Effects of Diet Consistency on Rat Maxillary and Mandibular Growth within Three Generations—A Longitudinal CBCT Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Maxillary Measurements
3.2. Mandibular Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dias, G.J.; Cook, R.B.; Mirhosseini, M. Influence of food consistency on growth and morphology of the mandibular condyle. Clin. Anat. 2011, 24, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.Y.; Yang, L.Y.; Chen, K.T.; Chiu, W.C. The influence of masticatory hypofunction on developing rat craniofacial structure. Int. J. Oral. Maxillofac. Surg. 2010, 39, 593–598. [Google Scholar] [CrossRef]
- Rabey, K.N.; Green, D.J.; Taylor, A.B.; Begun, D.R.; Richmond, B.G.; McFarlin, S.C. Locomotor activity influences muscle architecture and bone growth but not muscle attachment site morphology. J. Hum. Evol. 2015, 78, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Proffit, W.R.; Fields, H.W.; Sarver, D.M. Contemporary orthodontic appliances. In Contemporary Orthodontics; Elsiever: St. Louis, MO, USA, 2012; pp. 348–350. [Google Scholar]
- Moss, M.L. The functional matrix hypothesis revisited. 1. The role of mechanotransduction. Am. J. Orthod. Dentofac. Orthop. 1997, 112, 8–11. [Google Scholar] [CrossRef]
- Moss, M.L. The functional matrix hypothesis revisited. 3. The genomic thesis. Am. J. Orthod. Dentofac. Orthop. 1997, 112, 338–342. [Google Scholar] [CrossRef]
- Rose, J.C.; Roblee, R.D. Origins of dental crowding and malocclusions: An anthropological perspective. Compend. Contin. Educ. Dent. 2009, 30, 292–300. [Google Scholar] [PubMed]
- Evensen, J.P.; Øgaard, B. Are malocclusions more prevalent and severe now? A comparative study of medieval skulls from Norway. Am. J. Orthod. Dentofac. Orthop. 2007, 131, 710–716. [Google Scholar] [CrossRef]
- Toro-Ibacache, V.; Zapata Muñoz, V.; O’Higgins, P. The relationship between skull morphology, masticatory muscle force and cranial skeletal deformation during biting. Ann. Anat. 2016, 203, 59–68. [Google Scholar] [CrossRef]
- Sella-Tunis, T.; Pokhojaev, A.; Sarig, R.; O’Higgins, P.; May, H. Human mandibular shape is associated with masticatory muscle force. Sci. Rep. 2018, 8, 6042. [Google Scholar] [CrossRef]
- Eyquem, A.P.; Kuzminsky, S.C.; Aguilera, J.; Astudillo, W.; Toro-Ibacache, V. Normal and altered masticatory load impact on the range of craniofacial shape variation: An analysis of pre-Hispanic and modern populations of the American Southern Cone. PLoS ONE 2019, 14, e0225369. [Google Scholar] [CrossRef]
- Enlow, D.H.; McNamara, J.A., Jr. The neurocranial basis for facial form and pattern. Angle Orthod. 1973, 43, 256–270. [Google Scholar] [PubMed]
- Herring, S.W. TMJ anatomy and animal models. J. Musculoskelet. Neuronal Interact. 2003, 3, 391–394. [Google Scholar] [PubMed]
- Suzuki, A.; Iwata, J. Mouse genetic models for temporomandibular joint development and disorders. Oral. Dis. 2016, 22, 33–38. [Google Scholar] [CrossRef]
- Jee, W.S.; Yao, W. Overview: Animal models of osteopenia and osteoporosis. J. Musculoskelet. Neuronal. Interact. 2001, 1, 193–207. [Google Scholar] [PubMed]
