Transcriptomic and Proteomic Analyses of Myzus persicae Carrying Brassica Yellows Virus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Aphid Culture and Plant Materials
2.2. Preparation of Samples
2.3. RNA Extraction and cDNA Library Construction
2.4. Transcriptomic Analysis
2.5. Protein Extraction, TMT Labeling, and LC-MS/MS
2.6. Proteomic Analysis
2.7. RT-qPCR Verification
3. Results
3.1. Basic Quantitative Statistics of Viruliferous and Nonviruliferous Aphids
3.2. Analysis of Gene Expression Differences of M. persicae in Response to BrYV Stress
3.3. Enrichment Terms and Pathway Analysis of M. persicae in Response to BrYV Stress
3.4. RT-qPCR Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hogenhout, S.A.; Ammar, E.-D.; Whitfield, A.E.; Redinbaugh, M.G. Insect vector interactions with persistently transmitted viruses. Annu. Rev. Phytopathol. 2008, 46, 327–359. [Google Scholar] [CrossRef] [Green Version]
- Forbes, A. The Stylets of the Green Peach Aphid, Myzus persicae (Homoptera: Aphididae). Can. Entomol. 1969, 101, 31–41. [Google Scholar] [CrossRef]
- Brault, V.; Uzest, M.; Monsion, B.; Jacquot, E.; Blanc, S. Aphids as transport devices for plant viruses. Comptes Rendus Biol. 2010, 333, 524–538. [Google Scholar] [CrossRef]
- Dietzgen, R.G.; Mann, K.S.; Johnson, K.N. Plant Virus-Insect Vector Interactions: Current and Potential Future Research Directions. Viruses 2016, 8, 303. [Google Scholar] [CrossRef] [Green Version]
- Gray, S.; Gildow, F.E. Luteovirus-aphid interactions. Annu. Rev. Phytopathol. 2003, 41, 539–566. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Kanakala, S.; Lebedev, G.; Kontsedalov, S.; Silverman, D.; Alon, T.; Mor, N.; Sela, N.; Luria, N.; Dombrovsky, A.; et al. Transmission of a New Polerovirus Infecting Pepper by the Whitefly Bemisia tabaci. J. Virol. 2019, 93, e00488-19. [Google Scholar] [CrossRef] [Green Version]
- Bing, J.W.; Novak, M.G.; Obrycki, J.J.; Guthrie, W.D. Stylet Penetration and Feeding Sites of Rhopalosiphum maidis (Homoptera: Aphididae) on Two Growth Stages of Maize. Ann. Entomol. Soc. Am. 1991, 84, 549–554. [Google Scholar] [CrossRef]
- Brault, V.; Herrbach, E.; Reinbold, C. Electron microscopy studies on luteovirid transmission by aphids. Micron 2007, 38, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Reinbold, C.; Gildow, F.E.; Herrbach, E.; Ziegler-Graff, V.; Gonçalves, M.C.; van den Heuvel, J.F.J.M.; Brault, V. Studies on the role of the minor capsid protein in transport of Beet western yellows virus through Myzus persicae. J. Gen. Virol. 2001, 82, 1995–2007. [Google Scholar] [CrossRef] [Green Version]
- Gildow, F.E.; Rochow, W.F. Role of accessory salivary glands in aphid transmission of barley yellow dwarf virus. Virology 1980, 104, 97–108. [Google Scholar] [CrossRef]
- Xiang, H.Y.; Dong, S.W.; Shang, Q.X.; Zhou, C.J.; Li, D.W.; Yu, J.L.; Han, C.G. Molecular characterization of two genotypes of a new polerovirus infecting brassicas in China. Arch. Virol. 2011, 156, 2251–2255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Peng, Y.M.; Xiang, H.Y.; Wang, Y.; Li, D.W.; Yu, J.L.; Han, C.G. Incidence and prevalence levels of three aphid-transmitted viruses in crucifer crops in China. J. Integr. Agric. 2022, 21, 774–780. [Google Scholar] [CrossRef]
