Population Genetic Investigation of Hypophthalmichthys nobilis in the Yangtze River Basin Based on RAD Sequencing Data
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. RAD-Seq Library Preparation and Sequencing
2.3. Genotyping
2.4. Genetic Diversity and Linkage Disequilibrium Analysis
2.5. Population Differentiation and Structure Analyses
3. Results
3.1. Sequencing and SNP Calling
3.2. Results of Genetic Diversity and LD Analysis
3.3. Results of Genetic Differentiation and Population Structure
3.4. Population Demographic History
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Bureau of Statistics of China. China Fishery Statistical Yearbook; China Agriculture Press: Beijing, China, 2023. [Google Scholar]
- Lu, G.W.; Zhao, J.; Liao, X.; Wang, J.; Luo, M.; Zhu, L.; Bernatzhez, L.; Li, S. Evolution and genetics of bighead and silver carps: Native population conservation versus invasive species control. Evol. Appl. 2020, 13, 1351–1362. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhou, B.; Ni, C.; Chen, Z. Morphological variations of silver carp, bighead and grass carp from Changjiang, Zhujiang and Heilongjiang river. Acta Zool. Sin. 1989, 35, 390. [Google Scholar]
- Chen, D.; Li, S.; Wang, K. Enhancement and conservation of inland fisheries resources in China. Environ. Biol. Fishes 2011, 93, 531–545. [Google Scholar] [CrossRef]
- Hu, M.; Hua, Q.; Zhou, H.; Wu, Z.; Wu, X. The effect of dams on the larval abundance and composition of four carp species in key river systems in China. Environ. Biol. Fishes 2014, 98, 1201–1205. [Google Scholar] [CrossRef]
- Chen, Y.; Qu, X.; Xiong, F.; Lu, Y.; Wang, L.; Hughes, R.M. Challenges to saving China’s freshwater biodiversity: Fishery exploitation and landscape pressures. Ambio 2019, 49, 926–938. [Google Scholar] [CrossRef]
- Liang, J.; Wang, W.; Lin, G.; Xu, K.; Guo, A. Effect and assessment of enhancement release of Nibea japonica and Sparus macrocephalus in artificial reef habitat waters of Zhoushan, Zhejiang. J. Fish. Sci. China 2010, 17, 1075–1084. [Google Scholar]
- Wang, J.Q.; Shih, Y.J.; Huang, L.M.; Li, J.; Li, W.W.; Shih, C.H.; Chu, T.J. Evaluating the effects related to restocking and stock replenishment of Penaeus penicillatus in the Xiamen Bay, China. J. Mar. Sci. Eng. 2021, 9, 1122. [Google Scholar] [CrossRef]
- Osathanunkul, M.; Suwannapoom, C. Sustainable fisheries management through reliable restocking and stock enhancement evaluation with environmental DNA. Sci. Rep. 2023, 13, 11297. [Google Scholar] [CrossRef]
- Giglioli, A.A.; Addis, P.; Pasquini, V.; Secci, M.; Hannon, C. First assessment of restocking efficacy of the depleted sea urchin Paracentrotus lividus populations in two contrasted sites. Aquacult. Res. 2021, 52, 2896–2900. [Google Scholar] [CrossRef]
- Li, M.; Zeng, Y.; Ren, T. Study on the problems and countermeasures of fishery stock enhancement in China. China Fish. 2021, 9, 42–45. [Google Scholar]
- Zhu, W.; Fu, J.; Luo, M.; Wang, L.; Wang, P.; Liu, Q.; Dong, Z. Genetic diversity and population structure of bighead carp (Hypophthalmichthys nobilis) from the middle and lower reaches of the Yangtze River revealed using microsatellite markers. Aquacult. Rep. 2022, 27, 101377. [Google Scholar] [CrossRef]
- Zhao, J.; Li, S. Isoenzyme analysis of population diversity of silver carp, bighead carp, grass carp and black carp in the middle and lower stream of Changjiang River. J. Fish. China 1996, 20, 104–110. [Google Scholar]
