Preserved Ophthalmic Anti-Allergy Medication in Cumulatively Increasing Risk Factors of Corneal Ectasia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Definitions
2.1. Keratoconus
2.2. Ocular Allergy
3. Cornea Structure
3.1. Ocular Surface
3.2. Tear Film
4. Ocular Allergy
4.1. Allergic Conjunctivitis
4.1.1. Seasonal and Perennial Allergic Conjunctivitis
4.1.2. Vernal Keratoconjunctivitis
4.1.3. Atopic Keratoconjunctivitis
4.2. Pathophysiology
4.3. Burden of Allergy
5. Topical Treatments
Benzalkonium Chloride
6. Corneal Ectasia
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilson, D.H.; Adams, R.J.; Ruffin, R.E.; Tucker, G.; Taylor, A.W.; Appleton, S. Trends in asthma prevalence and population changes in South Australia, 1990–2003. Med. J. Aust. 2006, 184, 226–229. [Google Scholar] [CrossRef] [PubMed]
- De Marco, R.; Cappa, V.; Accordini, S.; Rava, M.; Antonicelli, L.; Bortolami, O.; Braggion, M.; Bugiani, M.; Casali, L.; Cazzoletti, L.; et al. Trends in the prevalence of asthma and allergic rhinitis in Italy between 1991 and 2010. Eur. Respir. J. 2012, 39, 883–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holgate, S.; Polosa, R. Treatment strategies for allergy and asthma. Nat. Rev. Immunol. 2008, 8, 218–230. [Google Scholar] [CrossRef]
- Leonardi, A. Pathophysiology of Allergic Conjunctivitis. Acta Ophthalmol. Scand. 1999, 77, 21–23. [Google Scholar] [CrossRef] [PubMed]
- Bonini, S. Allergic conjunctivitis: The forgotten disease. Chem. Immunol. Allergy. 2006, 91, 110–120. [Google Scholar]
- Palmares, J.; Delgado, L.; Cidade, M.; Quadrado, M.J.; Filipe, H.P.; Season Study Group. Allergic Conjunctivitis: A National Cross-Sectional Study of Clinical Characteristics and Quality of Life. Eur. J. Ophthalmol. 2010, 20, 257–264. [Google Scholar] [CrossRef]
- Bawazeer, A.M.; Hodge, W.G.; Lorimer, B. Atopy and keratoconus: A multivariate analysis. Br. J. Ophthalmol. 2000, 84, 834–836. [Google Scholar] [CrossRef] [Green Version]
- Marquez, G.E.; Torres, V.E.; Sanchez, V.M.; Gramajo, A.L.; Zelaya, N.; Peña, F.Y.; Juarez, C.P.; Luna, J.D. Self-medicationin Ophthalmology: A Questionnaire-based Study in an Argentinean Population. Ophthalmic Epidemiol. 2012, 19, 236–241. [Google Scholar] [CrossRef]
- Vitoux, M.; Kessal, K.; Parsadaniantz, S.M.; Claret, M.; Guerin, C.; Baudouin, C.; Brignole-Baudouin, F.; Goazigo, A.R. Benzalkonium chloride-induced direct and indirect toxicity on corneal epithelial and trigeminal neuronal cells: Proinflammatory and apoptotic responses in vitro. Toxicol. Lett. 2020, 319, 74–84. [Google Scholar] [CrossRef]
- Ono, S.J.; Abelson, M.B. Allergic conjunctivitis: Update on pathophysiology and prospects for future treatment. J. Allergy Clin. Immunol. 2005, 115, 118–122. [Google Scholar] [CrossRef]
- Pauly, A.; Roubeix, C.; Liang, H.; Brignole-Baudouin, F.; Baudouin, C. In Vitro and In Vivo Comparative Toxicological Study of a New Preservative-Free Latanoprost Formulation. Investig. Ophthalmol. Vis. Sci. 2012, 53, 8172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keller, N.; Moore, D.; Carper, D.; Longwell, A. Increased corneal permeability induced by the dual effects of transient tear film acidification and exposure to benzalkonium chloride. Exp. Eye Res. 1980, 30, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Noecker, R. Effects of common ophthalmic preservatives on ocular health. Adv. Ther. 2001, 18, 205–215. [Google Scholar] [CrossRef]
