Single-Cell Atlas Reveals the Hemocyte Subpopulations and Stress Responses in Asian Giant Softshell Turtle during Hibernation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Preparation of Single Hemocytes in Suspension
2.2. Library Construction and Single-Cell RNA Sequencing
2.3. Data Quality Control and Gene Expression Quantification
2.4. Cell Clustering
2.5. Differentially Expressed Genes (DEGs) between P. cantorii in the Active State (AS) and during the Hibernation (HI) Period
2.6. Prediction of Cell Cycles and Analysis of Cell Trajectory
3. Results
3.1. Global Transcriptome Profile of Hemocytes of P. cantorii
3.2. Identification of Cell Subtypes of P. cantorii Hemocytes
3.3. DEG Analysis in Cell Clusters between Hemocytes of P. cantorii in Active State and Hibernation Period
3.4. G2/M and S Phase Clustering and Pseudotime Trajectories of P. cantorii Hemocyte Clusters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shpacovitch, V.; Feld, M.; Hollenberg, M.; Luger, T.A.; Steinhoff, M. Role of protease-activated receptors in inflammatory responses, innate and adaptive immunity. J. Leukoc. Biol. 2008, 83, 1309–1322. [Google Scholar] [CrossRef] [Green Version]
- Lavine, M.D.; Strand, M.R. Insect hemocytes and their role in immunity. Insect Biochem. 2002, 32, 1295–1309. [Google Scholar] [CrossRef]
- Arneth, B. Coevolution of the coagulation and immune systems. Inflamm. Res. 2019, 68, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento, M.E.; Chin, K.L.; Lau, N.S.; Aziah, I.; Ismail, N.; Norazmi, M.N.; Acosta, A.; Yaacob, N.S. Comparative transcriptome profiling of horseshoe crab Tachypleus gigas hemocytes in response to lipopolysaccharides. Fish Shellfish. Immunol. 2021, 117, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Accorsi, A.; Bucci, L.; de Eguileor, M.; Ottaviani, E.; Malagoli, D. Comparative analysis of circulating hemocytes of the freshwater snail Pomacea canaliculata. Fish Shellfish. Immunol. 2013, 34, 1260–1268. [Google Scholar] [CrossRef] [PubMed]
- Parrinello, D.; Bellante, A.; Parisi, M.G.; Sanfratello, M.A.; Indelicato, S.; Piazzese, D.; Cammarata, M. The ascidian Styela plicata hemocytes as a potential biomarker of marine pollution: In vitro effects of seawater and organic mercury. Ecotoxicol. Environ. Saf. 2017, 136, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Pascual, C.; Cruz-Lopez, H.; Mascaró, M.; Gallardo, P.; Sánchez, A.; Domingues, P.; Rosas, C. Changes in Biochemical Composition and Energy Reserves Associated with Sexual Maturation of Octopus maya. Front. Physiol. 2020, 11, 22. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Zhang, X. Haemocyte variations in 35 species of grasshoppers and locusts. Sci. Prog. 2021, 104, 368504211053551. [Google Scholar] [CrossRef]
- López, J.; Echevarría, M.; Vázquez, J.J. Histological and immunocytochemical study of the endocrine pancreas of the lizard Podarcis hispanica Steindachner, 1870 (Lacertidae). Gen. Comp. Endocrinol. 1988, 71, 212–228. [Google Scholar] [CrossRef]
- Sykes, J.M.T.; Klaphake, E. Reptile hematology. Vet. Clin. N. Am. Exot. Anim. Pract. 2008, 11, 481–500. [Google Scholar] [CrossRef]
- Latorre, M.A.; Romito, M.L.; Larriera, A.; Poletta, G.L.; Siroski, P.A. Total and differential white blood cell counts in Caiman latirostris after in ovo and in vivo exposure to insecticides. J. Immunotoxicol. 2016, 13, 903–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.P. General situation of Chelonia hematology and blood chemistry research. Chin. J. Zool. 2001, 36, 47–51. [Google Scholar]
- Fu, L.; Hong, M.; Shi, H. Progressin the research ofchelonian blood cells. J. Hainan Norm. Univ. 2003, 16, 68–73. [Google Scholar]
