Plant–Fungi Interactions: Where It Goes?
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Overview of Phytopathogenic Fungi
1.2. Overview of Symbiotic Fungi
2. The Evolutionary Aspect of Plant-Fungal Interaction
2.1. Phytopathogenic Fungi
2.2. Symbiotic Fungi
3. Plant–Fungal Interactions: Heaven or Hell
3.1. Plant Defense Mechanism in Plant–Fungi Interaction
3.2. Fungi Overcome Plant Defense Mechanism in Plant–Fungi Interactions
4. Plant–Fungal Interactions under the Changing Environmental Conditions
4.1. Environmental Factors and Plant–Fungi Interaction
4.1.1. Temperature
4.1.2. Light
4.1.3. Water Availability
4.1.4. CO2 Concentration
4.1.5. Pollutants
4.1.6. Nutrients
4.2. Environmental Factors and Lifestyle Switching of Fungi
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cord-Landwehr, S.; Melcher, R.L.J.; Kolkenbrock, S.; Moerschbacher, B.M. A Chitin Deacetylase from the Endophytic Fungus Pestalotiopsis sp. Efficiently Inactivates the Elicitor Activity of Chitin Oligomers in Rice Cells. Sci. Rep. 2016, 6, 38018. [Google Scholar] [CrossRef]
- Karunarathna, S.C.; Ashwath, N.; Jeewon, R. Editorial: The Potential of Fungi for Enhancing Crops and Forestry Systems. Front. Microbiol. 2021, 12, 813051. [Google Scholar] [CrossRef]
- Redman, R.S.; Dunigan, D.D.; Rodriguez, R.J. Fungal Symbiosis from Mutualism to Parasitism: Who Controls the Outcome, Host or Invader? New Phytol. 2001, 151, 705–716. [Google Scholar] [CrossRef]
- Meng, J.-W.; Zhu, W.; He, M.-H.; Wu, E.-J.; Duan, G.-H.; Xie, Y.-K.; Jin, Y.-J.; Yang, L.-N.; Shang, L.-P.; Zhan, J. Population Genetic Analysis Reveals Cryptic Sex in the Phytopathogenic Fungus Alternaria alternata. Sci. Rep. 2015, 5, 18250. [Google Scholar] [CrossRef]
- Niu, Z.; Zheng, L.; Yang, P.; Wang, J.; Tian, M.; Pan, Y.; Zhao, D.; Yang, Z.; Zhu, J. Detection of Alternaria solani with High Accuracy and Sensitivity during the Latent Period of Potato Early Blight. Front. Microbiol. 2022, 13, 1016996. [Google Scholar] [CrossRef]
- Mandal, S.; Rajarammohan, S.; Kaur, J. Alternaria brassicae Interactions with the Model Brassicaceae Member Arabidopsis thaliana Closely Resembles Those with Mustard (Brassica juncea). Physiol. Mol. Biol. Plants 2018, 24, 51–59. [Google Scholar] [CrossRef]
- Liu, H.; Wu, H.; Wang, Y.; Wang, H.; Chen, S.; Yin, Z. Comparative Transcriptome Profiling and Co-Expression Network Analysis Uncover the Key Genes Associated Withearly-Stage Resistance to Aspergillus flavus in Maize. BMC Plant Biol. 2021, 21, 216. [Google Scholar] [CrossRef]
- Manan, F.; Shi, G.; Gong, H.; Hou, H.; Khan, H.; Leng, Y.; Castell-Miller, C.; Ali, S.; Faris, J.D.; Zhong, S.; et al. Prevalence and Importance of the Necrotrophic Effector Gene ToxA in Bipolaris sorokiniana Populations Collected from Spring Wheat and Barley. Plant Dis. 2023. [Google Scholar] [CrossRef]
- Hua, L.; Yong, C.; Zhanquan, Z.; Boqiang, L.; Guozheng, Q.; Shiping, T. Pathogenic Mechanisms and Control Strategies of Botrytis cinerea Causing Post-Harvest Decay in Fruits and Vegetables. Food Qual. Saf. 2018, 2, 111–119. [Google Scholar] [CrossRef]
- Petrasch, S.; Knapp, S.J.; van Kan, J.A.L.; Blanco-Ulate, B. Grey Mould of Strawberry, a Devastating Disease Caused by the Ubiquitous Necrotrophic Fungal Pathogen Botrytis cinerea. Mol. Plant Pathol. 2019, 20, 877–892. [Google Scholar] [CrossRef]
- Moreno-Manzano, C.E.; De León-García de Alba, C.; Nava-Díaz, C.; Sánchez-Pale, J.R. Sclerotial Germination And Ascospore Formation of Claviceps gigantea Fuentes, De la Isla, Ullstrup y Rodríguez. Rev. Mex. Fitopatol. 2016, 34, 223–241. [Google Scholar] [CrossRef]
- Cannon, P.F.; Damm, U.; Johnston, P.R.; Weir, B.S. Colletotrichum—Current Status and Future Directions. Stud. Mycol. 2012, 73, 181–213. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Sarsaiya, S.; Wu, Q.; Lu, Y.; Shi, J. A Review of Plant Leaf Fungal Diseases and Its Environment Speciation. Bioengineered 2019, 10, 409–424. [Google Scholar] [CrossRef]
- Hammond-Kosack, K.E.; Rudd, J.J. Plant Resistance Signalling Hijacked by a Necrotrophic Fungal Pathogen. Plant Signal. Behav. 2008, 3, 993–995. [Google Scholar] [CrossRef] [PubMed]
- Downie, R.C.; Lin, M.; Corsi, B.; Ficke, A.; Lillemo, M.; Oliver, R.P.; Phan, H.T.T.; Tan, K.-C.; Cockram, J. Septoria Nodorum Blotch of Wheat: Disease Management and Resistance Breeding in the Face of Shifting Disease Dynamics and a Changing Environment. Phytopathology 2021, 111, 906–920. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Xu, Y.; Hoy, R.; Zhang, J.; Qin, L.; Li, X. The Notorious Soilborne Pathogenic Fungus Sclerotinia sclerotiorum: An Update on Genes Studied with Mutant Analysis. Pathogens 2020, 9, 27. [Google Scholar] [CrossRef]
- dos Santos, J.P.R.; Pires, L.P.M.; de Castro Vasconcellos, R.C.; Pereira, G.S.; Von Pinho, R.G.; Balestre, M. Genomic Selection to Resistance to Stenocarpella maydis in Maize Lines Using DArTseq Markers. BMC Genet. 2016, 17, 86. [Google Scholar] [CrossRef]
- Hassine, M.; Siah, A.; Hellin, P.; Cadalen, T.; Halama, P.; Hilbert, J.-L.; Hamada, W.; Baraket, M.; Yahyaoui, A.; Legrève, A.; et al. Sexual Reproduction of Zymoseptoria tritici on Durum Wheat in Tunisia Revealed by Presence of Airborne Inoculum, Fruiting Bodies and High Levels of Genetic Diversity. Fungal Biol. 2019, 123, 763–772. [Google Scholar] [CrossRef]
