes in Rat. J. Funct. Foods 2024, 122, 106489. [Google Scholar] [CrossRef]
- Ben Attia, T.; Nahdi, A.; Horchani, M.; Elmay, M.V.; Ksentini, M.; Ben Jannet, H.; Mhamdi, A. Olea europaea L. leaf extract mitigates pulmonary inflammation and tissue destruction in Wistar rats induced by concurrent exposure to noise and toluene. Drug Chem. Toxicol. 2024, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Billings, M.E.; Hale, L.; Johnson, D.A. Physical and Social Environment Relationship with Sleep Health and Disorders. Chest 2020, 157, 1304–1312. [Google Scholar] [CrossRef]
- Nediani, C.; Ruzzolini, J.; Romani, A.; Calorini, L. Oleuropein, a Bioactive Compound from Olea europaea L., as a Potential Preventive and Therapeutic Agent in Non-Communicable Diseases. Antioxidants 2019, 8, 578. [Google Scholar] [CrossRef]
- Romani, A.; Ieri, F.; Urciuoli, S.; Noce, A.; Marrone, G.; Nediani, C.; Bernini, R. Health Effects of Phenolic Compounds Found in Extra-Virgin Olive Oil, By-Products, and Leaf of Olea europaea L. Nutrients 2019, 11, 1776. [Google Scholar] [CrossRef]
- Antoniou, C.; Hull, J. The Anti-cancer Effect of Olea europaea L. Products: A Review. Curr. Nutr. Rep. 2021, 10, 99–124. [Google Scholar] [CrossRef]
- Goulas, V.; Papoti, V.; Exarchou, M.Z.; Tsimidou, I.P.; Gerothanassis, I.N. Contribution of Flavonoids to the Overall Radical Scavenging Activity of Olive (Olea europaea L.) Leaf Polar Extracts. J. Agric. Food Chem. 2010, 58, 3303–3308. [Google Scholar] [CrossRef]
- Xie, P.; Huang, C.; Zhang, Y.; Zhang, L. Phenolic Compositions and Antioxidant Performance of Olive Leaf and Fruit (Olea europaea L.) Extracts and Their Structure–Activity Relationships. J. Funct. Foods 2015, 16, 460–471. [Google Scholar] [CrossRef]
- Rahmanian, N.; Jafari, S.M.; Wani, T.A. Bioactive Profile, Dehydration, Extraction and Application of the Bioactive Components of Olive Leaves. Trends Food Sci. Technol. 2015, 42, 150–172. [Google Scholar] [CrossRef]
- Goulas, V.; Manganaris, G. Exploring the Phytochemical Content and the Antioxidant Potential of Citrus Fruits Grown in Cyprus. Food Chem. 2012, 131, 39–47. [Google Scholar] [CrossRef]
- Lee, O.H.; Lee, B.Y. Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresour. Technol. 2010, 101, 3751–3754. [Google Scholar] [CrossRef] [PubMed]
- Vogel, P.; Machado, I.K.; Garavaglia, J.; Zani, V.T.; de Souza, D.; Dal Bosco, S.M. Polyphenols benefits of olive leaf (Olea europaea L) to human health. Nutr. Hosp. 2014, 31, 1427–1433. [Google Scholar] [CrossRef] [PubMed]
- Kolsi, R.B.A.; Ben Salah, H.; Jardak, N.; Chaaben, R.; El Feki, A.; Rebai, T.; Jamoussi, K.; Allouche, N.; Belghith, H.; Belghith, K. Effects of Cymodocea nodosa extract on metabolic disorders and oxidative stress in alloxan-diabetic rats. Biomed. Pharmacother. 2017, 89, 257–267. [Google Scholar] [CrossRef]