- Hong, X.; Cai, X.; Chen, C.; Liu, X.; Zhao, J.; Qiu, Q.; Zhu, X. Conservation Status of the Asian Giant Softshell Turtle (Pelochelys cantorii) in China. Chelonian Conserv. Biol. 2019, 18, 68–74. [Google Scholar]
- Palot, M.J.; Radhakrishnan, C. Occurrence of Asian Giant Softshell Turtle Pelochelys cantorii (Gray, 1864) in northern Kerala. Zoos Print J. 2002, 17, 770. [Google Scholar] [CrossRef]
- Hong, X.Y.; Zhu, X.P.; Chen, C.; Zhao, J.; Zhao-Yang, Y.E.; Qiu, Q.B. Reproduction traits of captive Asian giant softshell turtles, Pelochelys Cantorii. Acta Hydrobiol. Sin. 2018, 42, 794–799. [Google Scholar]
- Wu, Y.M.; Wang, Y. Ecological observation of the Asian giant softshell turtle in Oujiang River Basin, Zhejiang Province. Chin. J. Zool. 1987, 3, 36–39. [Google Scholar]
- Soneson, C.; Robinson, M.D. Bias, robustness and scalability in single-cell differential expression analysis. Nat. Methods 2018, 15, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, W.; Yang, Y.; Chen, K.; Li, Y.; Zhu, X.; Ye, H.; Xu, H. Corrigendum: Transcriptome Profiling of the Ovarian Cells at the Single-Cell Resolution in Adult Asian Seabass. Front. Cell Dev. Biol. 2021, 9, 714482. [Google Scholar] [CrossRef] [PubMed]
- Watcham, S.; Kucinski, I.; Gottgens, B. New insights into hematopoietic differentiation landscapes from single-cell RNA sequencing. Blood 2019, 133, 1415–1426. [Google Scholar] [CrossRef]
- Goto-Silva, L.; Junqueira, M. Single-cell proteomics: A treasure trove in neurobiology. Biochim. Biophys. Acta Proteins Proteom. 2021, 1869, 140658. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.Q.; Xu, Z.G.; Shang, G.D.; Wang, J.W. A Single-Cell RNA Sequencing Profiles the Developmental Landscape of Arabidopsis Root. Mol. Plant 2019, 12, 648–660. [Google Scholar] [CrossRef]
- Schelker, M.; Feau, S.; Du, J.; Ranu, N.; Klipp, E.; MacBeath, G.; Schoeberl, B.; Raue, A. Estimation of immune cell content in tumour tissue using single-cell RNA-seq data. Nat. Commun. 2017, 8, 2032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandberg, R. Entering the era of single-cell transcriptomics in biology and medicine. Nat. Methods 2014, 11, 22–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, M.; Xia, J.; Fei, S.; Peng, R.; Wang, X.; Zhou, Y.; Wang, P.; Swevers, L.; Sun, J. Identification of Silkworm Hemocyte Subsets and Analysis of Their Response to Baculovirus Infection Based on Single-Cell RNA Sequencing. Front. Immunol. 2021, 12, 645359. [Google Scholar] [CrossRef] [PubMed]
- Vermeersch, L.; Jariani, A.; Helsen, J.; Heineike, B.M.; Verstrepen, K.J. Single-Cell RNA Sequencing in Yeast Using the 10× Genomics Chromium Device. Methods Mol. Biol. 2022, 2477, 3–20. [Google Scholar]
- Li, L.; Dong, J.; Yan, L.; Yong, J.; Liu, X.; Hu, Y.; Fan, X.; Wu, X.; Guo, H.; Wang, X.; et al. Single-Cell RNA-Seq Analysis Maps Development of Human Germline Cells and Gonadal Niche Interactions. Cell Stem Cell 2017, 20, 858–873.e854. [Google Scholar] [CrossRef] [Green Version]
- Souza, N.D. Single-cell methods. Nat. Methods 2012, 9, 35. [Google Scholar] [CrossRef]
- Pennisi, E. The biology of genomes. Single-cell sequencing tackles basic and biomedical questions. Science 2012, 336, 976–977. [Google Scholar] [CrossRef]
- Paul, F.; Arkin, Y.; Giladi, A.; Jaitin, D.A.; Kenigsberg, E.; Keren-Shaul, H.; Winter, D.; Lara-Astiaso, D.; Gury, M.; Weiner, A.; et al. Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors. Cell 2016, 164, 325. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, M.S.; Tirosh, I.; Heckl, D.; Rao, T.N.; Dixit, A.; Haas, B.J.; Schneider, R.K.; Wagers, A.J.; Ebert, B.L.; Regev, A. Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res. 2015, 25, 1860–1872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tusi, B.K.; Wolock, S.L.; Weinreb, C.; Hwang, Y.; Hidalgo, D.; Zilionis, R.; Waisman, A.; Huh, J.R.; Klein, A.M.; Socolovsky, M. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature 2018, 555, 54–60. [Google Scholar] [CrossRef]