- Liu, N.; Liu, Z.L.; Gong, G.; Zhang, M.; Wang, X.; Zhou, Y.; Qi, X.; Chen, H.; Yang, J.; Luo, P.; et al. Virulence Structure of Blumeriagraminis f. sp. tritici and Its Genetic Diversity by ISSR and SRAP Profiling Analyses. PLoS ONE 2015, 10, e0130881. [Google Scholar] [CrossRef]
- Thomma, B.P.H.J.; Van Esse, H.P.; Crous, P.W.; De Wit, P.J.G.M. Cladosporium fulvum (syn. Passalora fulva), a Highly Specialized Plant Pathogen as a Model for Functional Studies on Plant Pathogenic Mycosphaerellaceae. Mol. Plant Pathol. 2005, 6, 379–393. [Google Scholar] [CrossRef]
- Silva, M.D.C.; Guerra-Guimarães, L.; Diniz, I.; Loureiro, A.; Azinheira, H.; Pereira, A.P.; Tavares, S.; Batista, D.; Várzea, V. An Overview of the Mechanisms Involved in Coffee-Hemileiavas tatrix Interactions: Plant and Pathogen Perspectives. Agronomy 2022, 12, 326. [Google Scholar] [CrossRef]
- Lawrence, G.J.; Dodds, P.N.; Ellis, J.G. Transformation of the Flax Rust Fungus, Melampsora lini: Selection via Silencing of an Avirulence Gene: Transformation of Flax Rust. Plant J. 2010, 61, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Mapuranga, J.; Zhang, N.; Zhang, L.; Chang, J.; Yang, W. Infection Strategies and Pathogenicity of Biotrophic Plant Fungal Pathogens. Front. Microbiol. 2022, 13, 799396. [Google Scholar] [CrossRef] [PubMed]
- Olivera, P.D.; Szabo, L.J.; Kokhmetova, A.; Morgounov, A.; Luster, D.G.; Jin, Y. Puccinia graminis f. sp. tritici Population Causing Recent Wheat Stem Rust Epidemics in Kazakhstan Is Highly Diverse and Includes Novel Virulence Pathotypes. Phytopathology 2022, 112, 2403–2415. [Google Scholar] [CrossRef] [PubMed]
- Cadavid, M.; Ángel, J.C.; Victoria, J.I. First Report of Orange Rust of Sugarcane Caused by Puccinia kuehnii in Colombia. Plant Dis. 2012, 96, 143. [Google Scholar] [CrossRef]
- Wu, N.; Ozketen, A.C.; Cheng, Y.; Jiang, W.; Zhou, X.; Zhao, X.; Guan, Y.; Xiang, Z.; Akkaya, M.S. Puccinia striiformis f. sp. tritici Effectors in Wheat Immune Responses. Front. Plant Sci. 2022, 13, 1012216. [Google Scholar] [CrossRef]
- Teixeira-Silva, N.S.; Schaker, P.D.C.; Rody, H.V.S.; Maia, T.; Garner, C.M.; Gassmann, W.; Monteiro-Vitorello, C.B. Leaping into the Unknown World of Sporisorium scitamineum Candidate Effectors. J. Fungi 2020, 6, 339. [Google Scholar] [CrossRef]
- Ferris, A.C.; Walbot, V. Understanding Ustilago maydis Infection of Multiple Maize Organs. J. Fungi 2021, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Yuan, Q.; Tang, J.; Huang, J.; Hsiang, T.; Wei, Y.; Zheng, L. Colletotrichum higginsianum as a Model for Understanding Host−Pathogen Interactions: A Review. Int. J. Mol. Sci. 2018, 19, 2142. [Google Scholar] [CrossRef]
- Samac, D.A.; Allen, S.; Witte, D.; Miller, D.; Peterson, J. First Report of Race 2 of Colletotrichum trifolii Causing Anthracnose on Alfalfa (Medicago sativa) in Wisconsin. Plant Dis. 2014, 98, 843. [Google Scholar] [CrossRef]
- Hami, A.; Rasool, R.S.; Khan, N.A.; Mansoor, S.; Mir, M.A.; Ahmed, N.; Masoodi, K.Z. Morpho-Molecular Identification and First Report of Fusarium equiseti in Causing Chilli Wilt from Kashmir (Northern Himalayas). Sci. Rep. 2021, 11, 3610. [Google Scholar] [CrossRef] [PubMed]
- Lyons, R.; Stiller, J.; Powell, J.; Rusu, A.; Manners, J.M.; Kazan, K. Fusarium oxysporum Triggers Tissue-Specific Transcriptional Reprogramming in Arabidopsis thaliana. PLoS ONE 2015, 10, e0121902. [Google Scholar] [CrossRef]
- Huang, Z.; Li, H.; Zhou, Y.; Bao, Y.; Duan, Z.; Wang, C.; Powell, C.A.; Chen, B.; Zhang, M.; Yao, W. Predication of the Effector Proteins Secreted by Fusarium sacchari Using Genomic Analysis and Heterogenous Expression. J. Fungi 2022, 8, 59. [Google Scholar] [CrossRef]
- Bahari, M.N.A.; Sakeh, N.M.; Abdullah, S.N.A.; Ramli, R.R.; Kadkhodaei, S. Transciptome Profiling at Early Infection of Elaeis guineensis by Ganoderma boninense Provides Novel Insights on Fungal Transition from Biotrophic to Necrotrophic Phase. BMC Plant Biol. 2018, 18, 377. [Google Scholar] [CrossRef]
- Park, J.-Y.; Jin, J.; Lee, Y.-W.; Kang, S.; Lee, Y.-H. Rice Blast Fungus (Magnaporthe oryzae) Infects Arabidopsis via a Mechanism Distinct from That Required for the Infection of Rice. Plant Physiol. 2009, 149, 474–486. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhang, Z.; Zheng, S.; Ye, W.; Zheng, X.; Wang, Y. Genome Sequence Resource of Phomopsis longicolla YC2-1, a Fungal Pathogen Causing Phomopsis Stem Blight in Soybean. Mol. Plant-Microbe Interact. 2021, 34, 842–844. [Google Scholar] [CrossRef] [PubMed]
- Maffei, G.; Miozzi, L.; Fiorilli, V.; Novero, M.; Lanfranco, L.; Accotto, G.P. The Arbuscular Mycorrhizal Symbiosis Attenuates Symptom Severity and Reduces Virus Concentration in Tomato Infected by Tomato Yellow Leaf Curl Sardinia Virus (TYLCSV). Mycorrhiza 2014, 24, 179–186. [Google Scholar] [CrossRef]
- Gworgwor, N.A.; Weber, H.C. Arbuscular Mycorrhizal Fungi-Parasite-Host Interaction for the Control of Striga hermonthica (Del.) Benth. in Sorghum [Sorghum bicolor (L.) Moench]. Mycorrhiza 2003, 13, 277–281. [Google Scholar] [CrossRef]
- Nemec, S. Virus-Glomus etunicatum Interactions in Citrus Rootstocks. Plant Dis. 1984, 68, 311. [Google Scholar] [CrossRef]
