Imbalance of Peripheral Temperature, Sympathovagal, and Cytokine Profile in Long COVID
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting, Period of Study, and Population
2.3. Participants
2.4. Heart Rate Variability
2.5. Infrared Thermography
2.6. Serum Cytokine Levels
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- del Rio, C.; Collins, L.F.; Malani, P. Long-term Health Consequences of COVID-19. JAMA 2020, 324, 1723–1724. [Google Scholar] [CrossRef] [PubMed]
- Jimeno-Almazán, A.; Pallarés, J.G.; Buendía-Romero, Á.; Martínez-Cava, A.; Franco-López, F.; Sánchez-Alcaraz Martínez, B.J.; Bernal-Morel, E.; Courel-Ibáñez, J. Post-COVID-19 Syndrome and the Potential Benefits of Exercise. Int. J. Environ. Res. Public Health 2021, 18, 5329. [Google Scholar] [CrossRef] [PubMed]
- Goërtz, Y.M.J.; van Herck, M.; Delbressine, J.M.; Vaes, A.W.; Meyes, R.; Machado, F.V.C.; Houben-Wilke, S.; Burtin, C.; Posthuma, R.; Franssen, F.M.E.; et al. Persistent symptoms 3 months after a SARS-CoV-2 infection: The post-COVID-19 syndrome? ERJ Open Res. 2020, 6, 00542–02020. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.; Abo Omirah, M.; Hussein, A.; Saeed, H. Assessment and characterisation of post-COVID-19 manifestations. Int. J. Clin. Pract. 2021, 75, e13746. [Google Scholar] [CrossRef]
- Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; et al. Neurologic Manifestations of Hospitalized Patients with Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020, 77, 683. [Google Scholar] [CrossRef]
- Kumar, S.; Veldhuis, A.; Malhotra, T. Neuropsychiatric and Cognitive Sequelae of COVID-19. Front. Psychol. 2021, 12, 577529. [Google Scholar] [CrossRef]
- Jiang, D.H.; McCoy, R.G. Planning for the Post-COVID Syndrome: How Payers Can Mitigate Long-Term Complications of the Pandemic. J. Gen. Intern. Med. 2020, 35, 3036–3039. [Google Scholar] [CrossRef]
- Das, G.; Mukherjee, N.; Ghosh, S. Neurological Insights of COVID-19 Pandemic. ACS Chem. Neurosci. 2020, 11, 1206–1209. [Google Scholar] [CrossRef]
- Li, Z.; Liu, T.; Yang, N.; Han, D.; Mi, X.; Li, Y.; Liu, K.; Vuylsteke, A.; Xiang, H.; Guo, X. Neurological manifestations of patients with COVID-19: Potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain. Front. Med. 2020, 14, 533–541. [Google Scholar] [CrossRef]
- Dewanjee, S.; Vallamkondu, J.; Kalra, R.S.; Puvvada, N.; Kandimalla, R.; Reddy, P.H. Emerging COVID-19 Neurological Manifestations: Present Outlook and Potential Neurological Challenges in COVID-19 Pandemic. Mol. Neurobiol. 2021, 58, 4694–4715. [Google Scholar] [CrossRef]
- Mussa, B.M.; Srivastava, A.; Verberne, A.J.M. COVID-19 and Neurological Impairment: Hypothalamic Circuits and Beyond. Viruses 2021, 13, 498. [Google Scholar] [CrossRef]