- Regev, A.; Teichmann, S.A.; Lander, E.S.; Amit, I.; Benoist, C.; Birney, E.; Bodenmiller, B.; Campbell, P.; Carninci, P. The Human Cell Atlas. Elife 2017, 6, e27041. [Google Scholar] [CrossRef] [PubMed]
- Chung, N.C.; Storey, J.D. Statistical significance of variables driving systematic variation in high-dimensional data. Bioinformatics (Oxford, England) 2015, 31, 545–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotta, R.; Noack, A. Multilevel local search algorithms for modularity clustering. J. Exp. Algorithmics 2011, 16, 2-1. [Google Scholar] [CrossRef]
- Laurens, V.D.M.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Camp, J.G.; Sekine, K.; Gerber, T.; Loeffler-Wirth, H.; Binder, H.; Gac, M.; Kanton, S.; Kageyama, J.; Damm, G.; Seehofer, D.; et al. Multilineage communication regulates human liver bud development from pluripotency. Nature 2017, 546, 533–538. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Macosko, E.Z.; Basu, A.; Satija, R.; Nemesh, J.; Shekhar, K.; Goldman, M.; Tirosh, I.; Bialas, A.R.; Kamitaki, N.; Martersteck, E.M.; et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 2015, 161, 1202–1214. [Google Scholar] [CrossRef] [Green Version]
- Neftel, C.; Laffy, J.; Filbin, M.G.; Hara, T.; Shore, M.E.; Rahme, G.J.; Richman, A.R.; Silverbush, D.; Shaw, M.L.; Hebert, C.M.; et al. An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell 2019, 178, 835–849.e821. [Google Scholar] [CrossRef]
- Trapnell, C.; Cacchiarelli, D.; Grimsby, J.; Pokharel, P.; Li, S.; Morse, M.; Lennon, N.J.; Livak, K.J.; Mikkelsen, T.S.; Rinn, J.L. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 2014, 32, 381–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Manno, G.; Soldatov, R.; Zeisel, A.; Braun, E.; Hochgerner, H.; Petukhov, V.; Lidschreiber, K.; Kastriti, M.E.; Lönnerberg, P.; Furlan, A.; et al. RNA velocity of single cells. Nature 2018, 560, 494–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGinnis, C.S.; Murrow, L.M.; Gartner, Z.J. DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. Cell Systems 2019, 8, 329–337.e324. [Google Scholar] [CrossRef]
- Koiwai, K.; Koyama, T.; Tsuda, S.; Toyoda, A.; Kikuchi, K.; Suzuki, H.R.K. Single-cell RNA-seq analysis reveals penaeid shrimp hemocyte subpopulations and cell differentiation process. Elife 2021, 10, e66954. [Google Scholar] [CrossRef] [PubMed]
- Pils, D.; Bachmayr-Heyda, A.; Auer, K.; Svoboda, M.; Auner, V.; Hager, G.; Obermayr, E.; Reiner, A.; Reinthaller, A.; Speiser, P.; et al. Cyclin E1 (CCNE1) as independent positive prognostic factor in advanced stage serous ovarian cancer patients—A study of the OVCAD consortium. Eur. J. Cancer 2014, 50, 99–110. [Google Scholar] [CrossRef]
- Cattenoz, P.B.; Sakr, R.; Pavlidaki, A.; Delaporte, C.; Riba, A.; Molina, N.; Hariharan, N.; Mukherjee, T.; Giangrande, A. Temporal specificity and heterogeneity of Drosophila immune cells. EMBO J. 2020, 39, e104486. [Google Scholar] [CrossRef]
- Hartenstein, V. One too many: The surprising heterogeneity of Drosophila macrophages. EMBO J. 2020, 39, e105199. [Google Scholar] [CrossRef] [PubMed]
- Browne, N.; Heelan, M.; Kavanagh, K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence 2013, 4, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Liu, M.; Zhang, Y.; Wang, B.; Zhu, C.; Wang, C.; Li, Q.; Huo, Y.; Guo, J.; Xu, C.; et al. Single-cell transcriptomic landscape of human blood cells. Natl. Sci. Rev. 2021, 8, nwaa180. [Google Scholar] [CrossRef]
- Smith, S.L.; Kennedy, P.R.; Stacey, K.B.; Worboys, J.D.; Yarwood, A.; Seo, S.; Solloa, E.H.; Mistretta, B.; Chatterjee, S.S.; Gunaratne, P.; et al. Diversity of peripheral blood human NK cells identified by single-cell RNA sequencing. Blood Adv. 2020, 4, 1388–1406. [Google Scholar] [CrossRef]