- Sengupta, P. The Laboratory Rat: Relating Its Age with Human’s. Int. J. Prev. Med. 2013, 4, 624–630. [Google Scholar] [PubMed]
- Roach, H.I.; Mehta, G.; Oreffo, R.O.C.; Clarke, N.M.P.; Cooper, C. Cooper Temporal Analysis of Rat Growth Plates: Cessation of Growth with Age Despite Presence of a Physis. J. Histochem. Cytochem. 2003, 3, 373–383. [Google Scholar] [CrossRef]
- Gomes, P.S.; Fernandes, M.H. Rodent models in bone-related research: The relevance of calvarial defects in the assessment of bone regeneration strategies. Lab. Anim. 2011, 45, 14–24. [Google Scholar] [CrossRef]
- Tsolakis, I.A.; Verikokos, C.; Perrea, D.; Bitsanis, E.; Tsolakis, A.I. Effects of diet consistency on mandibular growth. A review. J. Hell. Vet. Med. Soc. 2019, 70, 1603–1610. [Google Scholar] [CrossRef]
- Dontas, I.; Tsolakis, A.I.; Khaldi, L.; Patra, E.; Lyriritis, G.P. Malocclusion in Aging Wistar Rats. J. Am. Assoc. Lab. Anim. Sci. 2010, 49, 22–26. [Google Scholar]
- Karamani, I.I.; Tsolakis, I.A.; Makrygiannakis, M.A.; Georgaki, M.; Tsolakis, A.I. Impact of Diet Consistency on the Mandibular Morphology: A Systematic Review of Studies on Rat Models. Int. J. Environ. Res. Public Health 2022, 19, 2706. [Google Scholar] [CrossRef]
- Nicholson, E.K.; Stock, S.R.; Hamrick, M.W.; Ravosa, M.J. Biomineralization and adaptive plasticity of the temporomandibular joint in myostatin knockout mice. Arch. Oral. Biol. 2006, 51, 37–49. [Google Scholar] [CrossRef]
- Kufley, S.; Scott, J.E.; Ramirez-Yanez, G. The effect of the physical consistency of the diet on the bone quality of the mandibular condyle in rats. Arch. Oral. Biol. 2017, 77, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Ohnuki, Y.; Yamane, A.; Saeki, Y. Effects of diet consistency on the myosin heavy chain mRNAs of rat masseter muscle during postnatal development. Arch. Oral. Biol. 2002, 47, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Haggarty, P. Epigenetic consequences of a changing human diet. Proc. Nutr. Soc. Nov. 2013, 72, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Enlow, D. Functions of the Haversian system. Am. J. Anat. 1962, 110, 269–305. [Google Scholar] [CrossRef]
- Burr, D.B. Targeted and nontargeted remodeling. Bone 2002, 30, 2–4. [Google Scholar] [CrossRef]
- Bouvier, M.; Hylander, W.L. The mechanical or meta-bolic function of secondary osteonal bone in the monkeyMac-aca fascicularis. Arch. Oral. Biol. 1996, 41, 941–950. [Google Scholar] [CrossRef]
- Lad, S.E.; Pampush, J.D.; McGraw, W.S.; Daegling, D.J. The influence of leaping frequency on secondary bone incercopithecid primates. Anat. Rec. 2019, 302, 1116–1126. [Google Scholar] [CrossRef]
- Terhune, C.E.; Sylvester, A.D.; Scott, J.E.; Ravosa, M.J. Trabecular architecture of the mandibular condyle of rabbits isrelated to dietary resistance during growth. J. Experiment. Biol. 2020, 223, jeb220988s. [Google Scholar]
- Mitchell, D.R.; Wroe, S.; Ravosa, M.J.; Menegaz, R.A. More challenging diets sustain feeding performance: Applications toward the captive rearing of wildlife. Integr. Org. Biol. 2021, 3, obab030. [Google Scholar] [CrossRef]