- Liu, H.; Wang, J.; Huang, J.; Chen, Q.; Chen, F.; Ma, X.; Zhu, G.; Song, D.; Nie, G.; Li, X. Analysis on genetic diversity and selective pressure in farmed bighead carp (Hypophthalmichthys nobilis) from Henan province. Freshw. Fish. 2018, 48, 22–29. [Google Scholar]
- Yan, J.; Zhao, J.; Li, S.; Zheng, D.; Cao, Y. Genetic variation of bighead carp Aristichthys nobilis from Chinese native populations and introduced populations by AFLP. J. Fish. Sci. China 2011, 18, 283–289. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, G.; Xue, X.; Wang, X.; Zhou, Y.; Fang, D.a.; Xu, D. Current germplasm situation of bighead carp (Aristichthys nobilis) candidate parent and parent from hatchery in the lower reaches of Changjiang River based on SSR markers. J. Fish. Sci. China 2020, 27, 589–597. [Google Scholar]
- Sha, H.; Luo, X.; Zou, G.; Liang, H. Genetic diversity analysis of Aristichthys nobilis in middle reaches of Yangtze River based on the microsatellite makers. Freshw. Fish. 2020, 50, 12–17. [Google Scholar]
- Gonen, S.; Lowe, N.R.; Cezard, T.; Gharbi, K.; Bishop, S.C.; Houston, R.D. Linkage maps of the Atlantic salmon (Salmo salar) genome derived from RAD sequencing. BMC Genom. 2014, 15, 166. [Google Scholar] [CrossRef]
- Liu, H.Y.; Luo, Q.; Ou, M.; Zhu, X.P.; Zhao, J.; Chen, K.C. High-density genetic linkage map and QTL fine mapping of growth and sex in snakehead (Channa argus). Aquaculture 2020, 519, 734760. [Google Scholar] [CrossRef]
- Yu, H.; You, X.X.; Li, J.; Zhang, X.H.; Zhang, S.; Jiang, S.J.; Lin, X.Q.; Lin, H.R.; Meng, Z.N.; Shi, Q. A genome-wide association study on growth traits in orange-spotted grouper (Epinephelus coioides) with RAD-seq genotyping. Sci. China-Life Sci. 2018, 61, 934–946. [Google Scholar] [CrossRef]
- Vallejo, R.L.; Liu, S.X.; Gao, G.T.; Fragomeni, B.O.; Hernandez, A.G.; Leeds, T.D.; Parsons, J.E.; Martin, K.E.; Evenhuis, J.P.; Welch, T.J.; et al. Similar genetic architecture with shared and unique quantitative trait loci for bacterial cold water disease resistance in two rainbow trout breeding populations. Front. Genet. 2017, 8, 156. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, S.; Ren, H.; Tang, J.; Gao, J.; Li, X.; Fu, Z.; He, Z. Genetic diversity and population structure of the endangered Japanese sea cucumber (Apostichopus japonicus) in natural seas of northern China. Aquacult. Rep. 2023, 30, 101595. [Google Scholar] [CrossRef]
- Dufresnes, C.; Dutoit, L.; Brelsford, A.; Goldstein-Witsenburg, F.; Clement, L.; Lopez-Baucells, A.; Palmeirim, J.; Pavlinic, I.; Scaravelli, D.; Sevcik, M.; et al. Inferring genetic structure when there is little: Population genetics versus genomics of the threatened bat Miniopterus schreibersii across Europe. Sci. Rep. 2023, 13, 1523. [Google Scholar] [CrossRef] [PubMed]
- Lowell, N.; Suhrbier, A.; Tarpey, C.; May, S.; Carson, H.; Hauser, L. Population structure and adaptive differentiation in the sea cucumber Apostichopus californicus and implications for spatial resource management. PLoS ONE 2023, 18, e0280500. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, S.S.; Xu, J.Y.; He, W.M.; Yang, T.L. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 2019, 35, 1786–1788. [Google Scholar] [CrossRef]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef]
- Vilella, A.J.; Severin, J.; Ureta-Vidal, A.; Heng, L.; Durbin, R.; Birney, E. EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 2009, 19, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.A.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Ginestet, C. ggplot2: Elegant graphics for data analysis. J. R. Stat. Soc. Ser. A Stat. Soc. 2011, 174, 245. [Google Scholar] [CrossRef]
