In Vitro Characterization of chIFITMs of Aseel and Kadaknath Chicken Breeds against Newcastle Disease Virus Infection
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Chicken Embryo Fibroblast Cells
2.3. Virus
2.4. Tissue Culture Infection Doses (TCID50)
2.5. Viral Infection
2.6. RNA Extraction and cDNA Synthesis
2.7. Primer Pair Design
2.8. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
2.9. Standard Curve Analysis for Detection of Viral Load
2.10. Statistical Analysis
3. Results
3.1. NDV Infection-Induced Cytopathic Changes and Viral Load
3.2. Expression Analysis of chIFITM Gene in Newcastle Disease Virus-Infected CEF Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chambers, P.; Millar, N.S.; Bingham, R.W.; Emmerson, P.T. Molecular Cloning of Complementary DNA to Newcastle Disease Virus, and Nucleotide Sequence Analysis of the Junction between the Genes Encoding the Haemagglutinin-Neuraminidase and the Large Protein. J. Gen. Virol. 1986, 67 Pt 3, 475–486. [Google Scholar] [CrossRef] [PubMed]
- O.I.E. Newcastle Disease. Chapter 2.3.14; World Organisation for Animal Health: Paris, France, 2012. [Google Scholar]
- Qosimah, D.; Murwani, S.; Sudjarwo, E.; Lesmana, M.A. Effect of Newcastle Disease Virus Level of Infection on Embryonic Length, Embryonic Death, and Protein Profile Changes. Vet. World 2018, 11, 1316–1320. [Google Scholar] [CrossRef] [PubMed]
- Lamb, R.A.; Parks, G.D. Paramyxoviridae: The Viruses and Their Replication. In Fields Virology; Fields, B.N., Knipe, D.N., Howley, P.M., Eds.; Lippincott, Williams, and Wilkins: Philadelphia, PA, USA, 2007; pp. 1449–1496. [Google Scholar]
- Kalaria, V.A.; Prajapati, K.S.; Javia, B.B.; Bhadaniya, A.R.; Fefar, D.T.; Vagh, A.A.; Trangadiya, B.J.; Padodara, R.J.; Mokaria, K.N.; Kumbhani, T.R. An Economical Impact of Newcastle Disease Outbreaks in Various Commercial Broiler Chicken Farms During 2020- 21 in Gujarat, India. Int. J. Curr. Microbiol. App. Sci. 2021, 10, 411–420. [Google Scholar]
- Jaynudin, K.; Joshi, B.; Mathakiya, R.; Prajapati, K.; Sipai, S. Economic Impact of Genotype- Xiii Newcastle Disease Virus Infection on Commercial Vaccinated Layer Farms in India. Int. J. Livest. Res. 2018, 8, 1. [Google Scholar] [CrossRef]
- Aristizábal, B.; González, Á. Innate Immune System; Anaya, J.M., Shoenfeld, Y., Rojas-Villarraga, A., Eds.; Autoimmunity: Bogota, Colombia, 2013. [Google Scholar]
- Dai, M.; Xie, T.; Liao, M. Systematic Identification of Chicken Type I, II and III Interferon-Stimulated Genes. Vet. Res. 2020, 51, 70. [Google Scholar] [CrossRef] [PubMed]
- Brass, A.L.; Huang, I.-C.; Benita, Y.; John, S.P.; Krishnan, M.N.; Feeley, E.M.; Ryan, B.J.; Weyer, J.L.; van der Weyden, L.; Fikrig, E.; et al. The IFITM Proteins Mediate Cellular Resistance to Influenza A H1N1 Virus, West Nile Virus, and Dengue Virus. Cell 2009, 139, 1243–1254. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.; Weidner, J.M.; Qing, M.; Pan, X.-B.; Guo, H.; Xu, C.; Zhang, X.; Birk, A.; Chang, J.; Shi, P.-Y.; et al. Identification of Five Interferon-Induced Cellular Proteins That Inhibit West Nile Virus and Dengue Virus Infections. J. Virol. 2010, 84, 8332–8341. [Google Scholar] [CrossRef] [Green Version]