- Shaul, O.; Galili, S.; Volpin, H.; Ginzberg, I.I.; Elad, Y.; Chet, I.I.; Kapulnik, Y. Mycorrhiza-Induced Changes in Disease Severity and PR Protein Expression in Tobacco Leaves. Mol. Plant-Microbe Interact. 1999, 12, 1000–1007. [Google Scholar] [CrossRef]
- Sipahioglu, M.H.; Demir, S.; Usta, M.; Akkopru, A. Biological Relationship of Potato Virus Y and Arbuscular Mycorrhizal Fungus Glomus intraradices in Potato. Pest Tec. 2009, 3, 63–66. [Google Scholar]
- Elsharkawy, M.M.; Shimizu, M.; Takahashi, H.; Hyakumachi, M. The Plant Growth-Promoting Fungus Fusarium equiseti and the Arbuscular Mycorrhizal Fungus Glomus mosseae Induce Systemic Resistance against Cucumber Mosaic Virus in Cucumber Plants. Plant Soil 2012, 361, 397–409. [Google Scholar] [CrossRef]
- Harman, G.E. Multifunctional Fungal Plant Symbionts: New Tools to Enhance Plant Growth and Productivity: Commentary. New Phytol. 2011, 189, 647–649. [Google Scholar] [CrossRef]
- Balestrini, R. Grand Challenges in Fungi-Plant Interactions. Front. Fungal Biol. 2021, 2, 750003. [Google Scholar] [CrossRef]
- Bennett, J.A.; Cahill, J.F., Jr. Fungal Effects on Plant-Plant Interactions Contribute to Grassland Plant Abundances: Evidence from the Field. J. Ecol. 2016, 104, 755–764. [Google Scholar] [CrossRef]
- Doehlemann, G.; Ökmen, B.; Zhu, W.; Sharon, A. Plant Pathogenic Fungi. Microbiol. Spectr. 2017, 5, 14. [Google Scholar] [CrossRef]
- Shao, D.; Smith, D.L.; Kabbage, M.; Roth, M.G. Effectors of Plant Necrotrophic Fungi. Front. Plant Sci. 2021, 12, 687713. [Google Scholar] [CrossRef]
- Fei, W.; Liu, Y. Biotrophic Fungal Pathogens: A Critical Overview. Appl. Biochem. Biotechnol. 2023, 195, 1–16. [Google Scholar] [CrossRef]
- Chakraborty, N.; Chakraborty, P.; Bandopadhyay, R.; Basak, J. Deciphering the Molecular Mechanisms of Biotic Stress Tolerance Unravels the Mystery of Plant-Pathogen Interaction. In Sustainable Agriculture Reviews 51; Springer: Cham, Switzerland, 2021; pp. 295–316. ISBN 9783030688271. [Google Scholar]
- Backer, R.; Naidoo, S.; van den Berg, N. The Nonexpressor of Pathogenesis-Related Genes 1 (NPR1) and Related Family: Mechanistic Insights in Plant Disease Resistance. Front. Plant Sci. 2019, 10, 102. [Google Scholar] [CrossRef]
- Nesher, I.; Minz, A.; Kokkelink, L.; Tudzynski, P.; Sharon, A. Regulation of Pathogenic Spore Germination by CgRac1 in the Fungal Plant Pathogen Colletotrichum gloeosporioides. Eukaryot. Cell 2011, 10, 1122–1130. [Google Scholar] [CrossRef]
- Balotf, S.; Tegg, R.S.; Nichols, D.S.; Wilson, C.R. Spore Germination of the Obligate Biotroph Spongospora subterranea: Transcriptome Analysis Reveals Germination Associated Genes. Front. Microbiol. 2021, 12, 691877. [Google Scholar] [CrossRef]
- Vohník, M. Ericoid Mycorrhizal Symbiosis: Theoretical Background and Methods for Its Comprehensive Investigation. Mycorrhiza 2020, 30, 671–695. [Google Scholar] [CrossRef]
- Strullu-Derrien, C.; Selosse, M.-A.; Kenrick, P.; Martin, F.M. The Origin and Evolution of Mycorrhizal Symbioses: From Palaeomycology to Phylogenomics. New Phytol. 2018, 220, 1012–1030. [Google Scholar] [CrossRef]
- Huey, C.J.; Gopinath, S.C.B.; Uda, M.N.A.; Zulhaimi, H.I.; Jaafar, M.N.; Kasim, F.H.; Yaakub, A.R.W. Mycorrhiza: A Natural Resource Assists Plant Growth under Varied Soil Conditions. 3 Biotech 2020, 10, 204. [Google Scholar] [CrossRef]
- Dighton, J. Encyclopedia of Microbiology, 3rd ed.; Elsevier: Cambridge, MA, USA, 2009; Mycorrhizae; pp. 153–162. ISBN 9780123739445. [Google Scholar]
- Berruti, A.; Lumini, E.; Balestrini, R.; Bianciotto, V. Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let’s Benefit from Past Successes. Front. Microbiol. 2016, 6, 1559. [Google Scholar] [CrossRef]
- Pirttilä, A.M.; Mohammad Parast Tabas, H.; Baruah, N.; Koskimäki, J.J. Biofertilizers and Biocontrol Agents for Agriculture: How to Identify and Develop New Potent Microbial Strains and Traits. Microorganisms 2021, 9, 817. [Google Scholar] [CrossRef]
- Cairney, J.W. Evolution of Mycorrhiza Systems. Sci. Nat. 2000, 87, 467–475. [Google Scholar] [CrossRef]
- Jensen, R.E.; Cabral, C.; Enkegaard, A.; Steenberg, T. Influence of the Plant Interacting Entomopathogenic Fungus Beauveria bassiana on Parasitoid Host Choice-Behavior, Development, and Plant Defense Pathways. PLoS ONE 2020, 15, e0238943. [Google Scholar] [CrossRef]
- Lu, H.; Wei, T.; Lou, H.; Shu, X.; Chen, Q. A Critical Review on Communication Mechanism within Plant-Endophytic Fungi Interactions to Cope with Biotic and Abiotic Stresses. J. Fungi 2021, 7, 719. [Google Scholar] [CrossRef]
- Chen, X.-J.; Yin, Y.-Q.; Zhu, X.-M.; Xia, X.; Han, J.-J. High Ambient Temperature Regulated the Plant Systemic Response to the Beneficial Endophytic Fungus Serendipita indica. Front. Plant Sci. 2022, 13, 844572. [Google Scholar] [CrossRef]
- He, W.-X.; Wu, Q.-S.; Hashem, A.; Abd_Allah, E.F.; Muthuramalingam, P.; Al-Arjani, A.-B.F.; Zou, Y.-N. Effects of Symbiotic Fungi on Sugars and Soil Fertility and Structure-Mediated Changes in Plant Growth of Vicia villosa. Agriculture 2022, 12, 1523. [Google Scholar] [CrossRef]