- Dani, M.; Dirksen, A.; Taraborrelli, P.; Torocastro, M.; Panagopoulos, D.; Sutton, R.; Lim, P.B. Autonomic dysfunction in ‘long COVID’: Rationale, physiology and management strategies. Clin. Med. 2021, 21, e63–e67. [Google Scholar] [CrossRef]
- Baig, A.M. Deleterious Outcomes in Long-Hauler COVID-19: The Effects of SARS-CoV-2 on the CNS in Chronic COVID Syndrome. ACS Chem. Neurosci. 2020, 11, 4017–4020. [Google Scholar] [CrossRef]
- Jud, P.; Gressenberger, P.; Muster, V.; Avian, A.; Meinitzer, A.; Strohmaier, H.; Sourj, H.; Raggam, R.B.; Stradner, M.H.; Demel, U.; et al. Evaluation of Endothelial Dysfunction and Inflammatory Vasculopathy after SARS-CoV-2 Infection—A Cross-Sectional Study. Front. Cardiovasc. Med. 2021, 8, 750887. [Google Scholar] [CrossRef]
- Charkoudian, N. Skin Blood Flow in Adult Human Thermoregulation: How It Works, When It Does Not, and Why. Mayo Clin. Proc. 2003, 78, 603–612. [Google Scholar] [CrossRef]
- Higgins, V.; Sohaei, D.; Diamandis, E.P.; Prassas, I. COVID-19: From an acute to chronic disease? Potential long-term health consequences. Crit. Rev. Clin. Lab. Sci. 2021, 58, 297–310. [Google Scholar] [CrossRef]
- Jiang, L.J.; Ng, E.Y.K.; Yeo, A.C.B.; Wu, S.; Pan, F.; Yau, W.Y.; Chen, J.H.; Yamg, Y. A perspective on medical infrared imaging. J. Med. Eng. Technol. 2005, 29, 257–267. [Google Scholar] [CrossRef]
- Sagaidachnyi, A.A.; Fomin, A.V.; Usanov, D.A.; Skripal, A.V. Thermography-based blood flow imaging in human skin of the hands and feet: A spectral filtering approach. Physiol. Meas. 2017, 38, 272–288. [Google Scholar] [CrossRef]
- Johnston, B.W.; Barrett-Jolley, R.; Krige, A.; Welters, I.D. Heart rate variability: Measurement and emerging use in critical care medicine. J. Intensiv. Care Soc. 2019, 21, 148–157. [Google Scholar] [CrossRef]
- Singer, D.H.; Martin, G.J.; Magid, N.; Weiss, J.S.; Schaad, J.W.; Kehoe, R.; Zheutlin, T.; Fintel, D.J.; Hsieh, A.M.; Lesch, M. Low heart rate variability and sudden cardiac death. J. Electrocardiol. 1988, 21, S46–S55. [Google Scholar] [CrossRef]
- Stute, N.L.; Stickford, J.L.; Province, V.M.; Augenreich, M.A.; Ratchford, S.M.; Stickford, A.S.L. COVID-19 is getting on our nerves: Sympathetic neural activity and haemodynamics in young adults recovering from SARS-CoV-2. J. Physiol. 2021, 599, 4269–4285. [Google Scholar] [CrossRef] [PubMed]
- Raveendran, A.V. Long COVID-19: Challenges in the diagnosis and proposed diagnostic criteria. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 145–146. [Google Scholar] [CrossRef] [PubMed]
- Zierle-Ghosh, A.; Jan, A. Physiology, Body Mass Index; StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Ring, E.F.J.; Ammer, K. Infrared thermal imaging in medicine. Physiol. Meas. 2012, 33, R33–R46. [Google Scholar] [CrossRef] [PubMed]
- Arêas, G.P.T.; Caruso, F.C.R.; Simões, R.P.; Castello-Simões, V.; Jaenisch, R.B.; Sato, T.O.; Cabiddu, R.; Mendes, R.; Arena, R.; Borghi-Silva, A. Ultra-short-term heart rate variability during resistance exercise in the elderly. Braz. J. Med. Biol. Res. 2018, 51, e6962. [Google Scholar] [CrossRef]