- Huang, I.-C.; Bailey, C.C.; Weyer, J.L.; Radoshitzky, S.R.; Becker, M.M.; Chiang, J.J.; Brass, A.L.; Ahmed, A.A.; Chi, X.; Dong, L.; et al. Distinct Patterns of IFITM-Mediated Restriction of Filoviruses, SARS Coronavirus, and Influenza A Virus. PLoS Pathog. 2011, 7, e1001258. [Google Scholar] [CrossRef]
- Feeley, E.M.; Sims, J.S.; John, S.P.; Chin, C.R.; Pertel, T.; Chen, L.-M.; Gaiha, G.D.; Ryan, B.J.; Donis, R.O.; Elledge, S.J.; et al. IFITM3 Inhibits Influenza A Virus Infection by Preventing Cytosolic Entry. PLoS Pathog. 2011, 7, e1002337. [Google Scholar] [CrossRef] [Green Version]
- Fife, M.; Moore, J. IFITM Knockdown/Knockout Technology for Vaccine Production. Cell 2009, 139, 1243–1254. [Google Scholar]
- Steyn, A.; Keep, S.; Bickerton, E.; Fife, M. The Characterization of ChIFITMs in Avian Coronavirus Infection In Vivo, Ex Vivo and In Vitro. Genes 2020, 11, 918. [Google Scholar] [CrossRef]
- Smith, S.E.; Gibson, M.S.; Wash, R.S.; Ferrara, F.; Wright, E.; Temperton, N.; Kellam, P.; Fife, M. Chicken Interferon-Inducible Transmembrane Protein 3 Restricts Influenza Viruses and Lyssaviruses In Vitro. J. Virol. 2013, 87, 12957–12966. [Google Scholar] [CrossRef] [Green Version]
- Lanz, C.; Yángüez, E.; Andenmatten, D.; Stertz, S. Correction for Lanz et al., Swine Interferon-Inducible Transmembrane Proteins Potently Inhibit Influenza A Virus Replication. J. Virol. 2015, 89, 2988. [Google Scholar] [CrossRef] [Green Version]
- Kidani, S.; Okuzaki, Y.; Kaneoka, H.; Asai, S.; Murakami, S.; Murase, Y.; Iijima, S.; Nishijima, K. Expression of Interferon-Inducible Transmembrane Proteins in the Chicken and Possible Role in Prevention of Viral Infections. Cytotechnology 2017, 69, 477–484. [Google Scholar] [CrossRef]
- Jaiswal, G.; Kumar, S.; Prasad, Y. Immunocompetence Traits and Their Inheritance Pattern in Kadaknath Native Chicken. Indian J. Anim. Res. 2014, 48, 509. [Google Scholar] [CrossRef]
- Radhika, R.; Thyagarajan, D.; Veeramani, P.; Karthickeyan, S.M.K. Aseel, Kadaknath and White Leghorn Chicken Immune Response to Variation in Sheep Red Blood Cell. Int. J. Pure Appl. Biosci. 2017, 5, 335–340. [Google Scholar] [CrossRef]
- Hitchner, B.; Donermuch, H.; Graham Purchas, H.; William, E. Isolation and Identification of Pathogens, 2nd ed.; American Association of Avian Pathologists, Inc.: Jacksonville, FL, USA, 1980. [Google Scholar]
- Office International des Epizooties (OIE). OIE Terrestrial Manual 2021; Office International des Epizooties: Paris, France, 2021. [Google Scholar]
- Toyoda, T.; Sakaguchi, T.; Hirota, H.; Gotoh, B.; Kuma, K.; Miyataj, T.; Nagai, Y. Newcastle Disease Virus Evolution: II. Lack of Gene Recombination in Generating Virulent and Avirulent Strains. Virology 1989, 169, 273–282. [Google Scholar] [CrossRef]
- Ogbole, O.O.; Akinleye, T.E.; Segun, P.A.; Faleye, T.C.; Adeniji, A.J. In Vitro Antiviral Activity of Twenty-Seven Medicinal Plant Extracts from Southwest Nigeria against Three Serotypes of Echoviruses. Virol. J. 2018, 15, 110. [Google Scholar] [CrossRef]