- Priyashantha, A.K.H.; Attanayake, R.N. Can Anaerobic Soil Disinfestation (ASD) Be a Game Changer in Tropical Agriculture? Pathogens 2021, 10, 133. [Google Scholar] [CrossRef]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C.; Aguilar-Trigueros, C.A.; Camenzind, T.; Cavagnaro, T.R.; Degrune, F.; Hohmann, P.; Lammel, D.R.; Mansour, I.; Roy, J.; van der Heijden, M.G.A.; et al. Why Farmers Should Manage the Arbuscular Mycorrhizal Symbiosis. New Phytol. 2019, 222, 1171–1175. [Google Scholar] [CrossRef]
- Duley, G.; Boselli, E. Mutual Plant-Fungi Symbiosis Compromised by Fungicide Use. Commun. Biol. 2022, 5, 1069. [Google Scholar] [CrossRef] [PubMed]
- Edlinger, A.; Garland, G.; Hartman, K.; Banerjee, S.; Degrune, F.; García-Palacios, P.; Hallin, S.; Valzano-Held, A.; Herzog, C.; Jansa, J.; et al. Agricultural Management and Pesticide Use Reduce the Functioning of Beneficial Plant Symbionts. Nat. Ecol. Evol. 2022, 6, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Redecker, D.; Kodner, R.; Graham, L.E. Glomalean Fungi from the Ordovician. Science 2000, 289, 1920–1921. [Google Scholar] [CrossRef] [PubMed]
- Brundrett, M.C.; Tedersoo, L. Evolutionary History of Mycorrhizal Symbioses and Global Host Plant Diversity. New Phytol. 2018, 220, 1108–1115. [Google Scholar] [CrossRef]
- Hiruma, K.; Kobae, Y.; Toju, H. Beneficial Associations between Brassicaceae Plants and Fungal Endophytes under Nutrient-Limiting Conditions: Evolutionary Origins and Host–Symbiont Molecular Mechanisms. Curr. Opin. Plant Biol. 2018, 44, 145–154. [Google Scholar] [CrossRef]
- Bahram, M.; Netherway, T. Fungi as Mediators Linking Organisms and Ecosystems. FEMS Microbiol. Rev. 2022, 46, fuab058. [Google Scholar] [CrossRef]
- Möller, M.; Stukenbrock, E.H. Evolution and Genome Architecture in Fungal Plant Pathogens. Nat. Rev. Microbiol. 2017, 15, 756–771. [Google Scholar] [CrossRef]
- Van Valen, L. A new evolutionary law. Evol. Theory 1973, 1, 1–30. [Google Scholar]
- Clay, K.; Kover, P.X. The Red Queen Hypothesis and Plant/Pathogen Interactions. Annu. Rev. Phytopathol. 1996, 34, 29–50. [Google Scholar] [CrossRef]
- Delaye, L.; Ruiz-Ruiz, S.; Calderon, E.; Tarazona, S.; Conesa, A.; Moya, A. Evidence of the Red-Queen Hypothesis from Accelerated Rates of Evolution of Genes Involved in Biotic Interactions in Pneumocystis. Genome Biol. Evol. 2018, 10, 1596–1606. [Google Scholar] [CrossRef] [PubMed]
- Solé, R. Revisiting Leigh van Valen’s “A New Evolutionary Law” (1973). Biol. Theory 2022, 17, 120–125. [Google Scholar] [CrossRef]
- Sun, S.; Heitman, J. Is Sex Necessary? BMC Biol. 2011, 9, 56. [Google Scholar] [CrossRef]
- Ashu, E.E.; Xu, J. The Roles of Sexual and Asexual Reproduction in the Origin and Dissemination of Strains Causing Fungal Infectious Disease Outbreaks. Infect. Genet. Evol. 2015, 36, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Newman, T.E.; Derbyshire, M.C. The Evolutionary and Molecular Features of Broad Host-Range Necrotrophy in Plant Pathogenic Fungi. Front. Plant Sci. 2020, 11, 591733. [Google Scholar] [CrossRef]
- Krings, M.; Taylor, T.N.; Hass, H.; Kerp, H.; Dotzler, N.; Hermsen, E.J. Fungal Endophytes in a 400-Million-Yr-Old Land Plant: Infection Pathways, Spatial Distribution, and Host Responses. New Phytol. 2007, 174, 648–657. [Google Scholar] [CrossRef]
- Feijen, F.A.A.; Vos, R.A.; Nuytinck, J.; Merckx, V.S.F.T. Evolutionary Dynamics of Mycorrhizal Symbiosis in Land Plant Diversification. Sci. Rep. 2018, 8, 10698. [Google Scholar] [CrossRef]
- Hoeksema, J.D.; Bever, J.D.; Chakraborty, S.; Chaudhary, V.B.; Gardes, M.; Gehring, C.A.; Hart, M.M.; Housworth, E.A.; Kaonongbua, W.; Klironomos, J.N.; et al. Evolutionary History of Plant Hosts and Fungal Symbionts Predicts the Strength of Mycorrhizal Mutualism. Commun. Biol. 2018, 1, 116. [Google Scholar] [CrossRef]
- Brundrett, M.C. Coevolution of Roots and Mycorrhizas of Land Plants. New Phytol. 2002, 154, 275–304. [Google Scholar] [CrossRef]
- Cameron, D.D.; Neal, A.L.; van Wees, S.C.M.; Ton, J. Mycorrhiza-Induced Resistance: More than the Sum of Its Parts? Trends Plant Sci. 2013, 18, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Gouda, S.; Das, G.; Sen, S.K.; Shin, H.-S.; Patra, J.K. Endophytes: A Treasure House of Bioactive Compounds of Medicinal Importance. Front. Microbiol. 2016, 7, 1538. [Google Scholar] [CrossRef]
- Zamioudis, C.; Pieterse, C.M.J. Modulation of Host Immunity by Beneficial Microbes. Mol. Plant-MicrobeInteract. 2012, 25, 139–150. [Google Scholar] [CrossRef]
- Giraldo, M.C.; Valent, B. Filamentous Plant Pathogen Effectors in Action. Nat. Rev. Microbiol. 2013, 11, 800–814. [Google Scholar] [CrossRef]
- Ponce de León, I.; Montesano, M. Activation of Defense Mechanisms against Pathogens in Mosses and Flowering Plants. Int. J. Mol. Sci. 2013, 14, 3178–3200. [Google Scholar] [CrossRef]
- Nguyen, Q.-M.; Iswanto, A.B.B.; Son, G.H.; Kim, S.H. Recent Advances in Effector-Triggered Immunity in Plants: New Pieces in the Puzzle Create a Different Paradigm. Int. J. Mol. Sci. 2021, 22, 4709. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, X.-C.; Stacey, G. Chitin Signaling and Plant Disease Resistance. Plant Signal. Behav. 2008, 3, 831–833. [Google Scholar] [CrossRef]
- Hawkins, L.K.; Mylroie, J.E.; Oliveira, D.A.; Smith, J.S.; Ozkan, S.; Windham, G.L.; Williams, W.P.; Warburton, M.L. Characterization of the Maize Chitinase Genes and Their Effect on Aspergillus flavus and Aflatoxin Accumulation Resistance. PLoS ONE 2015, 10, e0126185. [Google Scholar] [CrossRef]