- Guzman-Aranguez, A.; Calvo, P.; Ropero, E.; Pintor, J. In Vitro Effects of Preserved and Unpreserved Anti-Allergic Drugs on Human Corneal Epithelial Cells. J. Ocul. Pharmacol. Ther. 2014, 30, 790–798. [Google Scholar] [CrossRef] [Green Version]
- Lema, I.; Sobrino, T.; Duran, J.A.; Brea, D.; Diez-Feijoo, E. Subclinical keratoconus and inflammatory molecules from tears. Br. J. Ophthalmol. 2009, 93, 820–824. [Google Scholar] [CrossRef] [Green Version]
- Galvis, V.; Sherwin, T.; Tello, A.; Merayo, J.; Barrera, R.; Acera, A. Keratoconus: An inflammatory disorder? Eye 2015, 29, 843–859. [Google Scholar] [CrossRef] [Green Version]
- Torres-Netto, E.A.; Abdshahzadeh, H.; Abrishamchi, R.; Hafezi, N.L.; Hillen, M.; Ambrósio, R., Jr.; Randleman, J.B.; Spoerl, E.; Gatinel, D.; Hafezi, F. The Impact of Repetitive and Prolonged Eye Rubbing on Corneal Biomechanics. J. Refract. Surg. 2022, 38, 610–616. [Google Scholar] [CrossRef]
- Li, X. Longitudinal study of the normal eyes in unilateral keratoconus patients. Ophthalmology 2004, 111, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Martino, E.D.; Ali, M.; Inglehearn, C.F. Matrix metalloproteinases in keratoconus–Too much of a good thing? Exp. Eye Res. 2019, 182, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Perry, H.D.; Buxton, J.N.; Fine, B.S. Round and Oval Cones in Keratoconus. Ophthalmology 1980, 87, 905–909. [Google Scholar] [CrossRef]
- Romero-Jiménez, M.; Santodomingo-Rubido, J.; Wolffsohn, J.S. Keratoconus: A review. Cont. Lens Anterior Eye 2010, 33, 157–166. [Google Scholar] [CrossRef]
- Singh, K.; Axelrod, S.; Bielory, L. The epidemiology of ocular and nasal allergy in the United States, 1988–1994. J. Allergy Clin. Immunol. 2010, 126, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Watsky, M.A.; Jablonski, M.M.; Edelhauser, H.F. Comparison of conjunctival and corneal surface areas in rabbit and human. Curr. Eye Res. 1988, 7, 483–486. [Google Scholar] [CrossRef] [PubMed]
- Ghate, D.; Edelhauser, H.F. Ocular drug delivery. Expert Opin. Drug Delivery 2000, 3, 275–287. [Google Scholar] [CrossRef]
- Kivelä, T.; Messmer, E.M.; Rymgayłło-Jankowska, B. Cornea. In Eye Pathology, 1st ed.; Heegaard, S., Grossniklaus, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Nishtala, K.; Pahuja, N.; Shetty, R.; Nuijts, R.M.M.A.; Ghosh, A. Tear biomarkers for keratoconus. Eye Vis. 2016, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Beuerman, R.W. Tear analysis in ocular surface diseases. Prog. Retin. Eye Res. 2012, 31, 527–550. [Google Scholar] [CrossRef]
- Kuriakose, T. Examination of the Cornea and Ocular Surface. In Clinical Insights and Examination Techniques in Ophthalmology; Springer: Berlin/Heidelberg, Germany, 2020; pp. 107–125. [Google Scholar]
- Khaled, M.L.; Helwa, I.; Drewry, M.; Seremwe, M.; Estes, A.; Liu, Y. Molecular and Histopathological Changes Associated with Keratoconus. BioMed Res. Int. 2017, 2017, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Friedlaender, M.H. Ocular allergy. Curr. Opin. Allergy Clin. Immunol. 2011, 11, 477–482. [Google Scholar] [CrossRef]