- Gowthaman, V.; Ganesan, V.; Gopala Krishna Murthy, T.R.; Nair, S.; Yegavinti, N.; Saraswathy, P.V.; Suresh Kumar, G.; Udhayavel, S.; Senthilvel, K.; Subbiah, M. Molecular Phylogenetics of Newcastle Disease Viruses Isolated from Vaccinated Flocks during Outbreaks in Southern India Reveals Circulation of a Novel Sub-Genotype. Transbound. Emerg. Dis. 2019, 66, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; Yu, Y.; Yu, S.; Zhan, Y.; Wei, N.; Song, C.; Sun, Y.; Tan, L.; Ding, C. Development of Strand-Specific Real-Time RT-PCR to Distinguish Viral RNAs during Newcastle Disease Virus Infection. Sci. World J. 2014, 2014, 934851. [Google Scholar] [CrossRef] [Green Version]
- Pfaf, M.W. A New Mathematical Model for Relative Quantification in Real-Time RT–PCR. Nucleic Acids Res. 2001, 29, 45. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, S.; Annamalai, A.; Sachan, S.; Kumar, A.; Sharma, B.K.; Govindaraj, E.; Chellappa, M.M.; Dey, S.; Krishnaswamy, N. Synergy of Lipopolysaccharide and Resiquimod on Type I Interferon, pro-Inflammatory Cytokine, Th1 and Th2 Response in Chicken Peripheral Blood Mononuclear Cells. Mol. Immunol. 2015, 64, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Susta, L.; Cornax, I.; Diel, D.G.; Garcia, S.C.; Miller, P.J.; Liu, X.; Hu, S.; Brown, C.C.; Afonso, C.L. Expression of Interferon Gamma by a Highly Virulent Strain of Newcastle Disease Virus Decreases Its Pathogenicity in Chickens. Microb. Pathog. 2013, 61–62, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Arslan, M.; Liu, X.; Song, H.; Du, M.; Li, Y.; Zhang, Z. IFN-γ Establishes Interferon-Stimulated Gene-Mediated Antiviral State against Newcastle Disease Virus in Chicken Fibroblasts. Acta Biochim. Biophys. Sin. Shanghai 2020, 52, 268–280. [Google Scholar] [CrossRef] [Green Version]
- Bashir, K.; Kappala, D.; Singh, Y. Combination of TLR2 and TLR3 Agonists Derepress Infectious Bursal Disease Virus Vaccine-Induced Immunosuppression in the Chicken. Sci. Rep. 2019, 9, 8197. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Y.; Qu, L.J.; Hou, Z.C.; Yao, J.F.; Xu, G.Y.; Yang, N. Genomic Structure and Diversity of the Chicken Mx Gene. Poult. Sci. 2007, 86, 786–789. [Google Scholar] [CrossRef]
- Zhao, X.; Li, J.; Winkler, C.A.; An, P.; Guo, J.-T. IFITM Genes, Variants, and Their Roles in the Control and Pathogenesis of Viral Infections. Front. Microbiol. 2019, 9, 3228. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Yuan, X.; Li, C.; Deng, H.; Wang, C. Distribution of IFITM3 in Yellow-Feathered Broilers and Inhibition of Avian Reovirus Multiplication by IFITM3. Braz. J. Poult. Sci. 2018, 20, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.-Q.; Xia, T.; Hu, Y.-H.; Sun, M.-S.; Yan, S.; Lei, C.-Q.; Shu, H.-B.; Guo, J.-H.; Liu, Y. IFITM3 Inhibits Virus-Triggered Induction of Type I Interferon by Mediating Autophagosome-Dependent Degradation of IRF3. Cell. Mol. Immunol. 2018, 15, 858–867. [Google Scholar] [CrossRef] [Green Version]
- Friedlová, N.; Zavadil Kokáš, F.; Hupp, T.R.; Vojtěšek, B.; Nekulová, M. IFITM Protein Regulation and Functions: Far beyond the Fight against Viruses. Front. Immunol. 2022, 13, 1042368. [Google Scholar] [CrossRef]