- Lo Presti, L.; Lanver, D.; Schweizer, G.; Tanaka, S.; Liang, L.; Tollot, M.; Zuccaro, A.; Reissmann, S.; Kahmann, R. Fungal Effectors and Plant Susceptibility. Annu. Rev. Plant Biol. 2015, 66, 513–545. [Google Scholar] [CrossRef]
- Osbourn, A.E. Preformed Antimicrobial Compounds and Plant Defense against Fungal Attack. Plant Cell 1996, 8, 1821–1831. [Google Scholar] [CrossRef]
- Rajamuthiah, R.; Mylonakis, E. Effector Triggered Immunity: Activation of Innate Immunity in Metazoans by Bacterial Effectors. Virulence 2014, 5, 697–702. [Google Scholar] [CrossRef]
- Hatsugai, N.; Igarashi, D.; Mase, K.; Lu, Y.; Tsuda, Y.; Chakravarthy, S.; Wei, H.-L.; Foley, J.W.; Collmer, A.; Glazebrook, J.; et al. A Plant Effector-Triggered Immunity Signaling Sector Is Inhibited by Pattern-Triggered Immunity. EMBO J. 2017, 36, 2758–2769. [Google Scholar] [CrossRef]
- van Kan, J.A.; van den Ackerveken, G.F.; de Wit, P.J. Cloning and Characterization of cDNA of Avirulence Gene Avr9 of the Fungal Pathogen Cladosporium fulvum, Causal Agent of Tomato Leaf Mold. Mol. Plant-MicrobeInteract. 1991, 4, 52–59. [Google Scholar] [CrossRef]
- de Wit, P.J.G.M. Genes Involved in Plant Defense; Springer Vienna: Vienna, Australia, 1992; Functional Models to Explain Gene-for-Gene Relationships in Plant-Pathogen Interactions; pp. 25–47. ISBN 9783709173800. [Google Scholar]
- Frank, S.A. Coevolutionary Genetics of Plants and Pathogens. Evol. Ecol. 1993, 7, 45–75. [Google Scholar] [CrossRef]
- Glazebrook, J. Contrasting Mechanisms of Defense against Biotrophic and Necrotrophic Pathogens. Annu. Rev. Phytopathol. 2005, 43, 205–227. [Google Scholar] [CrossRef]
- Bari, R.; Jones, J.D.G. Role of Plant Hormones in Plant Defence Responses. Plant Mol. Biol. 2009, 69, 473–488. [Google Scholar] [CrossRef]
- Wang, Y.; Mostafa, S.; Zeng, W.; Jin, B. Function and Mechanism of Jasmonic Acid in Plant Responses to Abiotic and Biotic Stresses. Int. J. Mol. Sci. 2021, 22, 8568. [Google Scholar] [CrossRef]
- Tamaoki, D.; Seo, S.; Yamada, S.; Kano, A.; Miyamoto, A.; Shishido, H.; Miyoshi, S.; Taniguchi, S.; Akimitsu, K.; Gomi, K. Jasmonic Acid and Salicylic Acid Activate a Common Defense System in Rice. Plant Signal. Behav. 2013, 8, e24260. [Google Scholar] [CrossRef]
- Pena-Cortés, H.; Albrecht, T.; Prat, S.; Weiler, E.; Willmitzer, L. Aspirin Prevents Wound-Induced Gene Expression in Tomato Leaves by Blocking Jasmonic Acid Biosynthesis. Planta 1993, 191, 123–128. [Google Scholar] [CrossRef]
- Riemann, M.; Haga, K.; Shimizu, T.; Okada, K.; Ando, S.; Mochizuki, S.; Nishizawa, Y.; Yamanouchi, U.; Nick, P.; Yano, M.; et al. Identification of Rice Allene Oxide Cyclase Mutants and the Function of Jasmonate for Defence against Magnaporthe oryzae. Plant J. 2013, 74, 226–238. [Google Scholar] [CrossRef]
- Williams, B.; Kabbage, M.; Kim, H.-J.; Britt, R.; Dickman, M.B. Tipping the Balance: Sclerotinia sclerotiorum Secreted Oxalic Acid Suppresses Host Defenses by Manipulating the Host Redox Environment. PLoS Pathog. 2011, 7, e1002107. [Google Scholar] [CrossRef]
- Liang, X.; Rollins, J.A. Mechanisms of Broad Host Range Necrotrophic Pathogenesis in Sclerotinia sclerotiorum. Phytopathology 2018, 108, 1128–1140. [Google Scholar] [CrossRef]
- Ito, K.; Tanaka, T.; Hatta, R.; Yamamoto, M.; Akimitsu, K.; Tsuge, T. Dissection of the Host Range of the Fungal Plant Pathogen Alternaria alternata by Modification of Secondary Metabolism: Host Specificity of Alternaria alternata. Mol. Microbiol. 2004, 52, 399–411. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, B.; Gai, Y.; Sun, X.; Chung, K.-R.; Li, H. Cell-Wall-Degrading Enzymes Required for Virulence in the Host Selective Toxin-Producing Necrotroph Alternaria alternata of Citrus. Front. Microbiol. 2019, 10, 2514. [Google Scholar] [CrossRef]
- Mendgen, K.; Hahn, M. Plant Infection and the Establishment of Fungal Biotrophy. Trends Plant Sci. 2002, 7, 352–356. [Google Scholar] [CrossRef]
- Dufresne, M.; Perfect, S.; Pellier, A.L.; Bailey, J.A.; Langin, T. A GAL4-like Protein Is Involved in the Switch between Biotrophic and Necrotrophic Phases of the Infection Process of Colletotrichum lindemuthianum on Common Bean. Plant Cell 2000, 12, 1579–1590. [Google Scholar] [CrossRef]
- Münch, S.; Lingner, U.; Floss, D.S.; Ludwig, N.; Sauer, N.; Deising, H.B. The Hemibiotrophic Lifestyle of Colletotrichum Species. J. Plant Physiol. 2008, 165, 41–51. [Google Scholar] [CrossRef]
- Mengiste, T. Plant Immunity to Necrotrophs. Annu. Rev. Phytopathol. 2012, 50, 267–294. [Google Scholar] [CrossRef]
- Zimnoch-Guzowska, E.; Lebecka, R.; Kryszczuk, A.; Maciejewska, U.; Szczerbakowa, A.; Wielgat, B. Resistance to Phytophthora infestans in Somatic Hybrids of Solanum nigrum L. and Diploid Potato. Züchter Genet. Breed. Res. 2003, 107, 43–48. [Google Scholar] [CrossRef]
- Lyu, X.; Shen, C.; Fu, Y.; Xie, J.; Jiang, D.; Li, G.; Cheng, J. A Small Secreted Virulence-Related Protein Is Essential for the Necrotrophic Interactions of Sclerotinia sclerotiorum with Its Host Plants. PLoS Pathog. 2016, 12, e1005435. [Google Scholar] [CrossRef]
- Reindl, M.; Hänsch, S.; Weidtkamp-Peters, S.; Schipper, K. A Potential Lock-Type Mechanism for Unconventional Secretion in Fungi. Int. J. Mol. Sci. 2019, 20, 460. [Google Scholar] [CrossRef]