- Lad, S.E.; Anderson, R.J.; Cortese, S.A.; Alvarez, C.E.; Danison, A.D.; Morris, H.M.; Ravosa, M.J. Bone remodeling and cyclical loading in maxillae of New Zealand white rabbits (Oryctolagus cuniculus). Anat. Rec. 2021, 304A, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Puck, T.T.; Krystosek, A. Role of the cytoskeleton in genome regulation and cancer. Int. Rev. Cytol. 1992, 132, 75–108. [Google Scholar]
- Murshid, S.A. The role of osteocytes during experimental orthodontic tooth movement: A review. Arch. Oral. Biol. 2017, 73, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Matyas, J.; Edwards, P.; Miniaci, A.; Shrive, N.; Wilson, J.; Bray, R.; Frank, C. Ligament tension affects nuclear shape in situ: An in vitro study. Connect. Tissue Res. 1994, 31, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Odman, A.; Mavropoulos, A.; Kiliaridis, S. Do masticatory functional changes influence the mandibular morphology in adult rats. Arch. Oral. Biol. 2008, 53, 1149–1154. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, E.; Sano, R.; Kawai, N.; Langenbach, C.E.J.A.; Brugman, P.; Tanne, K.; Theo, M.G.J.; Van Eijden, T.M.G.J. Effect of Food Consistency on the Degree of Mineralization in the Rat Mandible. Ann. Biomed. Eng. 2007, 35, 1617–1621. [Google Scholar] [CrossRef]
- Grünheid, T.; Langenbach, G.E.J.; Brugman, P.; Vincent Everts, V.; Zentner, A. The masticatory system under varying functionalload. Part 2: Effect of reduced masticatory load on the degree and distribution of mineralization in the rabbit mandible. Eur. J Orthod. 2011, 33, 365–371. [Google Scholar] [CrossRef]
- Tsolakis, I.A.; Verikokos, C.; Perrea, D.; Alexiou, K.; Gizani, S.; Tsolakis, A.I. Effect of Diet Consistency on Rat Mandibular Growth: A Geometric Morphometric and Linear Cephalometric Study. Biology 2022, 11, 901. [Google Scholar] [CrossRef]
- Tonni, I.; Riccardi, G.; Piancino, M.G.; Stretti, C.; Costantinides, F.; Paganelli, C. The influence of food hardness on the physiological parameters of mastication: A systematic review. Arch. Oral. Biol. 2020, 120, 104903. [Google Scholar] [CrossRef]
- Ludlow, J.B.; Walker, C. Assessment of phantom dosimetry and image quality of i-CAT FLX cone-beam computed tomography. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 802–817. [Google Scholar] [CrossRef]
- Govila, S.; Gundappa, M. Cone beam computed tomography—An overview. J. Conserv. Dent. 2007, 10, 53–58. [Google Scholar] [CrossRef]
- Tsolakis, I.A.; Verikokos, C.; Papaioannou, W.; Alexiou, K.-E.; Yfanti, Z.; Perrea, D.; Tsolakis, A.I. Long-Term Effect of Diet Consistency on Mandibular Growth within Three Generations: A Longitudinal Cephalometric Study in Rats. Biology 2023, 12, 568. [Google Scholar] [CrossRef] [PubMed]
- Kiliaridis, S.; Thilander, B.; Kjellberg, H.; Topouzelis, N.; Zafiriadis, A. Effect of low masticatory function on condylar growth: Amorphometric study in the rat. Am. J. Orthod. Dentofac. Orthop. 1999, 116, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S. The effects of food consistency on maxillary growth in rat. Eur. J. Orthod. 1996, 18, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Katsaros, C.; Berg, R.; Kiliaridis, S. Influence of masticatory muscle function or transversal skull dimension in the growing rat. J. Orofac. Orthop. 2002, 63, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Kiliaridis, S.; Engstrdm, C.; Thilander, B. The relationship between masticatory function and craniofacial morphology I. A cephalometric longitudinal analysis in the growing rat fed a soft diet. Eur. J. Orthod. 1985, 7, 273–283. [Google Scholar] [CrossRef]