- Talaz, O.; Gülçin, I.; Göksu, S.; Saracoglu, N. Antioxidant activity of 5,10-dihydroindeno[1,2-b]indoles containing substituents on dihydroindeno part. Bioorganic Med. Chem. 2009, 17, 6583–6589. [Google Scholar] [CrossRef]
- Williams, L.A.D.; O’Connar, A.; Latore, L.; Dennis, O.; Ringer, S.; Whittaker, J.A.; Conrad, J.; Vogler, B.; Rosner, H.; Kraus, W. The in vitro anti-denaturation effects induced by natural products and non-steroidal compounds in heat treated (Immunogenic) bovine serum albumin is proposed as a screening assay for the detection of anti-inflammatory compounds, without the use of animals, in the early stages of the drug discovery process. West Indian Med. J. 2008, 57, 327–331. [Google Scholar]
- Chandra, S.; Chatterjee, P.; Dey, P.; Bhattacharya, S. Evaluation of in vitro anti-inflammatory activity of coffee against the denaturation of protein. Asian Pac. J. Trop. Biomed. 2012, 2, S178–S180. [Google Scholar] [CrossRef]
- Hinners, R.G.; Burkart, J.K.; Punte, C.L. Animal Inhalation Exposure Chambers. Arch. Environ. Health 1968, 16, 194–206. [Google Scholar] [CrossRef]
- Eller, P.M.; Cassinelli, M.E. NIOSH Manual of Analytical Methods-Chapters, 4th ed.; NIOSH: Washington, DC, USA, 1994. Available online: https://www.cdc.gov/niosh/docs/2003-154/chaps.html (accessed on 16 March 2024).
- Ben Attia, T.; Gannouni, N.; Mhamdi, F.; Elj, A.; Magroun, I.; Mhamdi, A. Effet de la co-exposition aux bruit-solvants sur la pression artérielle: À propos d’une enquête médicale et environnementale dans une entreprise de fabrication de produits composites. Autom. Similarity Judgm. Program 2022, 16, 66–74. [Google Scholar]
- Bahri, S.; Abidi, A.; Nahdi, A.; Abdennabi, R.; Mlika, M.; Ben Ali, R.; Jameleddine, S. Olea europaea L. Leaf Extract Alleviates Fibrosis Progression and Oxidative Stress Induced by Bleomycin on a Murine Model of Lung Fibrosis. Dose-Response 2023, 21, 15593258231200972. [Google Scholar] [CrossRef] [PubMed]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978, 52, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Beyer, W.F., Jr.; Fridovich, I. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Anal. Biochem. 1987, 161, 559–566. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Guthrie, O.W.; Wong, B.A.; McInturf, S.M.; Mattie, D.R. Degenerate brainstem circuitry after combined physiochemical exposure to jet fuel and noise. J. Toxicol. Environ. Health Part A 2022, 85, 175–183. [Google Scholar] [CrossRef]
- Salihu, M.; Batiha, G.E.-S.; Kasozi, K.I.; Zouganelis, G.D.; Sharkawi, S.M.; Ahmed, E.I.; Usman, I.M.; Nalugo, H.; Ochieng, J.J.; Ssengendo, I.; et al. Crinum jagus (J. Thomps. Dandy): Antioxidant and protective properties as a medicinal plant on toluene-induced oxidative stress damages in liver and kidney of rats. Toxicol. Rep. 2022, 9, 699–712. [Google Scholar] [CrossRef]
- Bucciantini, M.; Leri, M.; Nardiello, P.; Casamenti, F.; Stefani, M. Olive Polyphenols: Antioxidant and Anti-Inflammatory Properties. Antioxidants 2021, 10, 1044. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Omar, S.H. Oleuropein in Olive and its Pharmacological Effects. Sci. Pharm. 2010, 78, 133. [Google Scholar] [CrossRef]
- Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Marino Gammazza, A.; Knap, N.; Wozniak, M.; Gorska-Ponikowska, M. Potential Health Benefits of Olive Oil and Plant Polyphenols. Int. J. Mol. Sci. 2018, 19, 686. [Google Scholar] [CrossRef]
- Sangeetha, M.; Kousalya, K.; Lavanya, R.; Sowmya, C.; Chamundeeswari, D.; Reddy, C.U.M. In-vitro anti-inflammatory and anti-arthritic activity of leaves of cleodendron inerme. Res. J. Pharm. Biol. Chem. Sci. 2011, 2, 822–827. [Google Scholar]
- Marković, A.K.; Torić, J.; Barbarić, M.; Brala, C.J. Hydroxytyrosol, Tyrosol and Derivatives and Their Potential Effects on Human Health. Molecules 2019, 24, 2001. [Google Scholar] [CrossRef] [PubMed]
- Rufino-Palomares, E.E.; Pérez-Jiménez, A.; García-Salguero, L.; Mokhtari, K.; Reyes-Zurita, F.J.; Peragón-Sánchez, J.; Lupiáñez, J.A. Nutraceutical Role of Polyphenols and Triterpenes Present in the Extracts of Fruits and Leaves of Olea europaea as Antioxidants, Anti-Infectives and Anticancer Agents on Healthy Growth. Molecules 2022, 27, 2341. [Google Scholar] [CrossRef] [PubMed]
- Cuffaro, D.; Bertini, S.; Macchia, M.; Digiacomo, M. Enhanced Nutraceutical Properties of Extra Virgin Olive Oil Extract by Olive Leaf Enrichment. Nutrients 2023, 15, 1073. [Google Scholar] [CrossRef] [PubMed]
- Lins, P.G.; Pugine, S.M.P.; Scatolini, A.M.; de Melo, M.P. In vitro antioxidant activity of olive leaf extract (Olea europaea L.) and its protective effect on oxidative damage in human erythrocytes. Heliyon 2018, 4, e00805. [Google Scholar] [CrossRef]
- Guimarães, A.G.; Oliveira, G.F.; Melo, M.S.; Cavalcanti, S.C.; Antoniolli, A.R.; Bonjardim, L.R.; Silva, F.A.; Santos, J.P.A.; Rocha, R.F.; Moreira, J.C.F.; et al. Bioassay-guided evaluation of antioxidant and antinociceptive activities of carvacrol. Basic Clin. Pharmacol. Toxicol. 2010, 107, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Bougandoura, N.; Bendimerad, N. Evaluation de l’activité antioxydante des extraits aqueux et méthanolique de Satureja calamintha ssp. Nepeta (L.) Briq. Rev. Nat. Technol. 2013, 5, 14–19. [Google Scholar]
- Bourgou, S.; Ksouri, R.; Bellila, A.; Skandrani, I.; Falleh, H.; Marzouk, B. Phenolic composition and biological activities of Tunisian Nigella sativa L. shoots and roots. Comptes Rendus Biol. 2008, 331, 48–55. [Google Scholar] [CrossRef]
- Ziogas, V.; Tanou, G.; Molassiotis, A.; Diamantidis, G.; Vasilakakis, M. Antioxidant and free radical-scavenging activities of phenolic extracts of olive fruits. Food Chem. 2010, 120, 1097–1103. [Google Scholar] [CrossRef]