- Petre, B.; Kamoun, S. How Do Filamentous Pathogens Deliver Effector Proteins into Plant Cells? PLoS Biol. 2014, 12, e1001801. [Google Scholar] [CrossRef]
- Kombrink, A.; Thomma, B.P.H.J. LysM Effectors: Secreted Proteins Supporting Fungal Life. PLoS Pathog. 2013, 9, e1003769. [Google Scholar] [CrossRef]
- Santhanam, P.; van Esse, H.P.; Albert, I.; Faino, L.; Nürnberger, T.; Thomma, B.P.H.J. Evidence for Functional Diversification within a Fungal NEP1-like Protein Family. Mol. Plant-MicrobeInteract. 2013, 26, 278–286. [Google Scholar] [CrossRef]
- Kombrink, A.; Rovenich, H.; Shi-Kunne, X.; Rojas-Padilla, E.; van den Berg, G.C.M.; Domazakis, E.; de Jonge, R.; Valkenburg, D.-J.; Sánchez-Vallet, A.; Seidl, M.F.; et al. Verticillium dahlia LysM Effectors Differentially Contribute to Virulence on Plant Hosts. Mol. Plant Pathol. 2017, 18, 596–608. [Google Scholar] [CrossRef]
- Patkar, R.N.; Benke, P.I.; Qu, Z.; Chen, Y.Y.C.; Yang, F.; Swarup, S.; Naqvi, N.I. A Fungal Monooxygenase-Derived Jasmonate Attenuates Host Innate Immunity. Nat. Chem. Biol. 2015, 11, 733–740. [Google Scholar] [CrossRef]
- Saha, H.; Kaloterakis, N.; Harvey, J.A.; Van der Putten, W.H.; Biere, A. Effects of Light Quality on Colonization of Tomato Roots by AMF and Implications for Growth and Defense. Plants 2022, 11, 861. [Google Scholar] [CrossRef]
- Chanda, A.; Maghrawy, H.; Sayour, H.; Gummadidala, P.M.; Gomaa, O.M. Impact of Climate Change on Plant-Associated Fungi. In Climate Change Impacts on Agriculture and Food Security in Egypt; Springer: Cham, Switzerland, 2020; pp. 83–96. ISBN 9783030416287. [Google Scholar]
- Trivedi, P.; Batista, B.D.; Bazany, K.E.; Singh, B.K. Plant-Microbiome Interactions under a Changing World: Responses, Consequences and Perspectives. New Phytol. 2022, 234, 1951–1959. [Google Scholar] [CrossRef]
- Velásquez, A.C.; Castroverde, C.D.M.; He, S.Y. Plant–Pathogen Warfare under Changing Climate Conditions. Curr. Biol. 2018, 28, R619–R634. [Google Scholar] [CrossRef]
- Perrone, G.; Ferrara, M.; Medina, A.; Pascale, M.; Magan, N. Toxigenic Fungi and Mycotoxins in a Climate Change Scenario: Ecology, Genomics, Distribution, Prediction and Prevention of the Risk. Microorganisms 2020, 8, 1496. [Google Scholar] [CrossRef]
- Cohen, S.P.; Leach, J.E. High Temperature-Induced Plant Disease Susceptibility: More than the Sum of Its Parts. Curr. Opin. Plant Biol. 2020, 56, 235–241. [Google Scholar] [CrossRef]
- Nieva, A.S.; Romero, F.M.; Erban, A.; Carrasco, P.; Ruiz, O.A.; Kopka, J. Metabolic Profiling and Metabolite Correlation Network Analysis Reveal That Fusarium solani Induces Differential Metabolic Responses in Lotus japonicus and Lotus tenuis against Severe Phosphate Starvation. J. Fungi 2021, 7, 765. [Google Scholar] [CrossRef]
- Nnadi, N.E.; Carter, D.A. Climate Change and the Emergence of Fungal Pathogens. PLoS Pathog. 2021, 17, e1009503. [Google Scholar] [CrossRef]
- Shaffique, S.; Khan, M.A.; Wani, S.H.; Pande, A.; Imran, M.; Kang, S.-M.; Rahim, W.; Khan, S.A.; Bhatta, D.; Kwon, E.-H.; et al. A Review on the Role of Endophytes and Plant Growth Promoting Rhizobacteria in Mitigating Heat Stress in Plants. Microorganisms 2022, 10, 1286. [Google Scholar] [CrossRef]
- Compant, S.; van der Heijden, M.G.A.; Sessitsch, A. Climate Change Effects on Beneficial Plant-Microorganism Interactions: Climate Change and Beneficial Plant-Microorganism Interactions. FEMS Microbiol. Ecol. 2010, 73, 197–214. [Google Scholar] [CrossRef]
- Bennett, A.E.; Classen, A.T. Climate Change Influences Mycorrhizal Fungal-Plant Interactions, but Conclusions Are Limited by Geographical Study Bias. Ecology 2020, 101, e02978. [Google Scholar] [CrossRef]
- Mathur, S.; Agnihotri, R.; Sharma, M.P.; Reddy, V.R.; Jajoo, A. Effect of High-Temperature Stress on Plant Physiological Traits and Mycorrhizal Symbiosis in Maize Plants. J. Fungi 2021, 7, 867. [Google Scholar] [CrossRef]
- Martin, C.A.; Stutz, J.C. Interactive Effects of Temperature and Arbuscular Mycorrhizal Fungi on Growth, P Uptake and Root Respiration of Capsicum annuum L. Mycorrhiza 2004, 14, 241–244. [Google Scholar] [CrossRef]
- Liu, A.; Wang, B.; Hamel, C. Arbuscular Mycorrhiza Colonization and Development at Suboptimal Root Zone Temperature. Mycorrhiza 2004, 14, 93–101. [Google Scholar] [CrossRef] [PubMed]
- de Vallavieille-Pope, C.; Bahri, B.; Leconte, M.; Zurfluh, O.; Belaid, Y.; Maghrebi, E.; Huard, F.; Huber, L.; Launay, M.; Bancal, M.O. Thermal Generalist Behaviour of Invasive Puccinia striiformis f. sp. tritici Strains under Current and Future Climate Conditions. Plant Pathol. 2018, 67, 1307–1320. [Google Scholar] [CrossRef]
- Heinemeyer, A.; Fitter, A.H. Impact of Temperature on the Arbuscular Mycorrhizal (AM) Symbiosis: Growth Responses of the Host Plant and Its AM Fungal Partner. J. Exp. Bot. 2004, 55, 525–534. [Google Scholar] [CrossRef]
- Jerbi, M.; Labidi, S.; Lounès-Hadj Sahraoui, A.; Chaar, H.; Ben Jeddi, F. Higher Temperatures and Lower Annual Rainfall Do Not Restrict, Directly or Indirectly, the Mycorrhizal Colonization of Barley (Hordeum vulgare L.) under Rainfed Conditions. PLoS ONE 2020, 15, e0241794. [Google Scholar] [CrossRef]