- Electrophysiology TF of the ES of C the NA. Heart Rate Variability. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- De Moura-Tonello, S.C.G.; Carvalho, V.; De Godoy, M.F.; Porta, A.; Leal, A.M.d.O.; Bocchi, E.A.; Catai, A.M. Evaluation of Cardiac Autonomic Modulation Using Symbolic Dynamics after Cardiac Transplantation. Braz. J. Cardiovasc. Surg. 2019, 34, 572–580. [Google Scholar] [CrossRef]
- Pan, Y.; Yu, Z.; Yuan, Y.; Han, J.; Wang, Z.; Chen, H.; Wang, S.; Wang, Z.; Hu, H.; Zhou, L.; et al. Alteration of Autonomic Nervous System Is Associated with Severity and Outcomes in Patients with COVID-19. Front. Physiol. 2021, 12, 630038. [Google Scholar] [CrossRef]
- Vanderlei, L.C.M.; Pastre, C.M.; Hoshi, R.A.; de Carvalho, T.D.; de Godoy, M.F. Noções básicas de variabilidade da frequência cardíaca e sua aplicabilidade clínica. Rev. Bras. Cir. Cardiovasc. 2009, 24, 205–217. [Google Scholar] [CrossRef]
- de Souza Filho, L.F.M.; de Oliveira, J.C.M.; Ribeiro, M.K.A.; Moura, M.C.; Fernandes, N.D.; de Sousa, R.F.; Pedrino, G.R.; Rebelo, A.C.S. Evaluation of the autonomic nervous system by analysis of heart rate variability in the preterm infants. BMC Cardiovasc. Disord. 2019, 19, 198. [Google Scholar] [CrossRef]
- Torjesen, I. COVID-19: Middle aged women face greater risk of debilitating long term symptoms. BMJ 2021, 372, n829. [Google Scholar] [CrossRef]
- Newson, L.; Lewis, R.; O’Hara, M. Long COVID and menopause—The important role of hormones in Long COVID must be considered. Maturitas 2021, 152, 74. [Google Scholar] [CrossRef]
- Buoite Stella, A.; Furlanis, G.; Frezza, N.A.; Valentinotti, R.; Ajcevic, M.; Manganotti, P. Autonomic dysfunction in post-COVID patients with and witfhout neurological symptoms: A prospective multidomain observational study. J. Neurol. 2022, 269, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Gizowski, C.; Bourque, C.W. The neural basis of homeostatic and anticipatory thirst. Nat. Rev. Nephrol. 2018, 14, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Díaz, H.S.; Toledo, C.; Andrade, D.C.; Marcus, N.J.; del Rio, R. Neuroinflammation in heart failure: New insights for an old disease. J. Physiol. 2020, 598, 33–59. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.S.; Johansson, A.; Jonsson, J.; Schiöth, H.B. Dissecting the Molecular Mechanisms Surrounding Post-COVID-19 Syndrome and Neurological Features. Int. J. Mol. Sci. 2022, 23, 4275. [Google Scholar] [CrossRef]
- Zhou, Y.; Chi, J.; Lv, W.; Wang, Y. Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (COVID-19). Diabetes Metab. Res. Rev. 2021, 37, e3377. [Google Scholar] [CrossRef]
- Mehandru, S.; Merad, M. Pathological sequelae of long-haul COVID. Nat. Immunol. 2022, 23, 194–202. [Google Scholar] [CrossRef]