- Singhal, D.; Sahay, P.; Maharana, P.K.; Raj, N.; Sharma, N.; Titiyal, J.S. Vernal Keratoconjunctivitis. Surv. Ophthalmol. 2019, 64, 289–311. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Applebaum, D.S.; Sun, G.S.; Pflugfelder, S.C. Atopic keratoconjunctivitis: A review. J. Am. Acad. Dermatol. 2014, 70, 569–575. [Google Scholar] [CrossRef]
- Leonardi, A.; Motterle, L.; Bortolotti, M. Allergy and the eye. Clin. Exp. Immunol. 2008, 153, 17–21. [Google Scholar] [CrossRef] [PubMed]
- La Rosa, M.; Lionetti, E.; Reibaldi, M.; Russo, A.; Longo, A.; Leonardi, S.; Tomarchio, S.; Avitabile, T.; Reibaldi, A. Allergic conjunctivitis: A comprehensive review of the literature. Ital. J. Pediatr. 2013, 39, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, J.; Kuruvilla, M.E.; Vanijcharoenkarn, K.; Patel, N.; Hom, M.M.; Wallace, D.V. The spectrum of allergic ocular diseases. Ann. Allergy Asthma Immunol. 2021, 126, 240–254. [Google Scholar] [CrossRef]
- Dispenza, M.C. Classification of hypersensitivity reactions. Allergy Asthma Proc. 2019, 40, 470–473. [Google Scholar] [CrossRef]
- Maziak, W.; Behrens, T.; Brasky, T.M.; Duhme, H.; Rzehak, P.; Weiland, S.K.; Keil, U. Are asthma and allergies in children and adolescents increasing? Results from ISAAC phase I and phase III surveys in Münster, Germany. Allergy 2003, 58, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.F.; Pitt, A.D.; Rodruiguez, A.E.; Alio, J.L.; Marti, N.; Teus, M.; Guillen, S.; Bataille, L.; Barnes, J.R. The Economic and Quality of Life Impact of Seasonal Allergic Conjunctivitis in a Spanish Setting. Ophthalmic Epidemiol. 2005, 12, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Robertson, C.F.; Roberts, M.F.; Kappers, J.H. Asthma prevalence in Melbourne schoolchildren: Have we reached the peak? Med. J. Aust. 2004, 180, 273–276. [Google Scholar] [CrossRef]
- Price, D.; Hughes, K.M.; Thien, F.; Suphioglu, C. Epidemic thunderstorm asthma: Lessons learned from the storm down-under. J. Allergy Clin. Immunol. Pract. 2021, 9, 1510–1515. [Google Scholar] [CrossRef]
- Rangamuwa, K.B.; Young, A.C.; Thien, F. An epidemic of thunderstorm asthma in Melbourne 2016: Asthma, rhinitis, and other previous allergies. Asia Pac. Allergy 2017, 7, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, S.A.; Pye, D.C.; Willcox, M.D. Effects of eye rubbing on the levels of protease, protease activity and cytokines in tears: Relevance in keratoconus. Clin. Exp. Optom. 2013, 96, 214–218. [Google Scholar] [CrossRef]
- Shneor, E.; Millodot, M.; Blumberg, S.; Ortenberg, I.; Behrman, S.; Gordon-Shaag, A. Characteristics of 244 patients with keratoconus seen in an optometric contact lens practice. Clin. Exp. Optom. 2013, 96, 219–224. [Google Scholar] [CrossRef]
- Wolffsohn, J.S.; Naroo, S.A.; Gupta, N.; Emberlin, J. Prevalence and impact of ocular allergy in the population attending UK optometric practice. Cont. Lens Anterior Eye 2011, 34, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Dechant, K.L.; Goa, K.L. Levocabastine. Drugs 1991, 41, 202–224. [Google Scholar] [CrossRef] [PubMed]
- Uchio, E. Treatment of allergic conjunctivitis with olopatadine hydrochloride eye drops. Clin. Ophthalmol. 2008, 2, 525–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Australian Medicines Handbook. Available online: https://amhonline.amh.net.au/auth (accessed on 9 July 2023).
