Social Learning versus Individual Learning in the Division of Labour
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Social Learning Setting
2.2. Individual Learning Setting
3. Results
Algorithm 1 Social Learning: At each generation t, each individual j updates its strategy () following an imitation phase and a mutation with probability |
Require: A population of size N with a strategy profile at generation ; ; selection intensity, ; mutation rate, ; standard deviation for Gaussian mutations, .
|
Algorithm 2 Modified cross-learning: At each generation t, each individual j updates its strategy () and probability distribution () over m possible action bins with learning rate of |
Require: A population of size N with a strategy profile and probability distribution profile at generation ; ; ; learning rate, .
|
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EGT | Evolutionary Game Theory |
ESS | Evolutionary Stable Strategy |
RL | Reinforcement Learning |
Appendix A. Benefit and Cost Functions
Appendix B. Update Rule of Adaptive Dynamics
Appendix C. Update Rule of Cross-Learning
Appendix D. Replicator Dynamics
References
- Robson, S.K.; Traniello, J.F. Division of labor in complex societies: A new age of conceptual expansion and integrative analysis. Behav. Ecol. Sociobiol. 2016, 70, 995–998. [Google Scholar] [CrossRef][Green Version]
- Beshers, S.N.; Fewell, J.H. Models of division of labor in social insects. Annu. Rev. Entomol. 2001, 46, 413–440. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jeanson, R.; Weidenmüller, A. Interindividual variability in social insects–proximate causes and ultimate consequences. Biol. Rev. 2014, 89, 671–687. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R. Game-Theoretic Analysis of Trading Processes; Stanford Univ Ca Inst for Mathematical Studies in the Social Sciences: Stanford, CA, USA, 1985. [Google Scholar]
- Traniello, J.F.; Rosengaus, R.B. Ecology, evolution and division of labour in social insects. Anim. Behav. 1997, 53, 209–213. [Google Scholar] [CrossRef][Green Version]
- Hölldobler, B.; Wilson, E.O. The Ants; Harvard University Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Fewell, J.H.; Bertram, S.M. Division of labor in a dynamic environment: Response by honeybees (Apis mellifera) to graded changes in colony pollen stores. Behav. Ecol. Sociobiol. 1999, 46, 171–179. [Google Scholar] [CrossRef]
- Gazda, S.K.; Connor, R.C.; Edgar, R.K.; Cox, F. A division of labour with role specialization in group–hunting bottlenose dolphins (Tursiops truncatus) off Cedar Key, Florida. Proc. R. Soc. Biol. Sci. 2005, 272, 135–140. [Google Scholar] [CrossRef][Green Version]
- Rieger, N.S.; Stanton, E.H.; Marler, C.A. Division of labour in territorial defence and pup retrieval by pair-bonded California mice, Peromyscus californicus. Anim. Behav. 2019, 156, 67–78. [Google Scholar] [CrossRef]
- Siefert, P.; Buling, N.; Grünewald, B. Honey bee behaviours within the hive: Insights from long-term video analysis. PLoS ONE 2021, 16, e0247323. [Google Scholar] [CrossRef]
- Charbonneau, D.; Blonder, B.; Dornhaus, A. Social insects: A model system for network dynamics. Temporal Netw. 2013, 217–244. [Google Scholar]
- Grimaldi, D.; Engel, M.S.; Engel, M.S.; Engel, M.S. Evolution of the Insects; Cambridge University Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Charbonneau, D.; Dornhaus, A. When doing nothing is something. How task allocation strategies compromise between flexibility, efficiency, and inactive agents. J. Bioecon. 2015, 17, 217–242. [Google Scholar] [CrossRef]
- Gordon, D.M. From division of labor to the collective behavior of social insects. Behav. Ecol. Sociobiol. 2016, 70, 1101–1108. [Google Scholar] [CrossRef][Green Version]
- Hunt, G.J.; Amdam, G.V.; Schlipalius, D.; Emore, C.; Sardesai, N.; Williams, C.E.; Rueppell, O.; Guzmán-Novoa, E.; Arechavaleta-Velasco, M.; Chandra, S.; et al. Behavioral genomics of honeybee foraging and nest defense. Naturwissenschaften 2007, 94, 247–267. [Google Scholar] [CrossRef][Green Version]