- Niu, J.; Huang, Y.; Liu, X.; Zhang, Z.; Tang, J.; Wang, B.; Lu, Y.; Cai, J.; Jian, J. Single-cell RNA-seq reveals different subsets of non-specific cytotoxic cells in teleost. Genomics 2020, 112, 5170–5179. [Google Scholar] [CrossRef]
- Garratt, L.W. Current Understanding of the Neutrophil Transcriptome in Health and Disease. Cells 2021, 10, 2406. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, H.; Yang, P.; Bai, X.; Shi, Y.; Vistro, W.A.; Tarique, I.; Haseeb, A.; Chen, Q. Hepatic lipid droplet breakdown through lipolysis during hibernation in Chinese Soft-Shelled Turtle (Pelodiscus sinensis). Aging 2019, 11, 1990–2002. [Google Scholar] [CrossRef] [PubMed]
- Brem, E.A.; McNulty, A.D.; Israelsen, W.J. Breeding and hibernation of captive meadow jumping mice (Zapus hudsonius). PLoS ONE 2021, 16, e0240706. [Google Scholar] [CrossRef] [PubMed]
- Milsom, W.K.; Jackson, D.C. Hibernation and gas exchange. Compr. Physiol. 2011, 1, 397–420. [Google Scholar]
- Geiser, F. Hibernation. Curr. Biol. CB 2013, 23, R188–R193. [Google Scholar] [CrossRef] [Green Version]
- Mohr, S.M.; Bagriantsev, S.N.; Gracheva, E.O. Cellular, Molecular, and Physiological Adaptations of Hibernation: The Solution to Environmental Challenges. Annu. Rev. Cell Dev. Biol. 2020, 36, 315–338. [Google Scholar] [CrossRef]
- Renwrantz, L.; Spielvogel, F. Heart rate and hemocyte number as stress indicators in disturbed hibernating vineyard snails, Helix pomatia. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2011, 160, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Jolly, C.; Morimoto, R.I. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. Natl. Cancer Inst. 2000, 92, 1564–1572. [Google Scholar] [CrossRef] [Green Version]
Sample | Number of Reads | Valid Barcodes | Sequencing Saturation | Q30 Bases in Barcode | Q30 Bases in UMI | Estimated Number of Cells | Fraction Reads in Cells | Median Genes per Cell | Total Genes Detected | Median UMI Counts per Cell | Reads Mapped Confidently to Genome |
---|---|---|---|---|---|---|---|---|---|---|---|
AS-1 | 376,999,821 | 97.9% | 80.6% | 95.9% | 92.4% | 13,552 | 88.7% | 634 | 15,573 | 1232 | 90.9% |
AS-2 | 452,889,235 | 97.2% | 83.6% | 97.1% | 96.6% | 11,527 | 86.1% | 891 | 16,425 | 2071 | 90.7% |
HI-1 | 503,290,649 | 98.4% | 91.9% | 95.3% | 94.7% | 2367 | 58.2% | 784 | 14,014 | 2080 | 94.4% |
HI-2 | 400,484,177 | 96.4% | 55.5% | 96.9% | 96.5% | 24,727 | 81.8% | 869 | 16,880 | 2934 | 91.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, X.; Wang, Y.; Wang, K.; Wei, C.; Li, W.; Yu, L.; Xu, H.; Zhu, J.; Zhu, X.; Liu, X. Single-Cell Atlas Reveals the Hemocyte Subpopulations and Stress Responses in Asian Giant Softshell Turtle during Hibernation. Biology 2023, 12, 994. https://doi.org/10.3390/biology12070994
Hong X, Wang Y, Wang K, Wei C, Li W, Yu L, Xu H, Zhu J, Zhu X, Liu X. Single-Cell Atlas Reveals the Hemocyte Subpopulations and Stress Responses in Asian Giant Softshell Turtle during Hibernation. Biology. 2023; 12(7):994. https://doi.org/10.3390/biology12070994
Chicago/Turabian StyleHong, Xiaoyou, Yakun Wang, Kaikuo Wang, Chengqing Wei, Wei Li, Lingyun Yu, Haoyang Xu, Junxian Zhu, Xinping Zhu, and Xiaoli Liu. 2023. "Single-Cell Atlas Reveals the Hemocyte Subpopulations and Stress Responses in Asian Giant Softshell Turtle during Hibernation" Biology 12, no. 7: 994. https://doi.org/10.3390/biology12070994
APA StyleHong, X., Wang, Y., Wang, K., Wei, C., Li, W., Yu, L., Xu, H., Zhu, J., Zhu, X., & Liu, X. (2023). Single-Cell Atlas Reveals the Hemocyte Subpopulations and Stress Responses in Asian Giant Softshell Turtle during Hibernation. Biology, 12(7), 994. https://doi.org/10.3390/biology12070994