- Augustin, M.; Schommers, P.; Stecher, M.; Dewald, F.; Gieselmann, L.; Gruell, H.; Horn, C.; Vanshylla, K.; Cristanziano, V.D.; Osebold, L.; et al. Post-COVID syndrome in non-hospitalised patients with COVID-19: A longitudinal prospective cohort study. Lancet Reg. Health Eur. 2021, 6, 100122. [Google Scholar] [CrossRef]
- Logue, J.K.; Franko, N.M.; McCulloch, D.J.; McDonald, D.; Magedson, A.; Wolf, C.R.; Chu, H.Y. Sequelae in Adults at 6 Months After COVID-19 Infection. JAMA Netw. Open 2021, 4, e210830. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021, 397, 220–232. [Google Scholar] [CrossRef]
- Abdallah, S.J.; Voduc, N.; Corrales-Medina, V.F.; McGuinty, M.; Pratt, A.; Chopra, A.; Law, A.; Garuba, H.A.; Thavorn, K.; Reid, R.E.R.; et al. Symptoms, Pulmonary Function, and Functional Capacity Four Months after COVID-19. Ann. Am. Thorac. Soc. 2021, 18, 1912–1917. [Google Scholar] [CrossRef]
- Fernández-de-las-Peñas, C.; Palacios-Ceña, D.; Gómez-Mayordomo, V.; Rodríuez-Jiménez, J.; Palacios-Ceña, M.; Velasco-Arribas, M.; Guijarro, C.; de-la-Llave-Ricón, I.A.; Fuensalida-Novo, S.; Elvira-Martínez, C.M.; et al. Long-term post-COVID symptoms and associated risk factors in previously hospitalized patients: A multicenter study. J. Infect. 2021, 83, 237–279. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Tang, N.; Peluso, M.J.; Iyer, N.S.; Torres, L.; Donatelli, J.L.; Munter, S.E.; Nixon, C.C.; Rutishauser, R.L.; Rodriguez-Barraquer, I.; et al. Characterization and Biomarker Analyses of Post-COVID-19 Complications and Neurological Manifestations. Cells 2021, 10, 386. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Barnett, J.; Brill, S.E.; Brown, J.S.; Denneny, E.K.; Hare, S.S.; Heightman, M.; Hillman, T.E.; Jacob, J.; Jarvis, H.C.; et al. ‘Long-COVID’: A cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax 2021, 76, 396–398. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, C.; Huang, F.; Yang, Y.; Wang, F.; Yuan, J.; Zhang, Z.; Qin, Y.; Li, X.; Zhao, D.; et al. Elevated plasma levels of selective cytokines in COVID-19 patients reflect viral load and lung injury. Natl. Sci. Rev. 2020, 7, 1003–1011. [Google Scholar] [CrossRef]
- Doykov, I.; Hällqvist, J.; Gilmour, K.C.; Grandjean, L.; Mills, K.; Heywood, W.E. ‘The long tail of COVID-19’—The detection of a prolonged inflammatory response after a SARS-CoV-2 infection in asymptomatic and mildly affected patients. F1000Research 2021, 9, 1349. [Google Scholar] [CrossRef]
- Fogarty, H.; Townsend, L.; Morrin, H.; Ahmad, A.; Comerford, C.; Karampini, E.; Englert, H.; Byrne, M.; Bergin, C.; O’Sullivan, J.M.; et al. Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J. Thromb. Haemost. 2021, 19, 2546–2553. [Google Scholar] [CrossRef]