- Schiffels, S.; Wang, K. MSMC and MSMC2: The multiple sequentially markovian coalescent. Methods Mol. Biol. 2020, 2090, 147–166. [Google Scholar]
- Urvois, T.; Perrier, C.; Roques, A.; Saune, L.; Courtin, C.; Kajimura, H.; Hulcr, J.; Cognato, A.I.; Auger-Rozenberg, M.A.; Kerdelhue, C. The worldwide invasion history of a pest ambrosia beetle inferred using population genomics. Mol. Ecol. 2023, 32, 4381–4400. [Google Scholar] [CrossRef]
- Ellegren, H.; Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 2016, 17, 422–433. [Google Scholar] [CrossRef]
- Eizaguirre, C.; Baltazar-Soares, M. Evolutionary conservation-evaluating the adaptive potential of species. Evol. Appl. 2014, 7, 963–967. [Google Scholar] [CrossRef]
- Booy, G.; Hendriks, R.J.J.; Smulders, M.J.M.; Van Groenendael, J.M.; Vosman, B. Genetic diversity and the survival of populations. Plant Biol. 2000, 2, 379–395. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, K.; Xu, D.; Duan, J.; Zhou, Y.; Fang, D.; Shi, W. Analysis of genetic diversity in populations released for stock enhancement and population caught in natural water of bighead carp in the lower reaches of the Yangtze River using microsatellite markers. Acta Agric. Univ. Jiangxiensis 2013, 35, 579–586. [Google Scholar]
- Tang, H.P.; Mao, S.Q.; Xu, X.Y.; Li, J.L.; Shen, Y.B. Genetic diversity analysis of different geographic populations of black carp (Mylopharyngodon piceus) based on whole genome SNP markers. Aquaculture 2024, 582, 740542. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Liu, X.M.; Huang, W.J.; Wang, Y.; Anwarullah, K.; Luo, L.F.; Gao, Z.X. Whole-genome resequencing reveals genetic diversity and signatures of selection in mono-female grass carp (Ctenopharyngodon idella). Aquaculture 2023, 575, 739816. [Google Scholar] [CrossRef]
- Yi, S.K.; Wang, W.M.; Zhou, X.Y. Genomic evidence for the population genetic differentiation of Misgurnus anguillicaudatus in the Yangtze River basin of China. Genomics 2019, 111, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, H.; Gooneratne, R.; Wang, Y.; Wang, W.M. Population Genomics of Megalobrama Provides Insights into Evolutionary History and Dietary Adaptation. Biology 2022, 11, 186. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, M.; Dang, Y.; Li, L.; Huang, W.; Fang, Y.; Wang, F.; Shen, Y.; Li, J. genetic variation of mitochondrial DNA d-loop region in wild and breeding populations of grass carp. Acta Hydrobiol. Sin. 2017, 41, 947–955. [Google Scholar]
- Rogers, A.R.; Harpending, H. Population-growth makes waves in the distribution of pairwise genetic-differences. Mol. Biol. Evol. 1992, 9, 552–569. [Google Scholar]
- Luo, H.; Fang, D.a.; He, M.; Mao, C.; Kuang, Z.; Qi, H.; Xu, D. Genetic diversity and population structure of Gymnocypris przewalskii based on SNP markers. South China Fish. Sci. 2023, 19, 86–96. [Google Scholar]
- Wang, L.; Wu, Z.; Zou, C.; Lu, Y.; Yue, X.; Song, Z.; Yang, R.; You, F. Genetic diversity and signatures of selection in the mito-gynogenetic olive flounder Paralichthys olivaceus revealed by genome-wide SNP markers. Aquaculture 2022, 553, 738062. [Google Scholar] [CrossRef]
- Castric, V.; Bernatchez, L.; Belkhir, K.; Bonhomme, F. Heterozygote deficiencies in small lacustrine populations of brook charr Salvelinus Fontinalis Mitchill (Pisces, Salmonidae): A test of alternative hypotheses. Heredity 2002, 89, 27–35. [Google Scholar] [CrossRef]
- Selkoe, K.A.; Toonen, R.J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 2006, 9, 615–629. [Google Scholar] [CrossRef]