- Whitehead, T.J. Characterisation of Chicken Interferon-Inducible Transmembrane Proteins: Locus Architecture, Gene Expression and Viral Restriction. Ph.D. Thesis, University College London, London, UK, 2018. [Google Scholar]
- Haller, O.; Kochs, G. Mx Genes: Host Determinants Controlling Influenza Virus Infection and Trans-Species Transmission. Hum. Genet. 2020, 139, 695–705. [Google Scholar] [CrossRef] [Green Version]
- Lv, W.; Liu, C.; Zeng, Y.; Li, Y.; Chen, W.; Shi, D.; Guo, S. Explore the Potential Effect of Natural Herbals to Resist Newcastle Disease Virus. Poult. Sci. 2019, 98, 1993–1999. [Google Scholar] [CrossRef]
- Blyth, G.A.D.; Chan, W.F.; Webster, R.G.; Magor, K.E. Duck Interferon-Inducible Transmembrane Protein 3 Mediates Restriction of Influenza Viruses. J. Virol. 2016, 90, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Perreira, J.M.; Chin, C.R.; Feeley, E.M.; Brass, A.L. IFITMs Restrict the Replication of Multiple Pathogenic Viruses. J. Mol. Biol. 2013, 425, 4937–4955. [Google Scholar] [CrossRef]
- Desai, T.M.; Marin, M.; Chin, C.R.; Savidis, G.; Brass, A.L.; Melikyan, G.B. IFITM3 Restricts Influenza A Virus Entry by Blocking the Formation of Fusion Pores Following Virus-Endosome Hemifusion. PLoS Pathog. 2014, 10, 1004048. [Google Scholar] [CrossRef] [Green Version]
- Amini, B.O.S.; Choi, Y.J.; Lee, J.H.; Shi, M.; Huang, I.C.; Farzan, M.; Jung, J.U. The Antiviral Effector IFITM3 Disrupts Intracellular Cholesterol Homeostasis to Block Viral Entry. Cell Host Microbe 2013, 13, 452–464. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.; Shi, Q.; Han, Z.; Fan, Z.; Ai, H.; Chen, L.; Li, L.; Liu, T.; Sun, J.; Liu, S. Newcastle Disease Virus Entry into Chicken Macrophages via a PH-Dependent, Dynamin and Caveola-Mediated Endocytic Pathway That Requires Rab5. J. Virol. 2021, 95, e02288-20. [Google Scholar] [CrossRef]
- Ravindra, P.V.; Tiwari, A.K.; Ratta, B.; Chaturvedi, U.; Palia, S.K.; Chauhan, R.S. Newcastle Disease Virus-Induced Cytopathic Effect in Infected Cells Is Caused by Apoptosis. Virus Res. 2009, 141, 13–20. [Google Scholar] [CrossRef]
- Li, X.; Su, S.; Cui, N.; Zhou, H.; Liu, X.; Cui, Z. Transcriptome Analysis of Chicken Embryo Fibroblast Cell Infected with Marek’s Disease Virus of GX0101∆LTR. Braz. J. Poult. Sci. 2017, 19, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Siegrist, F.; Ebeling, M.; Certa, U. The Small Interferon-Induced Transmembrane Genes and Proteins. J. Interferon Cytokine Res. 2011, 31, 183–197. [Google Scholar] [CrossRef]
- Anjum, F.R.; Rahman, S.U.; Aslam, M.A.; Qureshi, A.S. Antiviral Potential and Stability Analysis of Chicken Interferon-α Produced by Newcastle Disease Virus in Chicken Embryo Fibroblast Cells. Vet. Med.-Czech 2021, 66, 197–207. [Google Scholar] [CrossRef]
Gene | Primer | Sequence (5′->3′) | Reference |
---|---|---|---|
chIFITM1 | FP | GCAGGATGTGACCACCACTA | NM_001350059.2 |
RP | CTTCGCTGTCCTCCCATAGC | ||
chIFITM2 | FP | AACAGGCGGAGGTGAGCAT | NM_001350058.2 |
RP | AAGATGAGCGAGGGGAAGCA | ||