- Scheiner, R.; Page, R.E.; Erber, J. Sucrose responsiveness and behavioral plasticity in honey bees (Apis mellifera). Apidologie 2004, 35, 133–142. [Google Scholar] [CrossRef][Green Version]
- Gordon, D.M. The organization of work in social insect colonies. Complexity 2002, 8, 43–46. [Google Scholar] [CrossRef]
- Fewell, J.H.; Harrison, J.F. Scaling of work and energy use in social insect colonies. Behav. Ecol. Sociobiol. 2016, 70, 1047–1061. [Google Scholar] [CrossRef]
- Mersch, D.P. The social mirror for division of labor: What network topology and dynamics can teach us about organization of work in insect societies. Behav. Ecol. Sociobiol. 2016, 70, 1087–1099. [Google Scholar] [CrossRef]
- Bonabeau, E.; Theraulaz, G.; Deneubourg, J.L. Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies. Proc. R. Soc. Lond. Ser. Biol. Sci. 1996, 263, 1565–1569. [Google Scholar]
- Kang, Y.; Theraulaz, G. Dynamical models of task organization in social insect colonies. Bull. Math. Biol. 2016, 78, 879–915. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cook, C.N.; Breed, M.D. Social context influences the initiation and threshold of thermoregulatory behaviour in honeybees. Anim. Behav. 2013, 86, 323–329. [Google Scholar] [CrossRef]
- Greene, M.J.; Gordon, D.M. Interaction rate informs harvester ant task decisions. Behav. Ecol. 2007, 18, 451–455. [Google Scholar] [CrossRef][Green Version]
- Duarte, A.; Weissing, F.J.; Pen, I.; Keller, L. An evolutionary perspective on self-organized division of labor in social insects. Annu. Rev. Ecol. Evol. Syst. 2011, 42, 91–110. [Google Scholar] [CrossRef][Green Version]
- Couzin, I.D. Collective cognition in animal groups. Trends Cogn. Sci. 2009, 13, 36–43. [Google Scholar] [CrossRef]
- Leadbeater, E.; Chittka, L. Social learning in insects—From miniature brains to consensus building. Curr. Biol. 2007, 17, R703–R713. [Google Scholar] [CrossRef][Green Version]
- Camazine, S.; Crailsheim, K.; Hrassnigg, N.; Robinson, G.E.; Leonhard, B.; Kropiunigg, H. Protein trophallaxis and the regulation of pollen foraging by honey bees (Apis mellifera L.). Apidologie 1998, 29, 113–126. [Google Scholar] [CrossRef][Green Version]
- Worden, B.D.; Papaj, D.R. Flower choice copying in bumblebees. Biol. Lett. 2005, 22, 504–507. [Google Scholar] [CrossRef][Green Version]
- Leadbeater, E.; Chittka, L. Social transmission of nectar-robbing behaviour in bumble-bees. Proc. R. Soc. B Biol. Sci. 2008, 275, 1669–1674. [Google Scholar] [CrossRef][Green Version]
- Grueter, C.; Leadbeater, E. Insights from insects about adaptive social information use. Trends Ecol. Evol. 2014, 29, 177–184. [Google Scholar] [CrossRef][Green Version]
- Jones, P.L.; Ryan, M.J.; Chittka, L. The influence of past experience with flower reward quality on social learning in bumblebees. Anim. Behav. 2015, 101, 11–18. [Google Scholar] [CrossRef]
- Czaczkes, T.J.; Grüter, C.; Ratnieks, F.L. Trail pheromones: An integrative view of their role in social insect colony organization. Annu. Rev. Entomol. 2015, 60, 581–599. [Google Scholar] [CrossRef][Green Version]
- Grüter, C.; Farina, W.M. The honeybee waggle dance: Can we follow the steps? Trends Ecol. Evol. 2009, 24, 242–247. [Google Scholar] [CrossRef]
- Riley, J.R.; Greggers, U.; Smith, A.D.; Reynolds, D.R.; Menzel, R. The flight paths of honeybees recruited by the waggle dance. Nature 2005, 435, 205–207. [Google Scholar] [CrossRef]
- Khajehnejad, M.; García, J.; Meyer, B. Explaining workers’ inactivity in social colonies from first principles. J. R. Soc. Interface 2023, 20, 20220808. [Google Scholar] [CrossRef]
- Smolla, M.; Alem, S.; Chittka, L.; Shultz, S. Copy-when-uncertain: Bumblebees rely on social information when rewards are highly variable. Biol. Lett. 2016, 12, 20160188. [Google Scholar] [CrossRef][Green Version]