- Acosta-Ampudia, Y.; Monsalve, D.M.; Rojas, M.; Rodríguez, Y.; Zapata, E.; Ramírez-Santana, C.; Anaya, J.M. Persistent Autoimmune Activation and Proinflammatory State in Post-Coronavirus Disease 2019 Syndrome. J. Infect. Dis. 2022, 225, 2155–2162. [Google Scholar] [CrossRef]
- Santoro, L.; Falsetti, L.; Zaccone, V.; Nesci, A.; Tosato, M.; Giupponi, B.; Savastano, M.C.; Moroncini, G.; Gasbarrini, A.; Landi, F.; et al. Impaired Endothelial Function in Convalescent Phase of COVID-19: A 3 Month follow up Observational Prospective Study. J. Clin. Med. 2022, 11, 1774. [Google Scholar] [CrossRef]
- Brioschi, M.L.; Neto, C.D.; de Toledo, M.; Neves, E.B.; Vargas, J.V.C.; Teixeira, M.J. Infrared Image Method for Possible COVID-19 Detection through Febrile and Subfebrile People Screening. J. Therm. Biol. 2023, 112, 103444. [Google Scholar] [CrossRef] [PubMed]
- Gatt, A.; Formosa, C.; Cassar, K.; Camilleri, K.P.; De Rafaelle, C.; Mizzi, A.; Azzopardi, C.; Mizzi, S.; Falzon, O.; Cristina, S.; et al. Thermographic Patterns of the Upper and Lower Limbs: Baseline Data. Int. J. Vasc. Med. 2015, 2015, 831369. [Google Scholar] [CrossRef]
- Ambrosino, P.; Molino, A.; Calcaterra, I.; Formisano, R.; Stufano, S.; Spedicato, G.A.; Motta, A.; Papa, A.; Di Minno, N.M.D.; Maniscalco, M. Clinical Assessment of Endothelial Function in Convalescent COVID-19 Patients Undergoing Multidisciplinary Pulmonary Rehabilitation. Biomedicines 2021, 9, 614. [Google Scholar] [CrossRef]
- del Rio, R.; Marcus, N.J.; Inestrosa, N.C. Potential Role of Autonomic Dysfunction in COVID-19 Morbidity and Mortality. Front. Physiol. 2020, 11, 561749. [Google Scholar] [CrossRef]
- Zheng, Z.; Peng, F.; Xu, B.; Zhao, J.; Liu, H.; Peng, J.; Li, Q.; Jiang, C.; Zhou, Y.; Liu, S.; et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J. Infect. 2020, 81, e16–e25. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Dalise, A.M.; Prestano, R.; Fasano, R.; Gambardella, A.; Barbieri, M.; Rizzo, M.R. Autonomic Nervous System and Cognitive Impairment in Older Patients: Evidence from Long-Term Heart Rate Variability in Real-Life Setting. Front. Aging Neurosci. 2020, 12, 40. [Google Scholar] [CrossRef]
- Goldberger, J.J.; Arora, R.; Buckley, U.; Shivkumar, K. Autonomic Nervous System Dysfunction. J. Am. Coll. Cardiol. 2019, 73, 1189–1206. [Google Scholar] [CrossRef]
- Barretto, A.C.P.; Santos, A.C.; Munhoz, R.; Rondon, M.U.P.B.; Franco, F.G.; Trombetta, I.C.; Roveda, F.; de Matos, L.N.J.; Braga, A.M.W.; Middlekauff, H.R.; et al. Increased muscle sympathetic nerve activity predicts mortality in heart failure patients. Int. J. Cardiol. 2009, 135, 302–307. [Google Scholar] [CrossRef]
- Matsushita, K.; Marchandot, B.; Jesel, L.; Ohlmann, P.; Morel, O. Impact of COVID-19 on the Cardiovascular System: A Review. J. Clin. Med. 2020, 9, 1407. [Google Scholar] [CrossRef]