- Bezerra, F.S.; Lanzetti, M.; Nesi, R.T.; Nagato, A.C.; e Silva, C.P.; Kennedy-Feitosa, E.; Melo, A.C.; Cattani-Cavalieri, I.; Porto, L.C.; Valenca, S.S. Oxidative Stress and Inflammation in Acute and Chronic Lung Injuries. Antioxidants 2023, 12, 548. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martínez-Alfaro, M.; Cárabez-Trejo, A.; Gallegos-Corona, M.; Pedraza-Aboytes, G.; Hernández-Chan, N.G.; Leo-Amador, G.E. Thinner inhalation effects on oxidative stress and DNA repair in a rat model of abuse. J. Appl. Toxicol. 2010, 30, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Baydas, G.; Ozveren, F.; Tuzcu, M.; Yasar, A. Effects of thinner exposure on the expression pattern of neural cell adhesion molecules, level of lipid peroxidation in the brain and cognitive function in rats. Eur. J. Pharmacol. 2005, 512, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Abouee-Mehrizi, A.; Rasoulzadeh, Y.; Mehdipour, A.; Alihemmati, A.; Rahimi, E. Hepatotoxic effects caused by simultaneous exposure to noise and toluene in New Zealand white rabbits: A biochemical and histopathological study. Ecotoxicology 2021, 30, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Visioli, F.; Galli, C.; Bornet, F.; Mattei, A.; Patelli, R.; Galli, G.; Caruso, D. Olive oil phenolics are dose-dependently absorbed in humans. FEBS Lett. 2000, 468, 159–160. [Google Scholar] [CrossRef]
- Martín-García, B.; De Montijo-Prieto, S.; Jiménez-Valera, M.; Carrasco-Pancorbo, A.; Ruiz-Bravo, A.; Verardo, V.; Gómez-Caravaca, A.M. Comparative Extraction of Phenolic Compounds from Olive Leaves Using a Sonotrode and an Ultrasonic Bath and the Evaluation of Both Antioxidant and Antimicrobial Activity. Antioxidants 2022, 11, 558. [Google Scholar] [CrossRef]
- Elgebaly, H.A.; Mosa, N.M.; Allach, M.; El-Massry, K.F.; El-Ghorab, A.H.; Al Hroob, A.M.; Mahmoud, A.M. Olive oil and leaf extract prevent fluoxetine-induced hepatotoxicity by attenuating oxidative stress, inflammation and apoptosis. Biomed. Pharmacother. 2018, 98, 446–453. [Google Scholar] [CrossRef]
- 58. Romero-Márquez, J.M.; Navarro-Hortal, M.D.; Forbes-Hernández, T.Y.; Varela-López, A.; Puentes, J.G.; Sánchez-González, C.; Sumalla-Cano, S.; Battino, M.; García-Ruiz, R.; Sánchez, S.; et al. Effect of olive leaf phytochemicals on the anti-acetylcholinesterase, anti-cyclooxygenase-2 and ferric reducing antioxidant capacity. Food Chem. 2024, 444, 138516. [Google Scholar] [CrossRef] [PubMed]
- Hiratsuka, S.; Watanabe, A.; Sakurai, Y.; Akashi-Takamura, S.; Ishibashi, S.; Miyake, K.; Shibuya, M.; Akira, S.; Aburatani, H.; Maru, Y. The S100A8–serum amyloid A3–TLR4 paracrine cascade establishes a pre-metastatic phase. Nat. Cell Biol. 2008, 10, 1349–1355. [Google Scholar] [CrossRef]
- Gebhardt, C.; Riehl, A.; Durchdewald, M.; Németh, J.; Fürstenberger, G.; Müller-Decker, K.; Enk, A.; Arnold, B.; Bierhaus, A.; Nawroth, P.P.; et al. RAGE signaling sustains inflammation and promotes tumor development. J. Exp. Med. 2008, 205, 275–285. [Google Scholar] [CrossRef]
