Cytochrome P450s-Involved Enhanced Metabolism Contributes to the High Level of Nicosulfuron Resistance in Digitaria sanguinalis from China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Herbicides and Chemicals
2.3. Whole-Plant Dose–Response Experiments
2.4. Identification of Mutations in the ALS Gene
2.5. Analysis of the Expression Level of the ALS Gene
2.6. Susceptibility Level to Nicosulfuron after P450 Inhibitor Treatment
2.7. Detection of Nicosulfuron Residues in R and S Plants
2.8. Resistance Pattern to Different Herbicides
2.9. Data Analyses
3. Results
3.1. Susceptibility to Nicosulfuron in R and S Plants
3.2. Sequencing and Analysis of ALS Gene
3.3. Effects of Malathion on Nicosulfuron Resistance
3.4. Nicosulfuron Metabolism in D. sanguinalis
3.5. Cross- and Multiple Resistance to Other Herbicides
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quan, L.; Lou, Z.X.; Lv, X.L.; Sun, D.; Xia, F.L.; Li, H.L.; Sun, W.F. Multimodal remote sensing application for weed competition time series analysis in maize farmland ecosystems. J. Environ. Manag. 2023, 344, 118376. [Google Scholar] [CrossRef]
- Song, Y.L.; Tian, J.F.; Linderholm, H.W.; Wang, C.Y.; Ou, Z.R.; Chen, D.L. The contributions of climate change and production area expansion to drought risk for maize in China over the last four decades. Int. J. Climatol. 2021, 41, E2851–E2862. [Google Scholar] [CrossRef]
- Mei, Y.; Si, C.; Liu, M.J.; Qiu, L.H.; Zheng, M.Q. Investigation of resistance levels and mechanisms to nicosulfuron conferred by nontarget-site mechanisms in large crabgrass (Digitaria sanguinalis L.) from China. Pest. Biochem. Physiol. 2017, 141, 84–89. [Google Scholar] [CrossRef]
- Johnson, B.C.; Young, B.G. Influence of temperature and relative humidity on the foliar activity of mesotrione. Weed Sci. 2002, 50, 157–161. [Google Scholar] [CrossRef]
- Kaundun, S.S.; Downes, J.; Jackson, L.V.; Hutchings, S.J.; Mcindoe, E. Impact of a novel W2027L mutation and nontarget site Resistance on Acetyl-CoA Carboxylase-inhibiting herbicides in a French Lolium multiflorum population. Genes 2021, 12, 11. [Google Scholar]
- Huang, Z.F.; Lu, Z.Z.; Huang, H.J.; Li, W.Y.; Cao, Y.; Wei, S.H. Target site mutations and cytochrome P450s-involved metabolism confer resistance to nicosulfuron in green foxtail (Setaria viridis). Pest. Biochem. Physiol. 2021, 179, 104956. [Google Scholar] [CrossRef]
- Cao, Y.; Lan, Y.N.; Huang, H.J.; Wei, S.H.; Li, X.J.; Sun, Y.; Wang, R.L.; Huang, Z.F. Molecular characterization of resistance to nicosulfuron in Setaria viridis. Int. J. Mol. Sci. 2023, 24, 7105. [Google Scholar] [CrossRef]
- Yang, C.; Wang, H.; Duan, Y.X.; Bei, F.; Jia, S.S.; Wang, J.X.; Wang, H.Z.; Liu, W.T. Enhanced herbicide metabolism and target-site mutations confer multiple resistance to fomesafen and nicosulfuron in Amaranthus retroflexus L. Biology 2023, 12, 592. [Google Scholar] [CrossRef]
- Papapanagiotou, A.P.; Loukovitis, D.; Ntoanidou, S.; Eleftherohorinos, I.G. Target-site cross-resistance to ALS inhibitors in johnsongrass originating from Greek cornfields. Weed Technol. 2022, 36, 276–282. [Google Scholar] [CrossRef]
- Hernandez, M.J.; Leon, R.; Fischer, A.J.; Gebauer, M.; Galdames, R.; Figueroa, R. Target-site resistance to nicosulfuron in johnsongrass (Sorghum halepense) from chilean corn fields. Weed Sci. 2015, 63, 631–640. [Google Scholar] [CrossRef]