- Chen, X.R.; Wang, Y.; Zhao, H.H.; Zhang, X.Y.; Wang, X.B.; Li, D.W.; Yu, J.L.; Han, C.G. Brassica yellows virus’ movement protein upregulates anthocyanin accumulation, leading to the development of purple leaf symptoms on Arabidopsis thaliana. Sci. Rep. 2018, 8, 16273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, D.P.; He, M.J.; Chen, X.R.; Hu, R.J.; Zhao, T.Y.; Zhang, X.Y.; Peng, Y.M.; Wang, Y.; Li, D.W.; Yu, J.L.; et al. A Simple Method for the Acquisition and Transmission of Brassica Yellows Virus from Transgenic Plants and Frozen Infected Leaves by Aphids. Plants 2021, 10, 1944. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.; Kaplan, I.B.; Ripoll, D.R.; Liang, D.; Palukaitis, P.; Gray, S.M. A surface loop of the potato leafroll virus coat protein is involved in virion assembly, systemic movement, and aphid transmission. J. Virol. 2005, 79, 1207–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peter, K.A.; Liang, D.; Palukaitis, P.; Gray, S.M. Small deletions in the potato leafroll virus readthrough protein affect particle morphology, aphid transmission, virus movement and accumulation. J. Gen. Virol. 2008, 89, 2037–2045. [Google Scholar] [CrossRef] [PubMed]
- Linz, L.B.; Liu, S.; Chougule, N.P.; Bonning, B.C. In Vitro Evidence Supports Membrane Alanyl Aminopeptidase N as a Receptor for a Plant Virus in the Pea Aphid Vector. J. Virol. 2015, 89, 11203–11212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Sivakumar, S.; Sparks, W.O.; Miller, W.A.; Bonning, B.C. A peptide that binds the pea aphid gut impedes entry of Pea enation mosaic virus into the aphid hemocoel. Virology 2010, 401, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Cox-Foster, D.; Gray, S.M.; Gildow, F. Vector specificity of barley yellow dwarf virus (BYDV) transmission: Identification of potential cellular receptors binding BYDV-MAV in the aphid, Sitobion avenae. Virology 2001, 286, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Seddas, P.; Boissinot, S.; Strub, J.M.; Van Dorsselaer, A.; Van Regenmortel, M.H.; Pattus, F. Rack-1, GAPDH3, and actin: Proteins of Myzus persicae potentially involved in the transcytosis of beet western yellows virus particles in the aphid. Virology 2004, 325, 399–412. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Thannhauser, T.W.; Burrows, M.; Cox-Foster, D.; Gildow, F.E.; Gray, S.M. Coupling genetics and proteomics to identify aphid proteins associated with vector-specific transmission of polerovirus (Luteoviridae). J. Virol. 2008, 82, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Chi, Y.; Zhang, X.J.; Lei, T.; Wang, X.W.; Liu, S.S. Comparative proteomic analysis provides new insight into differential transmission of two begomoviruses by a whitefly. Virol. J. 2019, 16, 32. [Google Scholar] [CrossRef]
- Huang, H.J.; Yan, X.T.; Wang, X.; Qi, Y.H.; Lu, G.; Chen, J.P.; Zhang, C.X.; Li, J.M. Proteomic analysis of Laodelphax striatellus in response to Rice stripe virus infection reveal a potential role of ZFP36L1 in restriction of viral proliferation. J. Proteom. 2021, 239, 104184. [Google Scholar] [CrossRef]
- Wang, H.; Wu, K.; Liu, Y.; Wu, Y.; Wang, X. Integrative proteomics to understand the transmission mechanism of Barley yellow dwarf virus-GPV by its insect vector Rhopalosiphum padi. Sci. Rep. 2015, 5, 10971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Ma, K.S.; Liang, P.Z.; Yang, L.W.; Zhang, L.; Gao, X.W. Combined Transcriptomic and Proteomic Analysis of Myzus persicae, the Green Peach Aphid, Infected with Cucumber Mosaic Virus. Insects 2021, 12, 372. [Google Scholar] [CrossRef] [PubMed]