- Pennisi, M.; Lanza, G.; Falzone, L.; Fisicaro, F.; Ferri, R.; Bella, R. SARS-CoV-2 and the Nervous System: From Clinical Features to Molecular Mechanisms. Int. J. Mol. Sci. 2020, 21, 5475. [Google Scholar] [CrossRef] [PubMed]
N (%) | ||
---|---|---|
Characteristic | Long COVID-19 (n = 202) | Controls (n = 95) |
Gender (n, %) | ||
Men | 77 (38.1%) | 34 (35.8%) |
Women | 125 (61.9%) | 61 (64.2%) |
Age, median (IQR), y | 46.5 (38–54) | 39 (34–45) |
Height median (IQR), m | 1.62 (1.56–1.69) | 1.63 (1.57–1.69) |
Weight median (IQR), kg | 75 (66–87) | 68 (62.5–81.5) |
Classification BMI (n, %) | ||
Underweight | 1 (0.5%) | 0 |
Normal range | 48 (23.8%) | 29 (30.5%) |
Overweight | 153 (75.7%) | 66 (69.5%) |
Long COVID-19 symptomatic period median (IQR), d | 114.5 (88.5–243.8) | - |
≤120 days | 81 (40.1%) | - |
>120 days | 121 (59.9%) | - |
Main symptoms in long COVID-19 (n, %) | ||
Dyspnea | 180 (89.1%) | - |
Chest Pain | 119 (58.9%) | - |
Muscle weakness | 149 (73.8%) | - |
Tremor | 79 (39.1%) | - |
Fatigue | 171 (84.7%) | - |
Myalgia | 133 (65.8%) | - |
Headache | 116 (57.4%) | - |
Visual changes | 95 (47.0%) | - |
Insomnia | 109 (54%) | - |
Lower limb edema | 68 (33.7%) | - |
Hospitalization | 80 (39.6%) | - |
Length of hospital stay | 19.4 ± 17.7 | - |
≤10 days (n, %) | 27 (34.2%) | - |
>10 days (n, %) | 52 (65.8%) | - |
Symptoms in Long COVID-19 (n, %) | N (%) | ||
---|---|---|---|
≤120 Days (n = 81) | >120 Days (n = 121) | p-Value | |
Fatigue | 50.60% | 59.50% | 0.248 |
Myalgias | 14.80% | 24.80% | 0.111 |
Anosmia/Hyposmia/Parosmia | 4.90% | 20.70% | 0.002 * |
Amnesia/recent memory loss/brain-fog | 24.70% | 13.20% | 0.041 * |
Shortness of breath | 17.30% | 20.70% | 0.590 |
Headache | 12.30% | 15.70% | 0.545 |
Arthralgias | 3.70% | 13.20% | 0.026 * |
Loss of hair | 8.60% | 13.20% | 0.371 |
Chest pain | 11.10% | 14.90% | 0.529 |
Muscle weakness | 14.80% | 11.60% | 0.525 |
Decrease visual acuity | 7.40% | 5.00% | 0.109 |
Paresthesia in limbs | 7.40% | 6.60% | 1 |
Insomnia | 3.70% | 5.80% | 0.743 |
Arrhythmias, bradycardias, tachycardias | 6.20% | 3.30% | 0.488 |
Arterial hypertension | 1.20% | 4.10% | 0.404 |
Hyperglycemia/Diabetes Mellitus | 0.00% | 4.10% | 0.084 |
Anxiety | 6.20% | 6.60% | 1 |
Irritation in the throat/throat | 2.50% | 4.10% | 0.704 |
Dizziness | 4.90% | 3.30% | 0.716 |
Itching and/or blemishes on the skin | 3.70% | 2.50% | 0.685 |
Variables | Long COVID-19 Time (Days) | |||
---|---|---|---|---|
Control (n = 95) | ≤120 Days (n = 81) | >120 Days (n = 121) | p-Value | |
ROIs—Right foot | ||||
D1 | 29.70 (27.0–31.8) | 29.70 (28.4–32.2) c | 28.80 (26.7–30.3) | 0.001 *# |
D2 | 27.60 (24.6–30.5) | 28.70 (26.6–31.3) c | 27.20 (24.6–29.1) | 0.003 *# |
D3 | 27.70 (24.9–30.4) | 28.80 (26.5–31.5) c | 27.30 (24.5–29.1) | 0.003 *# |
D4 | 27.70 (25.0–29.9) | 28.60 (26.6–31.2) c | 27.00 (24.4–29.0) | 0.003 *# |
D5 | 29.40 (27.3–31.0) b | 29.80 (28.3–31.8) c | 28.50 (26.6–30.0) | <0.001 *† |