- Geritz, S.A.; Metz, J.A.; Kisdi, É.; Meszéna, G. Dynamics of adaptation and evolutionary branching. Phys. Rev. Lett. 1997, 78, 2024. [Google Scholar] [CrossRef][Green Version]
- Geritz, S.A.; Kisdi, E.; Meszéna, G.; Metz, J.A. Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 1998, 12, 35–57. [Google Scholar] [CrossRef]
- Doebeli, M.; Hauert, C.; Killingback, T. The evolutionary origin of cooperators and defectors. Science 2004, 306, 859–862. [Google Scholar] [CrossRef][Green Version]
- Smith, J.M. Evolution and the Theory of Games; Cambridge University Press: Cambridge, MA, USA, 1982. [Google Scholar]
- Weibull, J.W. Evolutionary Game Theory; MIT Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Izquierdo, L.R.; Izquierdo, S.S.; Vega-Redondo, F. Learning and evolutionary game theory. Encycl. Sci. Learn. 2012, 36, 1782–1788. [Google Scholar]
- McNamara, J.M. Towards a richer evolutionary game theory. J. R. Soc. Interface 2013, 10, 20130544. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ravary, F.; Lecoutey, E.; Kaminski, G.; Châline, N.; Jaisson, P. Individual experience alone can generate lasting division of labor in ants. Curr. Biol. 2007, 17, 1308–1312. [Google Scholar] [CrossRef][Green Version]
- Chittka, L.; Muller, H. Learning, specialization, efficiency and task allocation in social insects. Commun. Integr. Biol. 2009, 2, 151–154. [Google Scholar] [CrossRef][Green Version]
- Rendell, L.; Boyd, R.; Cownden, D.; Enquist, M.; Eriksson, K.; Feldman, M.W.; Fogarty, L.; Ghirl, A.S.; Lillicrap, T.; Lal, K.N. Why copy others? Insights from the social learning strategies tournament. Science 2010, 328, 208–213. [Google Scholar] [CrossRef][Green Version]
- Diwold, K.; Merkle, D.; Middendorf, M. Adapting to dynamic environments: Polyethism in response threshold models for social insects. Adv. Complex Syst. 2009, 12, 327–346. [Google Scholar] [CrossRef]
- Bonabeau, E.; Sobkowski, A.; Theraulaz, G.; Deneubourg, J.L. Adaptive Task Allocation Inspired by a Model of Division of Labor in Social Insects. InBCEC 1997, 36–45. [Google Scholar]
- Duarte, A.; Pen, I.; Keller, L.; Weissing, F.J. Evolution of self-organized division of labor in a response threshold model. Behav. Ecol. Sociobiol. 2012, 66, 947–957. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Theraulaz, G.; Bonabeau, E.; Denuebourg, J.N. Response threshold reinforcements and division of labour in insect societies. Proceedings of the Royal Society of London. Ser. B Biol. Sci. 1998, 265, 327–332. [Google Scholar] [CrossRef][Green Version]
- Seel, N.M. (Ed.) Encyclopedia of the Sciences of Learning; Springer Science & Business Media: Berlin, Germany, 2011. [Google Scholar]
- Sandholm, W.H. Population Games and Evolutionary Dynamics; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Cross, J.G. A stochastic learning model of economic behavior. Q. J. Econ. 1973, 87, 239–266. [Google Scholar] [CrossRef]
- Charbonneau, D.; Poff, C.; Nguyen, H.; Shin, M.C.; Kierstead, K.; Dornhaus, A. Who are the “lazy” ants? The function of inactivity in social insects and a possible role of constraint: Inactive ants are corpulent and may be young and/or selfish. Integr. Comp. Biol. 2017, 57, 649–667. [Google Scholar] [CrossRef][Green Version]
- Herbers, J.M. Time resources and laziness in animals. Oecologia 1981, 49, 252–262. [Google Scholar] [CrossRef]
- Piezon, S.L. Social Loafing and Free Riding in Online Learning Groups; The Florida State University: Tallahassee, FL, USA, 2011. [Google Scholar]
- Grossman, S.J.; Hart, O.D. Takeover bids, the free-rider problem, and the theory of the corporation. Bell J. Econ. 1980, 11, 42–64. [Google Scholar] [CrossRef]
- Heinsohn, R.; Packer, C. Complex cooperative strategies in group-territorial African lions. Science 1995, 269, 1260–1262. [Google Scholar] [CrossRef]
- Erev, I.; Roth, A.E. Predicting how people play games: Reinforcement learning in experimental games with unique, mixed strategy equilibria. Am. Econ. Rev. 1998, 848–881. [Google Scholar]