- Patton, M.F.; Hansen, A.K.; Casteel, C.L. Potato leafroll virus reduces Buchnera aphidocola titer and alters vector transcriptome responses. Sci. Rep. 2021, 11, 23931. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.; Rotenberg, D. Integration of transcriptomics and network analysis reveals co-expressed genes in Frankliniella occidentalis larval guts that respond to tomato spotted wilt virus infection. BMC Genom. 2021, 22, 810. [Google Scholar] [CrossRef]
- Yang, N.; Xie, W.; Yang, X.; Wang, S.; Wu, Q.; Li, R.; Pan, H.; Liu, B.; Shi, X.; Fang, Y.; et al. Transcriptomic and proteomic responses of sweetpotato whitefly, Bemisia tabaci, to thiamethoxam. PLoS ONE 2013, 8, e61820. [Google Scholar] [CrossRef] [Green Version]
- Buccitelli, C.; Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 2020, 21, 630–644. [Google Scholar] [CrossRef]
- Liu, Y.; Beyer, A.; Aebersold, R. On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell 2016, 165, 535–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortelny, N.; Overall, C.M.; Pavlidis, P.; Freue, G.V.C. Can we predict protein from mRNA levels? Nature 2017, 547, E19–E20. [Google Scholar] [CrossRef] [PubMed]
- Franks, A.; Airoldi, E.; Slavov, N. Post-transcriptional regulation across human tissues. PLoS Comput. Biol. 2017, 13, e1005535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Futahashi, R.; Okamoto, S.; Kawasaki, H.; Zhong, Y.S.; Iwanaga, M.; Mita, K.; Fujiwara, H. Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 2008, 38, 1138–1146. [Google Scholar] [CrossRef] [PubMed]
- Awolola, T.S.; Oduola, O.A.; Strode, C.; Koekemoer, L.L.; Brooke, B.; Ranson, H. Evidence of multiple pyrethroid resistance mechanisms in the malaria vector Anopheles gambiae sensu stricto from Nigeria. Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 1139–1145. [Google Scholar] [CrossRef]
- Zhang, J.; Goyer, C.; Pelletier, Y. Environmental stresses induce the expression of putative glycine-rich insect cuticular protein genes in adult Leptinotarsa decemlineata (Say). Insect Mol. Biol. 2008, 17, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Uzest, M.; Gargani, D.; Drucker, M.; Hébrard, E.; Garzo, E.; Candresse, T.; Fereres, A.; Blanc, S. A protein key to plant virus transmission at the tip of the insect vector stylet. Proc. Natl. Acad. Sci. USA 2007, 104, 17959–17964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Gao, X.W. The Cuticle Protein Gene MPCP4 of Myzus persicae (Homoptera: Aphididae) Plays a Critical Role in Cucumber Mosaic Virus Acquisition. J. Econ. Entomol. 2017, 110, 848–853. [Google Scholar] [CrossRef]
- Liu, W.; Gray, S.; Huo, Y.; Li, L.; Wei, T.; Wang, X. Proteomic Analysis of Interaction between a Plant Virus and Its Vector Insect Reveals New Functions of Hemipteran Cuticular Protein. Mol. Cell. Proteom. 2015, 14, 2229–2242. [Google Scholar] [CrossRef] [Green Version]
- Nogales, E. Structural insight into microtubule function. Annu. Rev. Biochem. 2001, 30, 397–420. [Google Scholar] [CrossRef]
- Mackeh, R.; Perdiz, D.; Lorin, S.; Codogno, P.; Pous, C. Autophagy and microtubules-new story, old players. J. Cell Sci. 2013, 126, 1071–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, J.; Lin, C.; Wang, H.; Wang, L.; Zhou, N.; Jin, Y.; Liao, M.; Zhou, J. Circovirus transport proceeds via direct interaction of the cytoplasmic dynein IC1 subunit with the viral capsid protein. J. Virol. 2015, 89, 2777–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaichick, S.V.; Bohannon, K.P.; Hughes, A.; Sollars, P.J.; Pickard, G.E.; Smith, G.A. The herpesvirus VP1/2 protein is an effector of dynein-mediated capsid transport and neuroinvasion. Cell Host Microbe 2013, 13, 193–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamauchi, Y.; Boukari, H.; Banerjee, I.; Sbalzarini, I.F.; Horvath, P.; Helenius, A. Histone deacetylase 8 is required for centrosome cohesion and influenza A virus entry. PLoS Pathog. 2011, 7, e1002316. [Google Scholar] [CrossRef] [Green Version]