- Volenberg, D.S.; Stoltenberg, D.E.; Boerboom, C.M. Biochemical mechanism and inheritance of cross-resistance to acetolactate synthase inhibitors in giant foxtail. Weed Sci. 2001, 49, 635–641. [Google Scholar] [CrossRef]
- Powles, S.B.; Yu, Q. Evolution in action: Plants resistant to herbicides. Annu. Rev. Plant Biol. 2010, 61, 317–347. [Google Scholar] [PubMed]
- Beckie, H.J.; Tardif, F.J. Herbicide cross resistance in weeds. Crop Prot. 2012, 35, 15–28. [Google Scholar]
- Yin, S.S.; Hu, W.; Chai, Y.; Jiang, M.H.; Zhang, J.X.; Cao, H.Q.; Zhao, N.; Liao, M. Molecular basis of resistance to bensulfuron-methyl in a smallflower umbrella sedge (Cyperus difformis L.) population from China. Agronomy 2023, 13, 4. [Google Scholar]
- Fang, J.P.; Yang, D.C.; Zhao, Z.R.; Chen, J.Y.; Dong, L.Y. A novel Phe-206-Leu mutation in acetolactate synthase confers resistance to penoxsulam in barnyardgrass (Echinochloa crus-galli (L.) P. Beauv). Pest Manag. Sci. 2022, 78, 2560–2570. [Google Scholar] [CrossRef]
- Li, J.; Li, M.; Gao, X.X.; Fang, F. A novel amino acid substitution Trp574Arg in acetolactate synthase (ALS) confers broad resistance to ALS-inhibiting herbicides in crabgrass (Digitaria sanguinalis). Pest Manag. Sci. 2017, 73, 2538–2543. [Google Scholar] [CrossRef]
- Sen, M.K.; Hamouzova, K.; Mikulka, J.; Bharati, R.; Kosnarova, P.; Hamouz, P.; Roy, A.; Soukup, J. Enhanced metabolism and target gene overexpression confer resistance against acetolactate synthase-inhibiting herbicides in Bromus sterilis. Pest Manag. Sci. 2021, 77, 2122–2128. [Google Scholar] [CrossRef]
- Scarabel, L.; Pernin, F.; Délye, C. Occurrence, genetic control and evolution of non-target-site based resistance to herbicides inhibiting acetolactate synthase (ALS) in the dicot weed Papaver rhoeas. Plant Sci. 2015, 238, 158–169. [Google Scholar]
- Délye, C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade. Pest Manag. Sci. 2013, 69, 176–187. [Google Scholar]
- Wang, J.; Lian, L.; Qi, J.L.; Fang, Y.H.; Nyporko, A.; Yu, Q.; Bai, L.Y.; Pan, L. Metabolic resistance to acetolactate synthase inhibitors in Beckmannia syzigachne: Identification of CYP81Q32 and its transcription regulation. Plant J. 2023, 115, 317–334. [Google Scholar] [CrossRef]
- Hidayat, I.; Preston, C. Cross-resistance to imazethapyr in a fluazifop-P-butyl-resistant population of Digitaria sanguinalis. Pest. Biochem. Physiol. 2001, 71, 190–195. [Google Scholar] [CrossRef]
- Healey, A.; Furtado, A.; Cooper, T.; Henry, R.J. Protocol: A simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods 2014, 10, 21. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Zhao, N.; Yang, J.J.; Jiang, M.H.; Liao, M.; Cao, H.Q. Identification of essential genes involved in metabolism-based resistance mechanism to fenoxaprop-P-ethyl in Polypogon fugax. Pest Manag. Sci. 2021, 78, 1164–1175. [Google Scholar]
- Zhao, B.C.; Xu, X.; Li, B.H.; Qi, Z.Z.; Huang, J.N.; Hu, A.L.; Wang, G.Q.; Liu, X.M. Target-site mutation and enhanced metabolism endow resistance to nicosulfuron in a Digitaria sanguinalis population. Pest. Biochem. Physiol. 2023, 194, 105488. [Google Scholar]