- Xia, C.; Braunstein, Z.; Toomey, A.C.; Zhong, J.; Rao, X. S100 Proteins As an Important Regulator of Macrophage Inflammation. Front. Immunol. 2018, 8, 1908. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boss, A.; Bishop, K.S.; Marlow, G.; Barnett, M.P.G.; Ferguson, L.R. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions. Nutrients 2016, 8, 513. [Google Scholar] [CrossRef] [PubMed]
- Romeh, G.H.; El-Safty, F.E.-N.A.-H.; El-Mehi, A.E.-S.; Faried, M.A. Antioxidant, anti-inflammatory, and anti-fibrotic properties of olive leaf extract protect against L-arginine induced chronic pancreatitis in the adult male albino rat. Anat. Cell Biol. 2022, 55, 205–216. [Google Scholar] [CrossRef]
- Vezza, T.; Algieri, F.; Rodríguez-Nogales, A.; Garrido-Mesa, J.; Utrilla, M.P.; Talhaoui, N.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Rodríguez-Cabezas, M.E.; Monteleone, G.; et al. Immunomodulatory properties of Olea europaea leaf extract in intestinal inflammation. Mol. Nutr. Food Res. 2017, 61, 1601066. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-H.; Choi, Y.-J.; Kang, M.-K.; Lee, E.-J.; Kim, D.Y.; Oh, H.; Kang, Y.-H. Oleuropein Curtails Pulmonary Inflammation and Tissue Destruction in Models of Experimental Asthma and Emphysema. J. Agric. Food Chem. 2018, 66, 7643–7654. [Google Scholar] [CrossRef] [PubMed]
- Ruzzolini, J.; Chioccioli, S.; Monaco, N.; Peppicelli, S.; Andreucci, E.; Urciuoli, S.; Romani, A.; Luceri, C.; Tortora, K.; Calorini, L.; et al. Oleuropein-Rich Leaf Extract as a Broad Inhibitor of Tumour and Macrophage iNOS in an Apc Mutant Rat Model. Antioxidants 2021, 10, 1577. [Google Scholar] [CrossRef]
- Bosmann, M.; A Ward, P. Protein-based therapies for acute lung injury: Targeting neutrophil extracellular traps. Expert Opin. Ther. Targets 2014, 18, 703–714. [Google Scholar] [CrossRef]
- Ryu, S.-J.; Choi, H.-S.; Yoon, K.-Y.; Lee, O.-H.; Kim, K.-J.; Lee, B.-Y. Oleuropein suppresses LPS-induced inflammatory responses in RAW 264.7 cell and zebrafish. J. Agric. Food Chem. 2015, 63, 2098–2105. [Google Scholar] [CrossRef]
- Feng, Z.; Li, X.; Lin, J.; Zheng, W.; Hu, Z.; Xuan, J.; Ni, W.; Pan, X. Oleuropein inhibits the IL-1β-induced expression of inflammatory mediators by suppressing the activation of NF-κB and MAPKs in human osteoarthritis chondrocytes. Food Funct. 2017, 8, 3737–3744. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zelová, H.; Hošek, J. TNF-α signalling and inflammation: Interactions between old acquaintances. Inflamm. Res. 2013, 62, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Cuellar-Núñez, M.; de Mejia, E.G.; Loarca-Piña, G. Moringa oleifera leaves alleviated inflammation through downregulation of IL-2, IL-6, and TNF-α in a colitis-associated colorectal cancer model. Food Res. Int. 2021, 144, 110318. [Google Scholar] [CrossRef] [PubMed]
Contents | Olea europaea L. Leaf Extract |
---|---|
IC50 DPPH (µg/mL) | 13.5 ± 0.75 |
Reducing power (µg/mL) | 73.4 ± 4.08 |
Chelating capacity (µg/mL) | 25.53 ± 2.58 |
Concentration (µg/mL) | % OLE Denaturation | % Inhibition of BSA Denaturation by OLE | % DCF Denaturation | % Inhibition of Denaturation by DCF |