- Carro-Huerga, G.; Mayo-Prieto, S.; Rodríguez-González, Á.; Álvarez-García, S.; Gutiérrez, S.; Casquero, P.A. The Influence of Temperature on the Growth, Sporulation, Colonization, and Survival of Trichoderma spp. in Grapevine Pruning Wounds. Agronomy 2021, 11, 1771. [Google Scholar] [CrossRef]
- Marsberg, A.; Kemler, M.; Jami, F.; Nagel, J.H.; Postma-Smidt, A.; Naidoo, S.; Wingfield, M.J.; Crous, P.W.; Spatafora, J.W.; Hesse, C.N.; et al. Botryosphaeria dothidea: A Latent Pathogen of Global Importance to Woody Plant Health. Mol. Plant Pathol. 2017, 18, 477–488. [Google Scholar] [CrossRef]
- Ballhorn, D.J.; Schädler, M.; Elias, J.D.; Millar, J.A.; Kautz, S. Friend or Foe-Light Availability Determines the Relationship between Mycorrhizal Fungi, Rhizobia and Lima Bean (Phaseolus lunatus L.). PLoS ONE 2016, 11, e0154116. [Google Scholar] [CrossRef] [PubMed]
- Carstensen, A.; Herdean, A.; Schmidt, S.B.; Sharma, A.; Spetea, C.; Pribil, M.; Husted, S. The Impacts of Phosphorus Deficiency on the Photosynthetic Electron Transport Chain. Plant Physiol. 2018, 177, 271–284. [Google Scholar] [CrossRef]
- Garnica, S.; Liao, Z.; Hamard, S.; Waller, F.; Parepa, M.; Bossdorf, O. Environmental Stress Determines the Colonization and Impact of an Endophytic Fungus on Invasive Knotweed. Biol. Invasions 2022, 24, 1785–1795. [Google Scholar] [CrossRef]
- Hevia, M.A.; Canessa, P.; Müller-Esparza, H.; Larrondo, L.F. A Circadian Oscillator in the Fungus Botrytis cinerea Regulates Virulence When Infecting Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2015, 112, 8744–8749. [Google Scholar] [CrossRef]
- Lozano, Y.M.; Aguilar-Trigueros, C.A.; Roy, J.; Rillig, M.C. Drought Induces Shifts in Soil Fungal Communities That Can Be Linked to Root Traits across 24 Plant Species. New Phytol. 2021, 232, 1917–1929. [Google Scholar] [CrossRef]
- Lamhamedi, M.S.; Bernier, P.Y.; André-Fortin, J. Hydraulic Conductance and Soil Water Potential at the Soil-Root Interface of Pinus pinaster Seedlings Inoculated with Different Dikaryons of Pisolithus sp. Tree Physiol. 1992, 10, 231–244. [Google Scholar] [CrossRef]
- Brosi, G.B.; McCulley, R.L.; Bush, L.P.; Nelson, J.A.; Classen, A.T.; Norby, R.J. Effects of Multiple Climate Change Factors on the Tall Fescue-Fungal Endophyte Symbiosis: Infection Frequency and Tissue Chemistry. New Phytol. 2011, 189, 797–805. [Google Scholar] [CrossRef]
- Augé, R.M. Water Relations, Drought and Vesicular-Arbuscular Mycorrhizal Symbiosis. Mycorrhiza 2001, 11, 3–42. [Google Scholar] [CrossRef]
- Morte, A.; Díaz, G.; Rodríguez, P.; Alarcón, J.J.; Sánchez-Blanco, M.J. Growth and Water Relations in Mycorrhizal and Nonmycorrhizal Pinus halepensis Plants in Response to Drought. Biol. Plant. 2001, 44, 263–267. [Google Scholar] [CrossRef]
- Boczoń, A.; Hilszczańska, D.; Wrzosek, M.; Szczepkowski, A.; Sierota, Z. Drought in the Forest Breaks Plant–Fungi Interactions. Eur. J. For. Res. 2021, 140, 1301–1321. [Google Scholar] [CrossRef]
- Tufail, M.A.; Ayyub, M.; Irfan, M.; Shakoor, A.; Chibani, C.M.; Schmitz, R.A. Endophytic Bacteria Perform Better than Endophytic Fungi in Improving Plant Growth under Drought Stress: A Meta-Comparison Spanning 12 Years (2010–2021). Physiol. Plant. 2022, 174, e13806. [Google Scholar] [CrossRef]
- Andreo-Jimenez, B.; Vandenkoornhuyse, P.; Lê Van, A.; Heutinck, A.; Duhamel, M.; Kadam, N.; Jagadish, K.; Ruyter-Spira, C.; Bouwmeester, H. Plant Host and Drought Shape the Root Associated Fungal Microbiota in Rice. PeerJ 2019, 7, e7463. [Google Scholar] [CrossRef] [PubMed]
- Stenström, E. The Effects of Flooding on the Formation of Ectomycorrhizae in Pinus sylvestris Seedlings. Plant Soil 1991, 131, 247–250. [Google Scholar] [CrossRef]
- Gavito, M.E.; Curtis, P.S.; Mikkelsen, T.N.; Jakobsen, I. Atmospheric CO2 and Mycorrhiza Effects on Biomass Allocation and Nutrient Uptake of Nodulated Pea (Pisum sativum L.) Plants. J. Exp. Bot. 2000, 51, 1931–1938. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wang, Z.; Sun, H.; Yang, W.; Xu, H. The Response Patterns of Arbuscular Mycorrhizal and Ectomycorrhizal Symbionts under Elevated CO2: A Meta-Analysis. Front. Microbiol. 2018, 9, 1248. [Google Scholar] [CrossRef] [PubMed]
- Habeeb, T.H.; Abdel-Mawgoud, M.; Yehia, R.S.; Khalil, A.M.A.; Saleh, A.M.; AbdElgawad, H. Interactive Impact of Arbuscular Mycorrhizal Fungi and Elevated CO2 on Growth and Functional Food Value of Thymus vulgare. J. Fungi 2020, 6, 168. [Google Scholar] [CrossRef]
- Baazeem, A.; Medina, A.; Magan, N. Effect of Acclimatization in Elevated CO2 on Growth and Aflatoxin B1 Production by Aspergillus flavus Strains on Pistachio Nuts. Microorganisms 2022, 10, 49. [Google Scholar] [CrossRef]
- Garcia, M.O.; Ovasapyan, T.; Greas, M.; Treseder, K.K. Mycorrhizal Dynamics under Elevated CO2 and Nitrogen Fertilization in a Warm Temperate Forest. Plant Soil 2008, 303, 301–310. [Google Scholar] [CrossRef]
- Matamala, R.; Schlesinger, W.H. Effects of Elevated Atmospheric CO2 on Fine Root Production and Activity in an Intact Temperate Forest Ecosystem: Root Production of Forest Growing at High CO2. Glob. Chang. Biol. 2000, 6, 967–979. [Google Scholar] [CrossRef]
- Váry, Z.; Mullins, E.; McElwain, J.C.; Doohan, F.M. The Severity of Wheat Diseases Increases When Plants and Pathogens are Acclimatized to Elevated Carbon Dioxide. Glob. Chang. Biol. 2015, 21, 2661–2669. [Google Scholar] [CrossRef]