- Allansmith, M.R.; Ross, R.N. Ocular allergy and mast cell stabilizers. Surv. Ophthalmol. 1986, 30, 229–244. [Google Scholar] [CrossRef]
- Leonardi, A. Management of Vernal Keratoconjunctivitis. Ophthalmol. Ther. 2013, 2, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Yavuz, B.; Kompella, U.B. Ocular Drug Delivery. In Pharmacologic Therapy of Ocular Disease; Whitcup, S., Azar, D., Eds.; Springer: Cham, Switzerland, 2016; Volume 242. [Google Scholar]
- Jumelle, C.; Gholizadeh, S.; Annabi, N.; Dana, R. Advances and limitations of drug delivery systems formulated as eye drops. J. Control. Release 2020, 321, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Walsh, K.; Jones, L. The use of preservatives in dry eye drops. Clin. Ophthalmol. 2019, 13, 1409–1425. [Google Scholar] [CrossRef] [Green Version]
- Wilson, W.S.; Duncan, A.J.; Jay, J.L. Effect of benzalkonium chloride on the stability of the precorneal tear film in rabbit and man. Br. J. Ophthalmol. 1975, 59, 667–669. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.H.; Jung, J.C.; Jung, S.Y.; Yu, S.; Lee, K.W.; Park, Y.J. Comparison of the Efficacy of Fluorometholone With and Without Benzalkonium Chloride in Ocular Surface Disease. Cornea 2016, 35, 234–242. [Google Scholar] [CrossRef] [Green Version]
- Ammar, D.A.; Noecker, R.J.; Kahook, M.Y. Effects of benzalkonium chloride-preserved, polyquad-preserved, and sofZia-preserved topical glaucoma medications on human ocular epithelial cells. Adv. Ther. 2010, 27, 837–845. [Google Scholar] [CrossRef]
- Freeman, P.D.; Kahook, M.Y. Preservatives in topical ophthalmicmedications: Historical and clinical perspectives. Expert Rev. Ophthalmol. 2009, 4, 59–64. [Google Scholar] [CrossRef]
- Majumdar, S.; Hippalgaonkar, K.; Repka, M.A. Effect of chitosan, benzalkonium chloride and ethylenediaminetetraacetic acid on permeation of acyclovir across isolated rabbit cornea. Int. J. Pharm. 2008, 348, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Magalhaes, O.A.; Fujihara, F.M.F.; de Brittes, E.B.N.; Tavares, R.N. Keratoconus development risk factors: A contralateral eye study. J. EuCornea 2020, 7, 1–3. [Google Scholar] [CrossRef]
- Ambekar, R.; Toussaint, K.C.; Johnson, A.W. The effect of keratoconus on the structural, mechanical, and optical properties of the cornea. J. Mech. Behav. Biomed. Mater. 2011, 4, 223–236. [Google Scholar] [CrossRef]
- Issarti, I.; Consejo, A.; Jiménez-García, M.; Hershko, S.; Koppen, C.; Rozema, J.J. Computer aided diagnosis for suspect keratoconus detection. Comput. Biol. Med. 2019, 109, 33–42. [Google Scholar] [CrossRef]
- Kennedy, R.H.; Bourne, W.M.; Dyer, J.A. A 48-Year Clinical and Epidemiologic Study of Keratoconus. Am. J. Ophthalmol. 1986, 101, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Jonas, J.B.; Nangia, V.; Matin, A.; Kulkarni, M.; Bhojwani, K. Prevalence and Associations of Keratoconus in Rural Maharashtra in Central India: The Central India Eye and Medical Study. Am. J. Ophthalmol. 2009, 148, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, H.; Heydarian, S.; Yekta, A.; Ostadimoghaddam, H.; Aghamirsalim, M.; Derakhshan, A.; Khabazkhoob, M. High prevalence and familial aggregation of keratoconus in an Iranian rural population: A population-based study. Ophthalmic Physiol. Opt. 2018, 38, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Chaerkady, R.; Shao, H.; Scott, S.; Pandey, A.; Jun, A.S.; Chakravarti, S. The keratoconus corneal proteome: Loss of epithelial integrity and stromal degeneration. J. Proteom. 2013, 87, 122–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitirgen, G.; Ozkagnici, A.; Bozkurt, B.; Malik, R.A. In vivo corneal confocal microscopic analysis in patients with keratoconus. Int. J. Ophthalmol. 2015, 8, 534–539. [Google Scholar] [PubMed]