- Maki, K.; Nishioka, T.; Shioiri, E.; Takahashi, T.; Kimura, M. Effects of Dietary Consistency on the Mandible of Rats at the Growth Stage: Computed X-ray Densitometric and Cephalometric Analysis. Angle Orthod. 2002, 72, 468–475. [Google Scholar]
- Abed, G.S.; Buschang, P.H.; Taylor, R.; Hinton, R.J. Maturational and functional related differences in rat craniofacial growth. Arch. Oral. Biol. 2007, 52, 1018–1025. [Google Scholar] [CrossRef]
- Hichijo, N.; Kawai, N.; Mori, H.; Sano, R.; Ohnuki, Y.; Okumura, S.; Langenbach, G.E.J.; Tanaka, E. Effects of the masticatory demand on the rat mandibular development. J. Oral Rehabil. 2014, 41, 581–587. [Google Scholar] [CrossRef]
- Hassan, M.G.; Kaler, H.; Zhang, B.; Cox, T.C.; Young, N.; Jheon, A.H. Effects of Multi-Generational Soft Diet Consumption on Mouse Craniofacial Morphology. Front. Physiol. 2020, 11, 783. [Google Scholar] [CrossRef]
- Kahn, S.; Ehrlich, P.; Feldman, M.; Sapolsky, R.; Wong, S. The Jaw Epidemic: Recognition, Origins, Cures, and Prevention. Bioscience 2020, 70, 759–771. [Google Scholar] [CrossRef] [PubMed]
Cephalometric Landmarks | Definition |
---|---|
CoL | Most posterosuperior point on the left mandibular condyle. |
CoR | Most posterosuperior point on the right mandibular condyle. |
GoL | Most posterior point of the left angular process of the mandible |
GoR | Most posterior point of the right angular process of the mandible |
Go’L | Point on the most inferior contour of the left angular process on the mandible |
Go’R | Point on the most inferior contour of the right angular process on the mandible |
CorL | Most posterosuperior point of condylar process on the left side |
CorR | Most posterosuperior point of condylar process on the right side |
MeL | The most inferior and anterior point of the left lower border of the mandible |
MeR | The most inferior and anterior point of the right lower border of the mandible |
IdL | Most inferior and anterior point on the left alveolar process of the mandible |
IdR | Most inferior and anterior point on the right alveolar process of the mandible |
I’L | The most anterior edge of the alveolar bone on the convexity of the left lower incisor. |
I’R | The most anterior edge of the alveolar bone on the convexity of the right lower incisor. |
I | Point on premaxilla between jawbone and lingual surface of upper incisors |
Po | Most posterior point on cranial vault |
PL | Most left anterior and lateral point of maxilla. |
PR | The most right anterior and lateral point of maxilla. |
PM1L | Most left anterior and lateral point of premaxilla |
PM1R | Most right anterior and lateral point of premaxilla |
PM2L | Most left posterior and lateral point of premaxilla |
PM2R | Most right posterior and lateral point of premaxilla |
M1L | Most palatal middle point of left 1rst molar |
M1R | Most palatal middle point of right 1rst molar |