- Chee, H.Y.; AbuBakar, S. Identification of a 48kDa tubulin or tubulin-like C6/36 mosquito cells protein that binds dengue virus 2 using mass spectrometry. Biochem. Biophys. Res. Commun. 2004, 320, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, D.; Hu, J.; Zhang, K.; Kang, L.; Chen, Y.; Huang, L.; Zhang, L.; Xiang, Y.; Song, Q.; et al. The alpha-tubulin of Laodelphax striatellus mediates the passage of rice stripe virus (RSV) and enhances horizontal transmission. PLoS Pathog. 2020, 16, e1008710. [Google Scholar] [CrossRef]
- Scott, J.G.; Michel, K.; Bartholomay, L.C.; Siegfried, B.D.; Hunter, W.B.; Smagghe, G.; Zhu, K.Y.; Douglas, A.E. Towards the elements of successful insect RNAi. J. Insect Physiol. 2013, 59, 1212–1221. [Google Scholar] [CrossRef] [Green Version]
- Pitino, M.; Hogenhout, S.A. Aphid protein effectors promote aphid colonization in a plant species-specific manner. Mol. Plant Microbe Interact. 2013, 26, 130–139. [Google Scholar] [CrossRef] [Green Version]
- Elzinga, D.A.; De Vos, M.; Jander, G. Suppression of plant defenses by a Myzus persicae (green peach aphid) salivary effector protein. Mol. Plant Microbe Interact. 2014, 27, 747–756. [Google Scholar] [CrossRef] [Green Version]
- Bos, J.I.; Prince, D.; Pitino, M.; Maffei, M.E.; Win, J.; Hogenhout, S.A. A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLoS Genet. 2010, 6, e1001216. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Francis, F.; Xie, H.; Fan, J.; Wang, Q.; Liu, H.; Sun, Y.; Chen, J. The salivary effector protein Sg2204 in the greenbug Schizaphis graminum suppresses wheat defense and is essential for enabling aphid feeding on host plants. Plant Biotechnol. J. 2022, 20, 2187–2201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, X.; Fu, Y.; Crespo-Herrera, L.; Liu, H.; Wang, Q.; Zhang, Y.; Chen, J. Salivary Effector Sm9723 of Grain Aphid Sitobion miscanthi Suppresses Plant Defense and Is Essential for Aphid Survival on Wheat. Int. J. Mol. Sci. 2022, 23, 6909. [Google Scholar] [CrossRef] [PubMed]
Items | Viruliferous Aphids | Nonviruliferous Aphids |
---|---|---|
Raw reads number | 53,943,971 | 56,380,878 |
Clean reads number | 53,190,385 | 55,432,735 |
Q30 of clean reads (%) | 92.82 | 93.36 |
Unique mapped reads (%) | 48,830,235 (91.79) | 51,066,134 (92.12) |
Items | Number |
---|---|
Total spectrum | 725,126 |
Mapped spectrum | 71,746 |
Unique peptides | 34,831 |
Identified proteins | 5567 |
Description a | Number of Genes | Gene Ratio b | p Value | Pathway ID | |
---|---|---|---|---|---|
Up | Down | ||||
Phagosome | 9 | 2 | 11/118 | 5.36 × 10−5 | api04145 |
Carbon metabolism | 12 | 1 | 13/118 | 0.000164174 | api01200 |
Biosynthesis of amino acids | 8 | 1 | 9/118 | 0.001231352 | api01230 |
Oxidative phosphorylation | 12 | 0 | 12/118 | 0.001716266 | api00190 |
Glycolysis/Gluconeogenesis | 7 | 0 | 7/118 | 0.002545986 | api00010 |
Galactose metabolism | 5 | 0 | 5/118 | 0.003196235 | api00052 |
Starch and sucrose metabolism | 3 | 2 | 5/118 | 0.003196235 | api00500 |
NCBI Reference Sequence | Log2 (Transcript Ratio) | Protein Ratio | Annotation |
---|---|---|---|