ROIs—Left foot | ||||
D1 | 29.40 (27.7–31.5) b | 30.00 (28.0–32.3) c | 28.50 (26.8–30.3) | <0.001 *# |
D2 | 27.40 (25.2–30.6) | 28.40 (26.3–31.3) c | 27.00 (24.8–29.8) | 0.005 *# |
D3 | 27.60 (25.4–30.9) | 28.60 (26.7–31.5) c | 27.50 (24.9–29.9) | 0.004 *# |
D4 | 27.60 (25.6–30.4) | 28.70 (26.7–31.7) c | 27.50 (24.8–29.6) | 0.002 *# |
D5 | 29.40 (28.1–31.2) b | 30.10 (28.3–31.9) c | 28.70 (26.9–30.1) | 0.005 *# |
HRV (Linear) | ||||
iRR | 852.0 (775–938) a | 810.0 (725–889) | 842 (751–944) | 0.038 *† |
SDNN | 38.5 (24.8–58.7) a,b | 25.0 (17.3–33.4) | 25.4 (16.1–37.5) | <0.001 *† |
RMSSD | 44.8 (25.4–71.9) a,b | 26.5 (18.9–36.8) | 24.4 (15.2–46) | <0.001 *† |
LF | 42.1 (28.3–61.5) a | 53.6 (42.5–66) | 50.3 (36.7–61.5) | 0.018 *# |
HF | 57.9 (38.5–71.7) a | 46.3 (34–57.4) | 49.4 (38.5–63.2) | 0.017 *# |
LF/HF | 0.73 (0.39–1.6) a | 1.16 (0.72–1.94) | 1.02 (0.58–1.6) | 0.018 *† |
HRV (Non-Linear) | ||||
SD1 | 32.6 (18.1–50.9) a,b | 18.7 (13.4–26) | 17.3 (10.8–32.5) | <0.001 *† |
SD2 | 44.8 (29.1–63.3) a,b | 29.5 (19.9–42.2) | 28.5 (19.5–42.5) | <0.001 *† |
SD1/SD2 | 0.69 (0.55–0.96) a | 0.57 (0.43–0.77) | 0.63 (0.48–0.77) | 0.004 *† |
Entropy approximated | 1.12 (0.16) a | 1.16 (1.09–1.21) | 1.13 (0.14) | 0.006 *† |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neves, P.F.M.d.; Quaresma, J.A.S.; Queiroz, M.A.F.; Silva, C.C.; Maia, E.V.; Oliveira, J.S.d.S.; Neves, C.M.A.d.; Mendonça, S.d.S.; Falcão, A.S.C.; Melo, G.S.; et al. Imbalance of Peripheral Temperature, Sympathovagal, and Cytokine Profile in Long COVID. Biology 2023, 12, 749. https://doi.org/10.3390/biology12050749
Neves PFMd, Quaresma JAS, Queiroz MAF, Silva CC, Maia EV, Oliveira JSdS, Neves CMAd, Mendonça SdS, Falcão ASC, Melo GS, et al. Imbalance of Peripheral Temperature, Sympathovagal, and Cytokine Profile in Long COVID. Biology. 2023; 12(5):749. https://doi.org/10.3390/biology12050749
Chicago/Turabian StyleNeves, Pablo Fabiano Moura das, Juarez Antônio Simões Quaresma, Maria Alice Freitas Queiroz, Camilla Costa Silva, Enzo Varela Maia, João Sergio de Sousa Oliveira, Carla Manuela Almeida das Neves, Suellen da Silva Mendonça, Aline Semblano Carreira Falcão, Giovana Salomão Melo, and et al. 2023. "Imbalance of Peripheral Temperature, Sympathovagal, and Cytokine Profile in Long COVID" Biology 12, no. 5: 749. https://doi.org/10.3390/biology12050749
APA StyleNeves, P. F. M. d., Quaresma, J. A. S., Queiroz, M. A. F., Silva, C. C., Maia, E. V., Oliveira, J. S. d. S., Neves, C. M. A. d., Mendonça, S. d. S., Falcão, A. S. C., Melo, G. S., Santos, I. B. F., Sousa, J. R. d., Santos, E. J. M. d., Vasconcelos, P. F. d. C., Vallinoto, A. C. R., & Falcão, L. F. M. (2023). Imbalance of Peripheral Temperature, Sympathovagal, and Cytokine Profile in Long COVID. Biology, 12(5), 749. https://doi.org/10.3390/biology12050749