M2L | Most palatal middle point of left 2nd molar |
M2R | Most palatal middle point of right 2nd molar |
M3L | Most palatal middle point of left 3rd molar |
M3R | Most palatal middle point of right 3rd molar |
Variables | Cochran’s Alpha | |
---|---|---|
Linear measurements | Go’–MeR | 0.810 |
Go–MeR | 0.787 | |
CorR–MeR | 0.798 | |
CoR\go’R–MeR | 0.803 | |
CoR–MeR | 0.915 | |
CoR–IdR right | 0.929 | |
CoR–I’R | 0.943 | |
CoR–GoR | 0.903 | |
CoR–Go’R | 0.842 | |
Go’L–MeL | 0.871 | |
GoL–MeL | 0.883 | |
CorL–MeL | 0.891 | |
CoL\Go’L–MeL | 0.961 | |
CoL–MeL | 0.857 | |
CoL–IdL | 0.982 | |
CoL–I’L | 0.959 | |
CoL–GoL | 0.912 | |
CoL–Go’L | 0.905 | |
CoL–CoR | 0.843 | |
Go’L–Go’R | 0.823 | |
MeL–MeR | 0.898 | |
IdL–IdR | 0.866 | |
I–Po | 0.819 | |
PR–PL | 0.872 | |
PM1R–PM1L | 0.961 | |
PM2R–PM2L | 0.870 | |
M1R–M1L | 0.767 | |
M2R–M2L | 0.781 | |
M3R–M3L | 0.895 |
Diet S (Soft) | Generation | |||
---|---|---|---|---|
1 (n = 10) | 2 (n = 10) | 3 (n = 10) | Overall | |
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | |
Go’–MeR | 18.5 (0.7) | 18.3 (0.5) | 17.4 (0.2) | 18.1 (0.7) |
Go–MeR | 21.1 (0.3) | 20.8 (0.6) | 18.8 (0.3) | 20.2 (1.1) |
CorR–MeR | 18.3 (0.6) | 18.2 (0.4) | 17.5 (0.2) | 18.0 (0.6) |
CoR\go’R–MeR | 1.4 (0.3) | 1.2 (0.2) | 0.9 (0.1) | 1.2 (0.3) |
CoR–MeR | 22.8 (0.3) | 21.6 (0.5) | 20.2 (0.2) | 21.5 (1.1) |
CoR–IdR right | 27.0 (0.4) | 25.3 (0.4) | 24.4 (0.2) | 25.6 (1.2) |
CoR–I’R | 26.1 (0.2) | 25.0 (0.2) | 24.3 (0.2) | 25.1 (0.8) |
CoR–GoR | 5.81 (0.49) | 5.44 (0.64) | 5.00 (0.63) | 5.34 (0.67) |
CoR–Go’R | 6.87 (0.69) | 6.25 (0.72) | 5.75 (0.59) | 6.26 (0.77) |
Go’L–MeL | 19.1 (1.3) | 19.8 (0.5) | 18.7 (0.2) | 19.2 (0.9) |
GoL–MeL | 20.7 (1.1) | 21.0 (0.8) | 18.9 (0.2) | 20.2 (1.2) |
CorL–MeL | 18.4 (0.6) | 18.4 (0.5) | 17.4 (0.2) | 18.1 (0.7) |
CoL\Go’L–MeL | 1.6 (0.2) | 1.2 (0.2) | 1.0 (0.2) | 1.3 (0.3) |
CoL–MeL | 22.8 (0.3) | 21.5 (0.6) | 19.7 (0.2) | 21.3 (1.3) |
CoL–IdL | 27.1 (0.4) | 25.4 (0.4) | 24.3 (0.2) | 25.6 (1.2) |
CoL–I’L | 25.9 (0.3) | 24.9 (0.2) | 24.3 (0.2) | 25.0 (0.7) |
CoL–GoL | 5.71 (0.49) | 5.34 (0.64) | 4.90 (0.63) | 5.24 (0.67) |
CoL–Go’L | 6.77 (0.69) | 6.15 (0.72) | 5.65 (0.59) | 6.16 (0.77) |
CoL–CoR | 17.00 (0.40) | 16.62 (0.35) | 16.78 (0.32) | 16.80 (0.38) |
Go’L–Go’R | 16.15 (1.07) | 15.93 (0.69) | 16.23 (0.80) | 16.10 (0.85) |
MeL–MeR | 3.33 (0.82) | 3.28 (0.54) | 3.33 (0.57) | 3.31 (0.64) |
IdL–IdR | 2.05 (0.20) | 1.92 (0.25) | 2.00 (0.19) | 1.99 (0.22) |
I–Po | 35.2 (0.61) | 35.1 (0.71) | 35.8 (0.65) | 35.36 (0.65) |
PR–PL | 8.5 (0.23) | 8.3 (0.22) | 8.5 (0.20) | 8.4 (0.21) |
PM1R–PM1L | 3.3 (0.12) | 3.2 (0.13) | 3.3 (0.11) | 3.26 (0.12) |
PM2R–PM2L | 6.3 (0.16) | 6.1 (0.16) | 6.3 (0.19) | 6.23 (0.17) |
M1R–M1L | 3.4 (0.33) | 2.8 (0.32) | 2.15 (0.29) | 2.68 (0.31) |
M2R–M2L | 3.56 (0.34) | 2.73 (0.34) | 2.2 (0.32) | 2.73 (0.33) |
M3R–M3L | 3.57 (0.32) | 3.2 (0.31) | 2.45 (0.30) | 3.40 (0.31) |
Diet H (Hard) | Generation | |||
---|---|---|---|---|
1 (n = 10) | 2 (n = 10) | 3 (n = 10) | Overall | |
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | |
Go’–MeR | 20.4 (0.7) | 20.4 (0.3) | 20.4 (0.4) | 20.4 (0.6) |
Go–MeR | 21.3 (0.6) | 21.3 (0.5) | 21.3 (0.7) | 21.3 (0.6) |