- Wang, Y.M.; Ng, T.K.; Choy, K.W.; Wong, H.K.; Chu, W.K.; Pang, C.P.; Jhanji, V. Histological and microRNA Signatures of Corneal Epithelium in Keratoconus. J. Refractive Surg. 2018, 34, 201–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balasubramanian, S.A.; Mohan, S.; Pye, D.C.; Willcox, M.D.P. Proteases, proteolysis and inflammatory molecules in the tears of people with keratoconus. Acta Ophthalmol. 2012, 90, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Shetty, R.; Ghosh, A.; Lim, R.R.; Subramani, M.; Mihir, K.; Reshma, R.A.; Ranganath, A.; Nagaraj, S.; Nuijts, R.M.M.A.; Beuerman, R.; et al. Elevated Expression of Matrix Metalloproteinase-9 and Inflammatory Cytokines in Keratoconus Patients Is Inhibited by Cyclosporine A. Investig. Ophthalmol. Visual Sci. 2015, 56, 738–750. [Google Scholar] [CrossRef] [Green Version]
- Mulholland, B.; Tuft, S.J.; Khaw, P.T. Matrix metalloproteinase distribution during early corneal wound healing. Eye 2004, 19, 584–588. [Google Scholar] [CrossRef]
- Lema, I.; Duran, J. Inflammatory Molecules in the Tears of Patients with Keratoconus. Ophthalmology 2005, 112, 654–659. [Google Scholar] [CrossRef]
- Mazzotta, C.; Traversi, C.; Mellace, P.; Bagaglia, S.A.; Zuccarini, S.; Mencucci, R.; Jacob, S. Keratoconus Progression in Patients with Allergy and Elevated Surface Matrix Metalloproteinase 9 Point-of-Care Test. Eye Cont. Lens 2018, 44, S48–S53. [Google Scholar] [CrossRef]
Mechanism of Action | Active Ingredient | Preserved with | Duration of Treatment | Scheduling |
---|---|---|---|---|
Antihistamine | Levocabastine | Benzalkonium chloride | Indefinite | Schedule 2 |
Pheniramine maleate | Benzalkonium chloride | Indefinite | Schedule 2 | |
Mast cell stabiliser | Sodium cromoglycate | No preservative | >2 weeks | Schedule 2 |
Lodoxamide | Benzalkonium chloride | >2 weeks | Schedule 2 | |
Combination | Ketotifen fumarate | Benzalkonium chloride | Indefinite | Schedule 2 |
Olopatadine | Benzalkonium chloride | Indefinite | Schedule 4 | |
Azelastine | Benzalkonium chloride | Indefinite | Schedule 2 | |
Corticosteroid | Fluorometholone | Benzalkonium chloride | <2 weeks | Schedule 4 |
Dexamethasone | Benzalkonium chloride | <2 weeks | Schedule 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paterson, T.; Azizoglu, S.; Gokhale, M.; Chambers, M.; Suphioglu, C. Preserved Ophthalmic Anti-Allergy Medication in Cumulatively Increasing Risk Factors of Corneal Ectasia. Biology 2023, 12, 1036. https://doi.org/10.3390/biology12071036
Paterson T, Azizoglu S, Gokhale M, Chambers M, Suphioglu C. Preserved Ophthalmic Anti-Allergy Medication in Cumulatively Increasing Risk Factors of Corneal Ectasia. Biology. 2023; 12(7):1036. https://doi.org/10.3390/biology12071036
Chicago/Turabian StylePaterson, Tom, Serap Azizoglu, Moneisha Gokhale, Madeline Chambers, and Cenk Suphioglu. 2023. "Preserved Ophthalmic Anti-Allergy Medication in Cumulatively Increasing Risk Factors of Corneal Ectasia" Biology 12, no. 7: 1036. https://doi.org/10.3390/biology12071036
APA StylePaterson, T., Azizoglu, S., Gokhale, M., Chambers, M., & Suphioglu, C. (2023). Preserved Ophthalmic Anti-Allergy Medication in Cumulatively Increasing Risk Factors of Corneal Ectasia. Biology, 12(7), 1036. https://doi.org/10.3390/biology12071036