- Johnson, M.S.; Black, R. The wahlund effect and the geographical scale of variation in the intertidal limpet siphonaria sp. Mar. Biol. 1984, 79, 295–302. [Google Scholar] [CrossRef]
- Bjornerfeldt, S.; Hailer, F.; Nord, M.; Vila, C. Assortative mating and fragmentation within dog breeds. BMC Evol. Biol. 2008, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Slatkin, M. Linkage disequilibrium-understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 2008, 9, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Garcia, B.F.; Bonaguro, A.; Araya, C.; Carvalheiro, R.; Yanez, J.M. Application of a novel 50K SNP genotyping array to assess the genetic diversity and linkage disequilibrium in a farmed Pacific white shrimp (Litopenaeus vannamei) population. Aquacult. Rep. 2021, 20, 100691. [Google Scholar] [CrossRef]
- Hu, H.; Wang, Z.; Jia, L.; Wang, H.; Li, X.; Lv, G.; Bai, Z.; Li, J. Genetic differentiation and identification of key genes related to biomineralization and coloration in three Hyriopsis cumingii strains exhibiting different inner shell colors. Aquacult. Rep. 2024, 35, 101939. [Google Scholar] [CrossRef]
- Zou, J.; Peng, H.; Zheng, D.; Zhang, S. Genetic Relationship among Three populations of pearl oyster Pinctada fucata ssp. martensii in Guangxi, China. Fish. Sci. 2023, 42, 466–473. [Google Scholar]
- Barria, A.; López, M.E.; Yoshida, G.; Carvalheiro, R.; Lhorente, J.P.; Yáñez, J.M. Population genomic structure and genome-wide linkage disequilibrium in farmed Atlantic salmon (Salmo salar L.) using dense SNP genotypes. Front. Genet. 2018, 9, 649. [Google Scholar] [CrossRef]
- Wang, H.; Teng, M.X.; Liu, P.P.; Zhao, M.Y.; Wang, S.; Hu, J.J.; Bao, Z.M.; Zeng, Q.F. Selection signatures of Pacific white shrimp Litopenaeus vannamei revealed by whole-genome resequencing analysis. Front. Mar. Sci. 2022, 9, 844597. [Google Scholar] [CrossRef]
- Fu, J.; Zhu, W.; Luo, M.; Wang, L.; Dong, Z. Population genetic analyses in bighead carp (Hypophthalmichthys nobilis) from the middle and lower reaches of the Yangtze River based on D-loop sequences. J. Shanghai Ocean. Univ. 2024, 33, 521–532. [Google Scholar]
- Fang, D.; Luo, Y.; Xu, D.; Yang, X.; Wang, X. Relationship between genetic risk and stock enhancement of the silver carp (Hypophthalmichthys molitrix) in the Yangtze River. Fish. Res. 2021, 235, 105829. [Google Scholar] [CrossRef]
- Xue, D.; Yang, Q.; Li, Y.; Zong, S.; Gao, T.; Liu, J. Comprehensive assessment of population genetic structure of the overexploited Japanese grenadier anchovy (Coilia nasus): Implications for fisheries management and conservation. Fish. Res. 2019, 213, 113–120. [Google Scholar] [CrossRef]
- Balloux, F.; Lugon-Moulin, N. The estimation of population differentiation with microsatellite markers. Mol. Ecol. 2002, 11, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Xinqiang, N.; Peilun, T.J.C.W.R. Studies on biological regulation of Three Gorges Project. China Water Resour. 2006, 14, 8–24. [Google Scholar]
- Arnason, U.; Lammers, F.; Kumar, V.; Nilsson, M.A.; Janke, A. Whole-genome sequencing of the blue whale and other rorquals finds signatures for introgressive gene flow. Sci. Adv. 2018, 4, eaap9873. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.M.; Shaner, P.J.L.; Zink, R.M.; Liu, W.C.; Chu, T.C.; Huang, W.S.; Li, S.H. Drastic population fluctuations explain the rapid extinction of the passenger pigeon. Proc. Natl. Acad. Sci. USA 2014, 111, 10636–10641. [Google Scholar] [CrossRef]