CorR–MeR | 18.7 (0.3) | 18.7 (0.1) | 18.7 (0.5) | 18.7 (0.3) |
CoR\go’R–MeR | 1.8 (0.1) | 1.8 (0.5) | 1.8 (0.08) | 1.8 (0.1) |
CoR–MeR | 23.5 (0.3) | 23.5 (0.7) | 23.5 (0.07) | 23.5 (0.2) |
CoR–IdR right | 27.8 (0.2) | 27.8 (0.1) | 27.8 (0.3) | 27.8 (0.2) |
CoR–I’R | 26.6 (0.3) | 26.6 (0.6) | 26.6 (0.07) | 26.6 (0.3) |
CoR–GoR | 7.55 (0.55) | 7.05 (0.51) | 6.67 (0.59) | 7.07 (0.65) |
CoR–Go’R | 8.74 (0.61) | 8.17 (0.46) | 8.78 (0.74) | 8.56 (0.71) |
Go’L–MeL | 20.3 (0.7) | 20.3 (0.3) | 20.3 (0.4) | 20.3 (0.6) |
GoL–MeL | 20.7 (0.6) | 20.7 (0.5) | 20.7 (0.7) | 20.7 (0.6) |
CorL–MeL | 18.9 (0.3) | 18.9 (0.1) | 18.9 (0.5) | 18.9 (0.3) |
CoL\Go’L–MeL | 1.9 (0.1) | 1.9 (0.5) | 1.9 (0.08) | 1.9 (0.1) |
CoL–MeL | 23.4 (0.3) | 23.4 (0.7) | 23.4 (0.1) | 23.4 (0.3) |
CoL–IdL | 27.7 (0.1) | 27.7 (0.1) | 27.7 (0.2) | 27.7 (0.1) |
CoL–I’L | 26.6 (0.2) | 26.6 (0.3) | 26.6 (0.2) | 26.6 (0.2) |
CoL–GoL | 7.45 (0.55) | 7.00 (0.51) | 6.57 (0.59) | 7.01 (0.65) |
CoL–Go’L | 8.64 (0.61) | 8.07 (0.46) | 8.68 (0.74) | 8.46 (0.71) |
CoL–CoR | 16.86 (0.32) | 16.78 (0.42) | 16.74 (0.35) | 16.79 (0.36) |
Go’L–Go’R | 16.15 (1.02) | 16.31 (0.26) | 16.30 (0.80) | 16.25 (0.74) |
MeL–MeR | 3.49 (0.62) | 3.05 (0.53) | 3.33 (0.57) | 3.29 (0.59) |
IdL–IdR | 1.99 (0.25) | 1.92 (0.23) | 2.01 (0.16) | 1.97 (0.21) |
I–Po | 34.9 (0.72) | 35.3 (0.61) | 35.7 (0.65) | 35.3 (0.66) |
PR–PL | 8.4 (0.26) | 8.1 (0.24) | 8.6 (0.22) | 8.36 (0.24) |
PM1R–PM1L | 3.2 (0.15) | 3.0 (0.13) | 3.3 (0.16) | 3.16 (0.14) |
PM2R–PM2L | 6.2 (0.18) | 6.5 (0.12) | 6.1 (0.14) | 6.16 (0.14) |
M1R–M1L | 4.0 (0.29) | 4.2 (0.31) | 4.3 (0.33) | 4.16 (0.31) |
M2R–M2L | 4.2 (0.34) | 4.1 (0.34) | 4.4 (0.32) | 4.3 (0.33) |
M3R–M3L | 4.6 (0.35) | 4.8 (0.33) | 4.9 (0.31) | 4.76 (0.31) |
S1–H1 | S2–H2 | S3–H3 | S1–S2 | S1–S3 | S2–S3 | H1–H2 | H1–H3 | H2–H3 | |
---|---|---|---|---|---|---|---|---|---|
Right-Side Mandible | |||||||||
Go’R–MeR | <0.001 | <0.001 | <0.001 | >0.999 | 0.007 | 0.006 | 0.079 | 0.065 | 0.137 |
GoR–MeR | >0.999 | 0.258 | <0.001 | >0.999 | 0.010 | 0.041 | 0.080 | 0.079 | 0.087 |
CorR–MeR | 0.096 | 0.036 | <0.001 | >0.999 | 0.004 | 0.027 | 0.091 | 0.068 | 0.15 |
CoR\Go’R–MeR | 0.047 | <0.001 | <0.001 | 0.062 | 0.008 | 0.062 | 0.085 | 0.094 | 0.093 |
CoR–MeR | <0.001 | <0.001 | <0.001 | 0.021 | 0.011 | 0.031 | 0.089 | 0.088 | 0.089 |
CoR–IdR | <0.001 | <0.001 | <0.001 | 0.010 | 0.026 | 0.009 | 0.109 | >0.999 | 0.236 |
CoR–I’R | <0.001 | <0.001 | <0.001 | 0.034 | 0.003 | 0.013 | 0.201 | >0.999 | 0.311 |
CoR–GoR | <0.001 | <0.001 | <0.001 | >0.999 | 0.007 | 0.320 | 0.204 | 0.150 | 0.750 |
CoR–Go’R | <0.001 | <0.001 | <0.001 | 0.422 | 0.003 | 0.248 | 0.148 | 0.300 | 0.781 |
Left-Side Mandible | |||||||||
Go’L–MeL | 0.001 | 0.533 | <0.001 | 0.091 | 0.029 | 0.005 | 0.101 | 0.069 | 0.143 |
GoL–MeL | >0.999 | >0.999 | <0.001 | >0.999 | 0.015 | 0.028 | 0.083 | 0.083 | 0.093 |
CorL–MeL | 0.008 | 0.013 | <0.001 | >0.999 | 0.007 | 0.032 | 0.097 | 0.072 | 0.023 |
CoL\Go’L–MeL | 0.005 | <0.001 | <0.001 | 0.042 | 0.012 | 0.035 | 0.086 | 0.096 | >0.084 |
CoL–MeL | 0.001 | <0.001 | <0.001 | 0.036 | 0.009 | 0.028 | 0.090 | 0.092 | 0.095 |
CoL–IdL | <0.001 | <0.001 | <0.001 | 0.008 | 0.031 | 0.016 | 0.123 | >0.999 | 0.242 |