- Tranel, P.J.; Wright, T.R. Resistance of weeds to ALS-inhibiting herbicides: What have we learned? Weed Sci. 2002, 50, 700–712. [Google Scholar] [CrossRef]
- Qin, X.Y.; Yang, C.; Hu, M.M.; Duan, Y.X.; Zhang, N.; Wang, J.X.; Wang, H.Z.; Liu, W.T. Molecular basis of resistance to mesosulfuron-Methyl in a black-grass (Alopecurus myosuroides Huds.) population from China. Agronomy 2022, 12, 9. [Google Scholar]
- Li, Q.; Zhao, N.; Jiang, M.H.; Wang, M.L.; Zhang, J.X.; Cao, H.Q.; Liao, M. Metamifop resistance in Echinochloa glabrescens via glutathione S-transferases-involved enhanced metabolism. Pest Manag. Sci. 2023, 79, 2725–2736. [Google Scholar] [CrossRef]
- Panozzo, S.; Mascanzoni, E.; Scarabel, L.; Milani, A.; Dalazen, G.; Merotto, A.J.; Tranel, P.J.; Sattin, M. Target-site mutations and expression of ALS gene copies vary according to Echinochloa species. Genes 2021, 12, 1841. [Google Scholar] [CrossRef]
- Ntoanidou, S.; Kaloumenos, N.; Diamantidis, G.; Madesis, P.; Eleftherohorinos, I. Molecular basis of Cyperus difformis cross-resistance to ALS-inhibiting herbicides. Pest. Biochem. Physiol. 2016, 127, 38–45. [Google Scholar]
- Deng, W.; Yang, Q.; Zhang, Y.Z.; Jiao, H.T.; Mei, Y.; Li, X.F.; Zheng, M.Q. Cross-resistance patterns to acetolactate synthase (ALS)-inhibiting herbicides of flixweed (Descurainia sophia L.) conferred by different combinations of ALS isozymes with a Pro-197-Thr mutation or a novel Trp-574-Leu mutation. Pest. Biochem. Physiol. 2017, 136, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Torralva, F.; Norsworthy, J.K. Overexpression of Acetyl CoA Carboxylase 1 and 3 (ACCase1 and ACCase3), and CYP81A21 were related to cyhalofop resistance in a barnyardgrass accession from Arkansas. Plant Signal. Behav. 2023, 18, 2172517. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Yan, Y.Y.; Wang, H.Z.; Bai, S.; Wang, Q.; Liu, W.T.; Wang, J.X. Acetolactate synthase overexpression in mesosulfuron-methyl-resistant shortawn foxtail (Alopecurus aequalis Sobol.): Reference gene selection and herbicide target gene expression analysis. J. Agric. Food Chem. 2018, 66, 9624–9634. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Powles, S.B. Resistance to AHAS inhibitor herbicides: Current understanding. Pest Manag. Sci. 2014, 70, 1340–1350. [Google Scholar] [CrossRef]
- Deng, W.; Yang, M.T.; Li, Y.; Xia, Z.M.; Chen, Y.R.; Yuan, S.Z.; Yang, Q. Enhanced metabolism confers a high level of cyhalofop-butyl resistance in a Chinese sprangletop (Leptochloa chinensis (L.) Nees) population. Pest Manag. Sci. 2021, 77, 2576–2583. [Google Scholar] [CrossRef]
- Zhao, N.; Yan, Y.Y.; Liu, W.T.; Wang, J.X. Cytochrome P450 CYP709C56 metabolizing mesosulfuron-methyl confers herbicide resistance in Alopecurus aequalis. Cell. Mol. Life Sci. 2022, 79, 205. [Google Scholar] [CrossRef]
- Pan, L.; Guo, Q.S.; Wang, J.Z.; Shi, L.; Yang, X.; Zhou, Y.Y.; Yu, Q.; Bai, L.Y. CYP81A68 confers metabolic resistance to ALS and ACCase-inhibiting herbicides and its epigenetic regulation in Echinochloa crus-galli. J. Hazard. Mater. 2022, 428, 128225. [Google Scholar] [CrossRef]
- Bai, S.; Yin, M.J.; Lyu, Q.H.; Jiang, B.; Li, L.X. Cytochrome P450 BsCYP99A44 and BsCYP704A177 confer metabolic resistance to ALS herbicides in Beckmannia syzigachne. Int. J. Mol. Sci. 2022, 23, 12175. [Google Scholar] [CrossRef]