- El-Shafey, N.M.; Marzouk, M.A.; Yasser, M.M.; Shaban, S.A.; Beemster, G.T.S.; AbdElgawad, H. Harnessing Endophytic Fungi for Enhancing Growth, Tolerance and Quality of Rose-Scented Geranium (Pelargonium graveolens (L’Hér) Thunb.) Plants under Cadmium Stress: A Biochemical Study. J. Fungi 2021, 7, 1039. [Google Scholar] [CrossRef]
- Selim, S.; Abuelsoud, W.; Alsharari, S.S.; Alowaiesh, B.F.; Al-Sanea, M.M.; Al Jaouni, S.; Madany, M.M.Y.; AbdElgawad, H. Improved Mineral Acquisition, Sugars Metabolism and Redox Status after Mycorrhizal Inoculation are the Basis for Tolerance to Vanadium Stress in C3 and C4 Grasses. J. Fungi 2021, 7, 915. [Google Scholar] [CrossRef]
- Bolan, N.S. A Critical Review on the Role of Mycorrhizal Fungi in the Uptake of Phosphorus by Plants. Plant Soil 1991, 134, 189–207. [Google Scholar] [CrossRef]
- Guadarrama, P.; Álvarez-Sánchez, J.; Estrada-Torres, A. Phosphorus Dependence in Seedlings of a Tropical Pioneer Tree: The Role of Arbuscular Mycorrhizae. J. Plant Nutr. 2005, 27, 2159–2174. [Google Scholar] [CrossRef]
- Garces, K.R.; Sage, H.E.; Christian, N.; Emery, S.M. Epichloë Increases Root Fungal Endophyte Richness and Alters Root Fungal Endophyte Composition in a Changing World. J. Fungi 2022, 8, 1142. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, R.J.; Redman, R.S. Fungal Life-Styles and Ecosystem Dynamics: Biological Aspects of Plant Pathogens, Plant Endophytes and Saprophytes; Advances in Botanical Research; Elsevier: Cambridge, MA, USA, 1997; pp. 169–193. ISBN 9780120059249. [Google Scholar]
- Rai, M.; Agarkar, G. Plant-Fungal Interactions: What Triggers the Fungi to Switch among Lifestyles? Crit. Rev. Microbiol. 2016, 42, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Eydoux, L.; Farrer, E.C. Does Salinity Affect Lifestyle Switching in the Plant Pathogen Fusarium solani? Access Microbiol. 2020, 2, acmi000114. [Google Scholar] [CrossRef]
- Delaye, L.; García-Guzmán, G.; Heil, M. Endophytes versus Biotrophic and Necrotrophic Pathogens—Are Fungal Lifestyles Evolutionarily Stable Traits? Fungal Divers. 2013, 60, 125–135. [Google Scholar] [CrossRef]
- Brader, G.; Compant, S.; Vescio, K.; Mitter, B.; Trognitz, F.; Ma, L.-J.; Sessitsch, A. Ecology and Genomic Insights into Plant-Pathogenic and Plant-Nonpathogenic Endophytes. Annu. Rev. Phytopathol. 2017, 55, 61–83. [Google Scholar] [CrossRef] [PubMed]
- Baron, N.C.; Rigobelo, E.C. Endophytic Fungi: A Tool for Plant Growth Promotion and Sustainable Agriculture. Mycology 2022, 13, 39–55. [Google Scholar] [CrossRef] [PubMed]
- Collinge, D.B.; Jensen, B.; Jørgensen, H.J. Fungal Endophytes in Plants and Their Relationship to Plant Disease. Curr. Opin. Microbiol. 2022, 69, 102177. [Google Scholar] [CrossRef]
- Thomma, B.P.H.J. Alternaria spp.: From General Saprophyte to Specific Parasite. Mol. Plant Pathol. 2003, 4, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.C.; Graham, J.H.; Smith, F.A. Functioning of Mycorrhizal Associations along the Mutualism-Parasitism Continuum. New Phytol. 1997, 135, 575–585. [Google Scholar] [CrossRef]
- Mandyam, K.G.; Jumpponen, A. Mutualism–parasitism paradigm synthesized from results of root-endophyte models. Front. Microbiol. 2014, 5, 776. [Google Scholar] [CrossRef]
- Álvarez-Loayza, P.; White, J.F., Jr.; Torres, M.S.; Balslev, H.; Kristiansen, T.; Svenning, J.-C.; Gil, N. Light Converts Endosymbiotic Fungus to Pathogen, Influencing Seedling Survival and Niche-Space Filling of a Common Tropical Tree, Iriartea deltoidea. PLoS ONE 2011, 6, e16386. [Google Scholar] [CrossRef] [PubMed]
- Redman, R.S.; Henson, J.M.; Rodriguez, R.J. Symbiotic Lifestyle Expression by Fungal Endophytes and the Adaptation of Plants to Stress: Unraveling the Complexities of Intimacy. In Mycology; CRC Press: Boca Raton, FL, USA, 2005; pp. 683–695. ISBN 9780824723552. [Google Scholar]
- Hill, R.; Buggs, R.J.A.; Vu, D.T.; Gaya, E. Lifestyle Transitions in Fusarioid Fungi Are Frequent and Lack Clear Genomic Signatures. Mol. Biol. Evol. 2022, 39, msac085. [Google Scholar] [CrossRef] [PubMed]
- Muszewska, A.; Stepniewska-Dziubinska, M.M.; Steczkiewicz, K.; Pawlowska, J.; Dziedzic, A.; Ginalski, K. Fungal Lifestyle Reflected in Serine Protease Repertoire. Sci. Rep. 2017, 7, 9147. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Priyashantha, A.K.H.; Dai, D.-Q.; Bhat, D.J.; Stephenson, S.L.; Promputtha, I.; Kaushik, P.; Tibpromma, S.; Karunarathna, S.C. Plant–Fungi Interactions: Where It Goes? Biology 2023, 12, 809. https://doi.org/10.3390/biology12060809
Priyashantha AKH, Dai D-Q, Bhat DJ, Stephenson SL, Promputtha I, Kaushik P, Tibpromma S, Karunarathna SC. Plant–Fungi Interactions: Where It Goes? Biology. 2023; 12(6):809. https://doi.org/10.3390/biology12060809
Chicago/Turabian StylePriyashantha, A. K. Hasith, Dong-Qin Dai, Darbhe J. Bhat, Steven L. Stephenson, Itthayakorn Promputtha, Prashant Kaushik, Saowaluck Tibpromma, and Samantha C. Karunarathna. 2023. "Plant–Fungi Interactions: Where It Goes?" Biology 12, no. 6: 809. https://doi.org/10.3390/biology12060809
APA StylePriyashantha, A. K. H., Dai, D. -Q., Bhat, D. J., Stephenson, S. L., Promputtha, I., Kaushik, P., Tibpromma, S., & Karunarathna, S. C. (2023). Plant–Fungi Interactions: Where It Goes? Biology, 12(6), 809. https://doi.org/10.3390/biology12060809