CoL–I’L | <0.001 | <0.001 | <0.001 | 0.027 | 0.005 | 0.007 | 0.231 | >0.999 | 0.371 |
CoL–GoL | <0.001 | <0.001 | <0.001 | >0.999 | 0.01 | 0.240 | 0.234 | 0.210 | 0.624 |
CoL–Go’L | <0.001 | <0.001 | <0.001 | 0.232 | 0.004 | 0.568 | 0.418 | 0.420 | 0.511 |
Transverse Mandible | |||||||||
CoL–CoR | >0.999 | 0.974 | >0.999 | 0.088 | 0.710 | >0.999 | >0.999 | >0.999 | >0.999 |
Go’L–Go’R | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 |
MeL–MeR | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | 0.470 | >0.999 | >0.999 |
IdL–IdR | >0.999 | >0.999 | >0.999 | 0.7345 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 |
Maxilla | |||||||||
I–Po | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 |
Transverse Maxilla | |||||||||
PR–PL | >0.999 | >0.999 | >0.999 | 0.618 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 |
PM1R–PM1L | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 |
PM2R–PM2L | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 |
M1R–M1L | >0.999 | >0.999 | >0.999 | 0.7345 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 |
M2R–M2L | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 |
M3R–M3L | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 |
PR–PL | >0.999 | >0.999 | >0.999 | 0.894 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 |
PM1R–PM1L | >0.999 | 0.891 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 |
PM2R–PM2L | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 |
M1R–M1L | 0.057 | <0.001 | <0.001 | 0.077 | 0.008 | 0.072 | 0.095 | 0.078 | 0.084 |
M2R–M2L | 0.068 | <0.001 | <0.001 | 0.059 | 0.012 | 0.034 | 0.079 | 0.094 | 0.093 |
M3R–M3L | 0.040 | <0.001 | <0.001 | 0.062 | 0.006 | 0.055 | 0.083 | 0.085 | 0.088 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsolakis, I.A.; Verikokos, C.; Perrea, D.; Perlea, P.; Alexiou, K.-E.; Yfanti, Z.; Lyros, I.; Georgaki, M.; Papadopoulou, E.; Tsolakis, A.I. Effects of Diet Consistency on Rat Maxillary and Mandibular Growth within Three Generations—A Longitudinal CBCT Study. Biology 2023, 12, 1260. https://doi.org/10.3390/biology12091260
Tsolakis IA, Verikokos C, Perrea D, Perlea P, Alexiou K-E, Yfanti Z, Lyros I, Georgaki M, Papadopoulou E, Tsolakis AI. Effects of Diet Consistency on Rat Maxillary and Mandibular Growth within Three Generations—A Longitudinal CBCT Study. Biology. 2023; 12(9):1260. https://doi.org/10.3390/biology12091260
Chicago/Turabian StyleTsolakis, Ioannis A., Christos Verikokos, Despoina Perrea, Paula Perlea, Konstantina-Eleni Alexiou, Zafeiroula Yfanti, Ioannis Lyros, Maria Georgaki, Erofili Papadopoulou, and Apostolos I. Tsolakis. 2023. "Effects of Diet Consistency on Rat Maxillary and Mandibular Growth within Three Generations—A Longitudinal CBCT Study" Biology 12, no. 9: 1260. https://doi.org/10.3390/biology12091260
APA StyleTsolakis, I. A., Verikokos, C., Perrea, D., Perlea, P., Alexiou, K. -E., Yfanti, Z., Lyros, I., Georgaki, M., Papadopoulou, E., & Tsolakis, A. I. (2023). Effects of Diet Consistency on Rat Maxillary and Mandibular Growth within Three Generations—A Longitudinal CBCT Study. Biology, 12(9), 1260. https://doi.org/10.3390/biology12091260