- Cai, X.Y.; Chen, J.Y.; Wang, X.F.; Gao, H.T.; Xiang, B.H.; Dong, L.Y. Mefenacet resistance in multiple herbicide-resistant Echinochloa crus-galli L. populations. Pest. Biochem. Physiol. 2022, 182, 105038. [Google Scholar] [CrossRef]
- Feng, T.Q.; Peng, Q.; Wang, L.; Xie, Y.L.; Ouyang, K.; Li, F.L.; Zhou, H.Z.; Ma, H.J. Multiple resistance mechanisms to penoxsulam in Echinochloa crus-galli from China. Pest. Biochem. Physiol. 2022, 187, 105211. [Google Scholar] [CrossRef]
- Zhao, N.; Jiang, M.H.; Li, Q.; Gao, Q.; Zhang, J.X.; Liao, M.; Cao, H.Q. Cyhalofop-butyl resistance conferred by a novel Trp-2027-Leu mutation of acetyl-CoA carboxylase and enhanced metabolism in Leptochloa chinensis. Pest Manag. Sci. 2022, 78, 1176–1186. [Google Scholar] [CrossRef] [PubMed]
- Petit, C.; Duhieu, B.; Boucansaud, K.; Délye, C. Complex genetic control of non-target-site-based resistance to herbicides inhibiting acetyl-coenzyme A carboxylase and acetolactate-synthase in Alopecurus myosuroides Huds. Plant Sci. 2010, 178, 501–509. [Google Scholar] [CrossRef]
- Palma-Bautista, C.; Belluccini, P.; Gentiletti, V.; Vazquez-Garcia, J.G.; Cruz-Hipolito, H.E.; De Prado, R. Multiple resistance to glyphosate and 2,4-D in Carduus acanthoides L. from Argentina and alternative control solutions. Agronomy 2020, 10, 1735. [Google Scholar] [CrossRef]
- Zhu, G.T.; Wang, H.; Gao, H.T.; Liu, Y.; Li, J.; Feng, Z.K.; Dong, L.Y. Multiple resistance to three modes of action of herbicides in a single italian ryegrass (Lolium multiflorum L.) population in China. Agronomy 2023, 13, 216. [Google Scholar] [CrossRef]
- Zhang, L.L.; Wang, W.J.; Du, Y.; Deng, Y.Y.; Bai, T.L.; Ji, M.S. Multiple resistance of Echinochloa phyllopogon to synthetic auxin, ALS-, and ACCase-inhibiting herbicides in Northeast China. Pest. Biochem. Physiol. 2023, 193, 105450. [Google Scholar] [CrossRef]
MOAs | Herbicides | Formulation | Supplier | Rate of Applications (g a.i. ha−1) a | |
---|---|---|---|---|---|
Susceptible Population | Resistant Population | ||||
ALS | Nicosulfuron | 40 g L−1 OD | Vicome Greenland, Shandong | 0, 2, 4, 8, 15, 30, 60 | 0, 15, 30, 60, 120, 240, 480 |
Thifensulfuron-methyl | 75% WDG | Ruibang, Jiangsu | 0, 1.5, 3, 6.30, 12.5, 25 | 0, 6.30, 12.5, 25, 50, 100 | |
Rimsulfuron | 25% WDG | Ruibang, Jiangsu | 0, 6, 12, 23, 46, 92 | 0, 6, 12, 23, 46, 92 | |
Pyrazosulfuron-ethyl | 15% OD | Shareworld, Anhui | 0, 2, 4, 9, 17, 34 | 0, 9, 17, 34, 68, 136 | |
HPPD | Tembotrione | 8% OD | Jiuyi Agriculture, Anhui | 0, 32, 63, 126, 252, 504 | 0, 32, 63, 126, 252, 504 |
Mesotrione | 15% SC | Xingyu Chemical, Hefei | 0, 18, 37, 73, 146, 292 | 0, 18, 37, 73, 146, 292 | |
Topramezone | 4% OD | Suncas, Hunan | 0, 9, 18, 36, 72, 144 | 0, 9, 18, 36, 72, 144 | |
PS II | Bromoxynil octanoate | 25% EC | Ruibang, Jiangsu | 0, 7, 21, 62, 187, 562 | 0, 35, 70, 140, 281, 562 |
Atrazine | 90% WDG | Tianyi Herbicide, Liaoning | 0, 17, 50, 150,450, 1349 | 0, 17, 50, 150,450, 1349 | |
ACCase | Cyhalofop-butyl | 100 g L−1 EC | Yonon, Zhejiang | 0, 23, 45, 90, 180, 360 | 0, 23, 45, 90, 180, 360 |
Herbicide | Biotype b | Regression Parameters | GR50 (g a.i. ha−1) (SEM) | RI c | |||
---|---|---|---|---|---|---|---|