XM_022317504.1 | −0.70 | 1.29 | bifunctional lycopene cyclase/phytoene synthase-like |
XM_022319060.1 | −0.54 | 1.26 | acetyl-coenzyme A transporter 1-like |
XM_022319915.1 | −0.64 | 1.22 | baculoviral IAP repeat-containing protein 5-like |
XM_022324126.1 | 0.41 | 1.21 | xylulose kinase |
XM_022310409.1 | 0.68 | 0.83 | uncharacterized family 31glucosidase KIAA1161-like |
XM_022324319.1 | 0.31 | 0.77 | 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-like |
XM_022306530.1 | 0.62 | 0.76 | opsin, ultraviolet sensitive-like |
Gene_ID | Gene_Description | Log2 Fold Change |
---|---|---|
111035272 | cuticle protein 65-like | 6.56 |
111039232 | cuticle protein 7-like | 7.60 |
111042286 | cuticle protein 12.5-like | 5.82 |
111034582 | cuticle protein 19-like | 9.57 |
111031114 | Endocuticle structural glycoprotein SgAbd-8-like | 1.57 |
111039055 | cuticle protein 21-like | 2.64 |
111034580 | cuticle protein 7-like | 2.24 |
111039059 | cuticle protein 7-like | 2.22 |
111039229 | larval cuticle protein A3A | 2.28 |
111039056 | cuticle protein 7-like | 1.54 |
111034589 | cuticle protein 7-like | 1.55 |
111034588 | cuticle protein 7-like | 1.53 |
111032404 | cuticle protein 38-like | 1.69 |
111034590 | cuticle protein-like | 1.51 |
111042794 | cuticle protein 12.5-like | 1.68 |
111039058 | cuticle protein 7-like | 2.97 |
111037705 | cuticle protein 19-like | 1.30 |
111039066 | PF00379: Insect cuticle protein | 1.97 |
111034581 | cuticle protein 7-like | 2.40 |
111037704 | cuticle protein-like | 1.03 |
111039052 | cuticle protein 19-like | 1.02 |
111031121 | endocuticle structural glycoprotein SgAbd-4-like | 1.38 |
111039057 | cuticle protein 7-like | 1.70 |
111035301 | cuticle protein 19.8-like | 1.51 |
111034586 | cuticle protein-like | 1.28 |
Gene_ID | Gene_Description | log2 Fold Change |
---|---|---|
111038858 | tubulin beta chain-like | 9.23 |
111037228 | tubulin beta chain-like | 8.21 |
111040080 | tubulin glycylase 3A-like | 6.11 |
111038861 | tubulin alpha-4 chain-like | 15.26 |
111033819 | tubulin glycylase 3A-like | 11.42 |
111035160 | tubulin glycylase 3A-like | 7.49 |
111038612 | tubulin beta chain-like | 8.73 |
111035562 | tubulin beta chain-like | 11.70 |
111033210 | tubulin glycylase 3A-like | 5.90 |
111038008 | tubulin glycylase 3A-like | 11.34 |
111028369 | gamma-tubulin complex component 3 homolog | 5.02 |
111042666 | tubulin alpha-2 chain-like | 4.76 |
111038281 | tubulin glycylase 3A-like | 8.55 |
111034561 | tubulin polyglutamylase TTLL6-like | 8.19 |
111041754 | probable tubulin polyglutamylase TTLL1 | 2.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, M.-J.; Zuo, D.-P.; Zhang, Z.-Y.; Wang, Y.; Han, C.-G. Transcriptomic and Proteomic Analyses of Myzus persicae Carrying Brassica Yellows Virus. Biology 2023, 12, 908. https://doi.org/10.3390/biology12070908
He M-J, Zuo D-P, Zhang Z-Y, Wang Y, Han C-G. Transcriptomic and Proteomic Analyses of Myzus persicae Carrying Brassica Yellows Virus. Biology. 2023; 12(7):908. https://doi.org/10.3390/biology12070908
Chicago/Turabian StyleHe, Meng-Jun, Deng-Pan Zuo, Zong-Ying Zhang, Ying Wang, and Cheng-Gui Han. 2023. "Transcriptomic and Proteomic Analyses of Myzus persicae Carrying Brassica Yellows Virus" Biology 12, no. 7: 908. https://doi.org/10.3390/biology12070908
APA StyleHe, M. -J., Zuo, D. -P., Zhang, Z. -Y., Wang, Y., & Han, C. -G. (2023). Transcriptomic and Proteomic Analyses of Myzus persicae Carrying Brassica Yellows Virus. Biology, 12(7), 908. https://doi.org/10.3390/biology12070908