- Zhao, S.C.; Zheng, P.P.; Dong, S.S.; Zhan, X.J.; Wu, Q.; Guo, X.S.; Hu, Y.B.; He, W.M.; Zhang, S.N.; Fan, W.; et al. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nat. Genet. 2013, 45, 67–71. [Google Scholar] [CrossRef]
Population ID | Sample Site | Coordinates | River System | Sample Size |
---|---|---|---|---|
Jjin | Jiangjin, Chongqing, China | 106.25° E, 29.27° N | upper reach of the Yangtze River | 10 |
WZ2 | Wanzhou, Chongqing, China | 108.40° E, 30.80° N | 10 | |
ZX2 | Zhongxian, Chongqing, China | 108.08° E, 30.32° N | 10 | |
JZ | Jingzhou, Hubei, China | 112.26° E, 30.30° N | middle reach of the Yangtze River | 10 |
CLJ | Chenlinji, Hunan, China | 113.16° E, 29.46° N | 10 | |
XZ | Xingzhou, Hubei, China | 114.70° E, 30.59° N | 10 | |
JHK | Jiehekou, Hunan, China | 113.06° E, 29.36° N | 10 | |
XZX | Xinzixian, Jiangxi, China | 116.10° E, 29.49° N | 10 | |
JJ | Jiujiang, Jiangxi, China | 115.94° E, 29.73° N | 10 | |
YZ | Yangzhou, Jiangsu, China | 119.45° E, 32.27° N | lower reach of the Yangtze River | 10 |
YZYZ | Yangzhou hatchery, Jiangsu, China | 119.39° E, 32.23° N | 10 | |
CH | Chaohu lake, Anhui, China | 117.50° E, 31.44° N | 10 | |
TH | Taihu lake, Jiangsu, China | 120.04° E, 31.41° N | 10 | |
BH | the Marseilles Reach of the Illinois River | −88.74° W, 41.33° N | Mississippi River | 27 |
Population | p | Pi | HE | HO | Fis | HWE |
---|---|---|---|---|---|---|
Jjin | 0.8230 | 0.0002 | 0.2567 | 0.2493 | 0.0158 | 6037 |
ZX2 | 0.8109 | 0.0010 | 0.2940 | 0.0656 | 0.7850 | 697,267 |
WZ2 | 0.7613 | 0.0011 | 0.3448 | 0.0897 | 0.7517 | 836,874 |
JZ | 0.8080 | 0.0003 | 0.2732 | 0.2852 | −0.0500 | 4663 |
CLJ | 0.8040 | 0.0002 | 0.2783 | 0.2902 | −0.0426 | 4688 |
JHK | 0.8384 | 0.0003 | 0.2355 | 0.2515 | −0.0748 | 4692 |
XZ | 0.8459 | 0.0003 | 0.2252 | 0.2361 | −0.0634 | 16,400 |
XZX | 0.7485 | 0.0003 | 0.3398 | 0.4248 | −0.2561 | 36,276 |
JJ | 0.7951 | 0.0002 | 0.2847 | 0.3653 | −0.2905 | 8307 |
CH | 0.8599 | 0.0003 | 0.2116 | 0.2150 | −0.0506 | 5721 |
YZYZ | 0.7068 | 0.0013 | 0.3952 | 0.0811 | 0.8068 | 886,705 |
YZ | 0.7023 | 0.0013 | 0.3997 | 0.0796 | 0.8131 | 919,153 |
TH | 0.8478 | 0.0007 | 0.2439 | 0.0706 | 0.7357 | 228,704 |
BH | 0.8044 | 0.0002 | 0.2818 | 0.2737 | 0.0837 | 25,947 |
Source of Variation | d.f. | Sum of Squares | MeanSqs | F.Model | r2 | Pr (>F) |
---|---|---|---|---|---|---|
Among populations | 13 | 1187.268 | 91.328 | 16.351 | 59.78% | 0.001 *** |
Within populations | 143 | 798.712 | 5.585 | 40.22% | ||
Total | 156 | 1985.981 | 100.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Yu, J.; Que, Y.; Hu, X.; Wang, E.; Liao, X.; Zhu, B. Population Genetic Investigation of Hypophthalmichthys nobilis in the Yangtze River Basin Based on RAD Sequencing Data. Biology 2024, 13, 837. https://doi.org/10.3390/biology13100837
Li W, Yu J, Que Y, Hu X, Wang E, Liao X, Zhu B. Population Genetic Investigation of Hypophthalmichthys nobilis in the Yangtze River Basin Based on RAD Sequencing Data. Biology. 2024; 13(10):837. https://doi.org/10.3390/biology13100837
Chicago/Turabian StyleLi, Weitao, Jiongying Yu, Yanfu Que, Xingkun Hu, Ezhou Wang, Xiaolin Liao, and Bin Zhu. 2024. "Population Genetic Investigation of Hypophthalmichthys nobilis in the Yangtze River Basin Based on RAD Sequencing Data" Biology 13, no. 10: 837. https://doi.org/10.3390/biology13100837
APA StyleLi, W., Yu, J., Que, Y., Hu, X., Wang, E., Liao, X., & Zhu, B. (2024). Population Genetic Investigation of Hypophthalmichthys nobilis in the Yangtze River Basin Based on RAD Sequencing Data. Biology, 13(10), 837. https://doi.org/10.3390/biology13100837