chIFITM3 | FP | CGTGAAGTCCAGGGATCGCA | NM_001350061.2 |
RP | GCAACCAGGGCGATGATGAG | ||
chIFITM5 | FP | CCAACCCCACTTCTGGACGA | NM_001199498.1 |
RP | ATCACTCCGAAGGGCACGAC | ||
chMx | FP | GTCCAAGAGGCTGAATAACAGAG | NM_204609 |
RP | GTCGGATCTTTCTGTCATATTGG | ||
chIFN-γ | FP | TGAGCCAGATTGTTTCGATG | [27] |
RP | CTTGGCCAGGTCCATGATA | ||
chβ-Actin | FP | TATGTGCAAGGCCGGTTTC | |
RP | TGTCTTTCTGGCCCATACCAA | ||
NDV-NP | Pla-rt13 | CAACAATAGGAGTGGAGTGTCTGA | [25] |
Pla-rt14 | CAGGGTATCGGTGATGTCTTCT |
Breed | Time Point | IFITM1 | IFITM2 | IFITM3 | IFITM5 | IFN-γ | MX |
---|---|---|---|---|---|---|---|
3 hpi | 2.64 ± 0.40 c | 1.06 ± 0.01 c | 2.87 ± 0.26 b | 1.01 ± 0.00 b | 1.17 ± 0.09 c | 4.18 ± 0.38 a | |
6 hpi | 6.00 ± 0.25 a | 3.25 ± 0.24 a | 3.46 ± 0.42 a | 2.07 ± 0.16 b | 2.28 ± 0.24 ab | 3.35 ± 0.33 b | |
Aseel | 12 hpi | 3.88 ± 0.35 b | 1.06 ± 0.00 c | 2.38 ± 0.71 b | 2.41 ± 0.32 b | 2.18 ± 0.18 b | 3.34 ± 0.38 b |
24 hpi | 2.19 ± 0.09 c | 1.22 ± 0.12 bc | 1.26 ± 0.16 c | 3.82 ± 0.30 a | 2.13 ± 0.28 b | 1.03 ± 0.01 c | |
48 hpi | 1.91 ± 0.20 cd | 1.51 ± 0.08 b | 1.00 ± 0.00 c | 1.53 ± 0.27 c | 2.59 ± 0.34 a | 1.43 ± 0.06 c | |
3 hpi | 6.33 ± 0.24 b | 2.39 ± 0.38 d | 10.44 ± 0.26 b | 5.63 ± 0.17 b | 7.46 ± 0.45 c | 1.01 ± 0.05 c | |
6 hpi | 4.77 ± 0.38 c | 3.25 ± 0.29 c | 11.68 ± 0.36 a | 3.18 ± 0.46 c | 7.77 ± 0.21 c | 1.38 ± 0.16 c | |
Kadaknath | 12 hpi | 6.77 ± 0.21 b | 7.02 ± 0.47 b | 10.08 ± 0.10 b | 4.28 ± 0.19 bc | 12.38 ± 0.54 b | 1.66 ± 0.10 c |
24 hpi | 7.79 ± 0.52 a | 7.48 ± 0.36 b | 10.47 ± 0.36 ab | 7.04 ± 0.27 a | 12.56 ± 0.39 b | 3.57 ± 0.56 a | |
48 hpi | 7.48 ± 0.36 a | 8.89 ± 0.33 a | 11.00 ± 0.51 a | 6.22 ± 0.27 a | 13.9 ± 0.49 a | 2.56 ± 0.46 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malarmathi, M.; Murali, N.; Selvaraju, M.; Sivakumar, K.; Gowthaman, V.; Raghavendran, V.B.; Raja, A.; Peters, S.O.; Thiruvenkadan, A.K. In Vitro Characterization of chIFITMs of Aseel and Kadaknath Chicken Breeds against Newcastle Disease Virus Infection. Biology 2023, 12, 919. https://doi.org/10.3390/biology12070919
Malarmathi M, Murali N, Selvaraju M, Sivakumar K, Gowthaman V, Raghavendran VB, Raja A, Peters SO, Thiruvenkadan AK. In Vitro Characterization of chIFITMs of Aseel and Kadaknath Chicken Breeds against Newcastle Disease Virus Infection. Biology. 2023; 12(7):919. https://doi.org/10.3390/biology12070919
Chicago/Turabian StyleMalarmathi, Muthusamy, Nagarajan Murali, Mani Selvaraju, Karuppusamy Sivakumar, Vasudevan Gowthaman, Vadivel Balasubramanian Raghavendran, Angamuthu Raja, Sunday O. Peters, and Aranganoor Kannan Thiruvenkadan. 2023. "In Vitro Characterization of chIFITMs of Aseel and Kadaknath Chicken Breeds against Newcastle Disease Virus Infection" Biology 12, no. 7: 919. https://doi.org/10.3390/biology12070919
APA StyleMalarmathi, M., Murali, N., Selvaraju, M., Sivakumar, K., Gowthaman, V., Raghavendran, V. B., Raja, A., Peters, S. O., & Thiruvenkadan, A. K. (2023). In Vitro Characterization of chIFITMs of Aseel and Kadaknath Chicken Breeds against Newcastle Disease Virus Infection. Biology, 12(7), 919. https://doi.org/10.3390/biology12070919