- Oldroyd, B.P.; Fewell, J.H. Genetic diversity promotes homeostasis in insect colonies. Trends Ecol. Evol. 2007, 22, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Oster, G.F.; Wilson, E.O. Caste and Ecology in the Social Insects; Princeton University Press: Princeton, NJ, USA, 1978. [Google Scholar]
- Robinson, G.E. Regulation of honey bee age polyethism by juvenile hormone. Behav. Ecol. Sociobiol. 1987, 20, 329–338. [Google Scholar] [CrossRef]
- Börgers, T.; Sarin, R. Learning through reinforcement and replicator dynamics. J. Econ. Theory 1997, 77, 1–4. [Google Scholar] [CrossRef][Green Version]
- Lahkar, R.; Seymour, R.M. Reinforcement learning in population games. Games Econ. Behav. 2013, 80, 10–38. [Google Scholar] [CrossRef]
- Li, L.; McCann, J.; Faloutsos, C.; Pollard, N.S. Laziness Is a Virtue: Motion Stitching Using Effort Minimization. In Proceedings of the Eurographics ’08 (Short Papers), Crete, Greece, 14–18 April 2008; pp. 87–89. [Google Scholar]
- Charbonneau, D.; Sasaki, T.; Dornhaus, A. Who needs ‘lazy’workers? Inactive workers act as a ‘reserve’labor force replacing active workers, but inactive workers are not replaced when they are removed. PLoS ONE 2017, 12, e0184074. [Google Scholar] [CrossRef][Green Version]
- Lindauer, M. A contribution to the question of the division of labor in the bee colony. J. Comp. Physiol. 1952, 34, 299–345. [Google Scholar]
- Michener, C.D. Reproductive efficiency in relation to colony size in hymenopterous societies. Insectes Sociaux 1964, 11, 317–341. [Google Scholar] [CrossRef]
- Feng, T.; Charbonneau, D.; Qiu, Z.; Kang, Y. Dynamics of task allocation in social insect colonies: Scaling effects of colony size versus work activities. J. Math. Biol. 2021, 82, 1–53. [Google Scholar] [CrossRef]
- Cirelli, C.; Tononi, G. Is sleep essential? PLoS Biol. 2008, 6, e216. [Google Scholar] [CrossRef][Green Version]
- Siegel, J.M. Do all animals sleep? Trends Neurosci. 2008, 31, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Jeanne, R.L. The organization of work in Polybia occidentalis: Costs and benefits of specialization in a social wasp. Behav. Ecol. Sociobiol. 1986, 19, 333–341. [Google Scholar] [CrossRef]
- Johnson, B.R. Global information sampling in the honey bee. Naturwissenschaften 2008, 95, 523–530. [Google Scholar] [CrossRef] [PubMed]
Notation | Definition | Interpretation | Values |
---|---|---|---|
linear benefit coefficient for task X (e.g., thermoregulation) | efficiency of regulation | ||
quadratic benefit coefficient for task X | shape of benefit for task X (homeostatic vs. maximising) | ||
slope of benefit for task Y (e.g., brood care) | larger values indicate higher efficiency per unit of work | 3 | |
w | inflection point of benefit for task Y | indicates minimum amount of work required | |
n | group size for individual interactions | 5 | |
selection intensity in social learning | 2 | ||
mutation rate in social learning | probability of behaviour exploration | 0.01 | |
mutation size in social learning | amount of behaviour variation | 0.005 | |
learning rate (step size) in individual learning | determines to what extent newly acquired information overrides old information | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khajehnejad, M.; García, J.; Meyer, B. Social Learning versus Individual Learning in the Division of Labour. Biology 2023, 12, 740. https://doi.org/10.3390/biology12050740
Khajehnejad M, García J, Meyer B. Social Learning versus Individual Learning in the Division of Labour. Biology. 2023; 12(5):740. https://doi.org/10.3390/biology12050740
Chicago/Turabian StyleKhajehnejad, Moein, Julian García, and Bernd Meyer. 2023. "Social Learning versus Individual Learning in the Division of Labour" Biology 12, no. 5: 740. https://doi.org/10.3390/biology12050740
APA StyleKhajehnejad, M., García, J., & Meyer, B. (2023). Social Learning versus Individual Learning in the Division of Labour. Biology, 12(5), 740. https://doi.org/10.3390/biology12050740