---|---|---|---|---|
10 | 78.82 ± 0.021 | 21.18 ± 0.06 | 93.11 ± 0.25 | 6.89 ± 0.14 |
50 | 51.76 ± 0.12 | 48.24 ± 0.25 | 74.45 ± 0.42 | 25.55 ± 0.21 |
75 | 38.66 ± 0.05 | 61.34 ± 0.52 | 58.82 ± 0.07 | 41.18 ± 0.35 |
100 | 29.92 ± 0.32 | 70.08 ± 0.025 | 44.71 ± 0.19 | 55.29 ± 0.71 |
150 | 13.78 ± 0.06 | 86.22 ± 0.16 | 27.06 ± 0.23 | 72.94 ± 0.02 |
200 | 4.20 ± 0.09 | 95.80 ± 0.1 | 21.01 ± 0.62 | 78.99 ± 0.54 |
250 | 2.69 ± 0.25 | 97.31 ± 0.03 | 12.77 ± 0.52 | 87.23 ± 0.63 |
400 | 1.68 ± 0.07 | 98.32 ± 0.41 | 2.02 ± 0.47 | 97.98 ± 0.01 |
Concentration (µg/mL) | % OLE Denaturation | % Inhibition of Albumin Denaturation by OLE | % DCF Denaturation | % Inhibition of Denaturation by DCF |
---|---|---|---|---|
10 | 94.20 ± 0.03 | 33.32 ± 0.25 | 66.68 ± 0.66 | 5.80 ± 0.36 |
50 | 65.67 ± 0.25 | 70.35 ± 0.36 | 29.65 ± 0.17 | 34.33 ± 0.70 |
75 | 35.33 ± 0.14 | 82.59 ± 0.27 | 17.41 ± 0.29 | 64.67 ± 0.27 |
100 | 22.03 ± 0.36 | 93.88 ± 0.80 | 6.12 ± 0.09 | 77097 ± 0.17 |
150 | 10.10 ± 0.61 | 99.21 ± 0.09 | 0.79 ± 0.77 | 89.90 ± 0.45 |
200 | 0.27 ± 0.48 | 99.61 ± 0.67 | 0.39 ± 0.07 | 99.73 ± 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Attia, T.; Bahri, S.; Ben Younes, S.; Nahdi, A.; Ben Ali, R.; Bel Haj Kacem, L.; El May, M.V.; López-Maldonado, E.A.; Mhamdi, A. In-Depth Analysis of Olea europaea L. Leaf Extract: Alleviating Pulmonary Histological Disturbances, Pro-Inflammatory Responses, and Oxidative Stress from Isolated or Combined Exposure to Inhaled Toluene and Noise in Rats. Biology 2024, 13, 896. https://doi.org/10.3390/biology13110896
Ben Attia T, Bahri S, Ben Younes S, Nahdi A, Ben Ali R, Bel Haj Kacem L, El May MV, López-Maldonado EA, Mhamdi A. In-Depth Analysis of Olea europaea L. Leaf Extract: Alleviating Pulmonary Histological Disturbances, Pro-Inflammatory Responses, and Oxidative Stress from Isolated or Combined Exposure to Inhaled Toluene and Noise in Rats. Biology. 2024; 13(11):896. https://doi.org/10.3390/biology13110896
Chicago/Turabian StyleBen Attia, Takoua, Sana Bahri, Sonia Ben Younes, Afef Nahdi, Ridha Ben Ali, Linda Bel Haj Kacem, Michèle Véronique El May, Eduardo Alberto López-Maldonado, and Abada Mhamdi. 2024. "In-Depth Analysis of Olea europaea L. Leaf Extract: Alleviating Pulmonary Histological Disturbances, Pro-Inflammatory Responses, and Oxidative Stress from Isolated or Combined Exposure to Inhaled Toluene and Noise in Rats" Biology 13, no. 11: 896. https://doi.org/10.3390/biology13110896
APA StyleBen Attia, T., Bahri, S., Ben Younes, S., Nahdi, A., Ben Ali, R., Bel Haj Kacem, L., El May, M. V., López-Maldonado, E. A., & Mhamdi, A. (2024). In-Depth Analysis of Olea europaea L. Leaf Extract: Alleviating Pulmonary Histological Disturbances, Pro-Inflammatory Responses, and Oxidative Stress from Isolated or Combined Exposure to Inhaled Toluene and Noise in Rats. Biology, 13(11), 896. https://doi.org/10.3390/biology13110896