C (SEM) | D (SEM) | b (SEM) | R2 | ||||
Nicosulfuron | R | 3.0 (2.8) | 84.8 (3.0) | 3.1 (0.5) | 0.99 | 76.8 (5.0) | 11.5 |
S | 10.2 (5.9) | 81.2(10.3) | 4.0 (2.6) | 0.96 | 6.7 (1.3) | ||
Nicosulfuron plus malathion | R | 4.5 (3.4) | 73.2 (4.9) | 4.4 (1.4) | 0.99 | 49.1 (4.7) | 7.7 * |
S | 14.1 (2.9) | 75.1 (4.0) | 7.2 (4.2) | 0.99 | 6.4 (0.9) |
Time after Nicosulfuron Treatment (h) | Residual Amounts of Nicosulfuron (µg g−1) | |
---|---|---|
R | S | |
6 | 5.74 ± 0.17 a | 5.60 ± 0.19 a |
12 | 5.03 ± 0.07 a | 5.15 ± 0.13 a |
24 | 3.58 ± 0.07 b | 3.85 ± 0.10 a |
48 | 2.56 ± 0.05 b | 3.14 ± 0.12 a |
Herbicide | Biotype b | Regression Parameters | GR50 (g a.i. ha−1)(SEM) | RI c | |||
---|---|---|---|---|---|---|---|
C (SEM) | D (SEM) | b (SEM) | R2 | ||||
Thifensulfuron-methyl | R | 6.0 (1.4) | 84.0 (2.2) | 3.7 (0.4) | 0.99 | 19.5 (0.7) | 3.7 |
S | 8.3 (6.0) | 89.8 (8.2) | 2.1 (0.6) | 0.99 | 5.3 (0.7) | ||
Rimsulfuron | R | 6.6 (1.1) | 65.4 (1.2) | 3.6 (0.4) | 0.99 | 22.7 (0.6) | 1.1 |
S | 1.9 (0.8) | 53.2 (1.1) | 5.3 (0.7) | 0.99 | 20.0 (0.6) | ||
Pyrazosulfuron-ethyl | R | 23.7 (3.4) | 97.2 (4.6) | 4.5 (1.7) | 0.99 | 30.1 (2.4) | 4.2 |
S | 11.9 (0.4) | 74.0 (0.5) | 3.4 (0.1) | 0.99 | 7.1 (0.1) | ||
Tembotrione | R | 1.5 (8.1) | 70.0 (8.8) | 2.4 (1.2) | 0.99 | 122.2 (22.4) | 0.7 |
S | −1.8 (3.8) | 58.9 (2.2) | 2.3 (0.4) | 0.99 | 170.0 (13.2) | ||
Mesotrione | R | 13.1 (5.1) | 86.5 (7.2) | 5.3 (2.7) | 0.99 | 58.5 (8.3) | 1.0 |
S | 7.9 (0.7) | 81.2 (1.0) | 4.2 (0.2) | 0.99 | 56.5 (1.0) | ||
Topramezone | R | 4.8 (0.7) | 53.8 (1.1) | 2.8 (0.2) | 0.99 | 28.6 (0.8) | 1.0 |
S | 3.5 (5.2) | 55.2 (7.3) | 3.0 (1.6) | 0.98 | 30.0 (5.6) | ||
Bromoxynil octanoate | R | 12.4 (2.3) | 65.3 (2.6) | 5.4 (3.2) | 0.99 | 134.9 (6.6) | 3.0 |
S | 13.1 (4.1) | 67.6 (5.8) | 4.4 (4.1) | 0.98 | 44.6 (15.4) | ||
Atrazine | R | 13.7 (3.0) | 67.5 (4.0) | 2.7 (1.1) | 0.99 | 356.2 (54.0) | 3.3 |
S | 6.5 (5.3) | 69.5 (7.7) | 2.5 (1.3) | 0.98 | 108.3 (27.8) | ||
Cyhalofop-butyl | R | 8.0 (7.1) | 88.2 (10.0) | 8.5 (7.1) | 0.98 | 78.6 (11.0) | 1.0 |
S | 10.7 (3.8) | 76.0 (5.3) | 5.6 (1.9) | 0.99 | 77.4 (6.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Hu, W.; Li, Y.; Jiang, M.; Zhao, N.; Cao, H.; Liao, M. Cytochrome P450s-Involved Enhanced Metabolism Contributes to the High Level of Nicosulfuron Resistance in Digitaria sanguinalis from China. Biology 2023, 12, 1192. https://doi.org/10.3390/biology12091192
Wang X, Hu W, Li Y, Jiang M, Zhao N, Cao H, Liao M. Cytochrome P450s-Involved Enhanced Metabolism Contributes to the High Level of Nicosulfuron Resistance in Digitaria sanguinalis from China. Biology. 2023; 12(9):1192. https://doi.org/10.3390/biology12091192
Chicago/Turabian StyleWang, Xumiao, Wei Hu, Yuxi Li, Minghao Jiang, Ning Zhao, Haiqun Cao, and Min Liao. 2023. "Cytochrome P450s-Involved Enhanced Metabolism Contributes to the High Level of Nicosulfuron Resistance in Digitaria sanguinalis from China" Biology 12, no. 9: 1192. https://doi.org/10.3390/biology12091192
APA StyleWang, X., Hu, W., Li, Y., Jiang, M., Zhao, N., Cao, H., & Liao, M. (2023). Cytochrome P450s-Involved Enhanced Metabolism Contributes to the High Level of Nicosulfuron Resistance in Digitaria sanguinalis from China. Biology, 12(9), 1192. https://doi.org/10.3390/biology12091192