Soil Bacterial Communities from Three Agricultural Production Systems in Rural Landscapes of Palmira, Colombia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Sites
2.2. Soil Samples
2.3. DNA Extraction, Amplification, and Sequencing
2.4. Bioinformatics Analyses
3. Results
3.1. Physicochemical Soil Analyses
3.2. Bacterial Composition Analysis
3.3. Diversity Analyses and Multiple Factor Analysis (MFA)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zinder, S.H.; Salyers, A.A. Microbial Ecology—New Directions, New Importance. In Bergey’s Manual® of Systematic Bacteriology; Springer: New York, NY, USA, 2001; pp. 101–109. [Google Scholar] [CrossRef]
- Toledo, V.M.; Barrera-Bassols, N. La Memoria Biocultural. La Importancia Ecológica De Las Sabidurías Tradicionales. 2008. Available online: http://www.unich.edu.mx/wp-content/uploads/2013/09/Art.-Notas-a-la-Memoria-Biocultural-de-Victor-Toledo.pdf (accessed on 1 March 2019).
- Holmes, J. Impulses towards a multifunctional transition in rural Australia: Gaps in the research agenda. J. Rural. Stud. 2006, 22, 142–160. [Google Scholar] [CrossRef]
- Silva Pérez, R. Multifuncionalidad Agraria y Territorio. Algunas Reflexiones y Propuestas De Análisis. EURE 2010, 36, 5–33. Available online: https://www.redalyc.org/pdf/196/19615724001.pdf (accessed on 8 April 2019). [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Mason, A.R.G.; Cavagnaro, T.R.; Guerin, G.R.; Lowe, A.J. Soil Bacterial Assemblage across a Production Landscape: Agriculture Increases Diversity While Revegetation Recovers Community Composition. Microb. Ecol. 2023, 85, 1098–1112. [Google Scholar] [CrossRef]
- Wei, G.; Li, M.; Shi, W.; Tian, R.; Chang, C.; Wang, Z.; Wang, N.; Zhao, G.; Gao, Z. Similar drivers but different effects lead to distinct ecological patterns of soil bacterial and archaeal communities. Soil Biol. Biochem. 2020, 144, 107759. [Google Scholar] [CrossRef]
- Gupta, N.; Vats, S.; Bhargava, P. Sustainable Agriculture: Role of Metagenomics and Metabolomics in Exploring the Soil Microbiota. In In Silico Approach for Sustainable Agriculture; Springer: Singapore, 2018; pp. 183–199. [Google Scholar] [CrossRef]
- Meena, K.K.; Sorty, A.M.; Bitla, U.M.; Choudhary, K.; Gupta, P.; Pareek, A.; Singh, D.P.; Prabha, R.; Sahu, P.K.; Gupta, V.K.; et al. Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies. Front. Plant Sci. 2017, 8, 172. [Google Scholar] [CrossRef]
- Ottesen, A.; Ramachandran, P.; Reed, E.; Gu, G.; Gorham, S.; Ducharme, D.; Newell, M.; Rideout, S.; Turini, T.; Hill, T.; et al. Metagenome tracking biogeographic agroecology: Phytobiota of tomatoes from Virginia, Maryland, North Carolina and California. Food Microbiol. 2019, 79, 132–136. [Google Scholar] [CrossRef]
- Bartelt-Ryser, J.; Joshi, J.; Schmid, B.; Brandl, H.; Balser, T. Soil feedbacks of plant diversity on soil microbial communities and subsequent plant growth. Perspect. Plant Ecol. Evol. Syst. 2005, 7, 27–49. [Google Scholar] [CrossRef]
- Ondreičková, K.; Piliarová, M.; Bušo, R.; Hašana, R.; Schreiber, L.; Gubiš, J.; Kraic, J. The Structure and Diversity of Bacterial Communities in Differently Managed Soils Studied by Molecular Fingerprinting Methods. Sustainability 2018, 10, 1095. [Google Scholar] [CrossRef]
- Stephan, A.; Meyer, A.H.; Schmid, B. Plant diversity affects culturable soil bacteria in experimental grassland communities. J. Ecol. 2000, 88, 988–998. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.; Li, H.; Tao, X.; Wang, H.; Qi, J.; Zhang, Z. Large-scale homogenization of soil bacterial communities in response to agricultural practices in paddy fields, China. Soil Biol. Biochem. 2022, 164, 108490. [Google Scholar] [CrossRef]
- Altieri, M.A. AGROECOLOGIA Bases Científicas Para Una Agricultura Sustentable; Editorial Nordan–Comunidad, Ed.; DSpace Software: Paderborn, Germany, 1999. [Google Scholar]
- He, J.; He, Y.; Gao, W.; Chen, Y.; Ma, G.; Ji, R.; Liu, X. Soil depth and agricultural irrigation activities drive variation in microbial abundance and nitrogen cycling. Catena 2022, 219, 106596. [Google Scholar] [CrossRef]
- Song, L.; Yang, T.; Xia, S.; Yin, Z.; Liu, X.; Li, S.; Sun, R.; Gao, H.; Chu, H.; Ma, C. Soil depth exerts stronger impact on bacterial community than elevation in subtropical forests of Huangshan Mountain. Sci. Total Environ. 2022, 852, 158438. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Jiang, Q.; Huang, L.; Li, D.; Lin, Q.; Tang, Z.; Liu, F. Vertical Distribution of Soil Bacterial Communities in Different Forest Types Along an Elevation Gradient. Microb. Ecol. 2022, 85, 628–641. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4516–4522. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Knight, R. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Andersen, G.L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006, 72, 5069–5072. [Google Scholar] [CrossRef]
- Mcdonald, D.; Price, M.N.; Goodrich, J.; Nawrocki, E.P.; Desantis, T.Z.; Probst, A.; Hugenholtz, P. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2011, 6, 610–618. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication. 1949. Available online: https://pure.mpg.de/rest/items/item_2383164_3/component/file_2383163/content (accessed on 2 January 2019).
- Simpson, E.H. Measurement of Diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Villareal, H.M.; Álvarez, M.; Córdoba-Córdoba, S.; Escobar, F.; Fagua, G.; Gast, F.; Mendoza-Cifuentes, H.; Ospina, M.; Umaña, A.M. Manual De Métodos Para El Desarrollo De Inventarios De Biodiversidad. In Programa Inventarios De Biodiversidad; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt: Bogotá, Colombia, 2006. [Google Scholar]
- Husson, F.; Josse, J.; Le, S.; Mazet, J.; Husson, M.F. Package ‘FactoMineR’. Package FactorMineR 2018, 96, 698. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2013. [Google Scholar]
- Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. SOFTWARE Open Access Jvenn: An Interactive Venn Diagram Viewer. 2014. Available online: http://www.biomedcentral.com/1471-2105/15/293 (accessed on 5 May 2019).
- Jaramillo, D.F. Introducción a La Ciencia Del Suelo; Universidad Nacional de Colombia, Facultad de Ciencias Sede Medellin: Medellin, Colombia, 2002. [Google Scholar]
- Gallego-Blanco, J.M. Efecto De Dos Abonos Verdes Sobre La Mineralización Del Nitrógeno Y La Dinámica De Bacterias Oxidantes Del Amoniaco y Del Nitrito En Un Ciclo De Cultivo De Maíz Zea Mays L.; Universidad Nacional de Colombia: Medellin, Colombia, 2012; Available online: http://www.bdigital.unal.edu.co/10454/1/7009003.2012.pdf (accessed on 3 March 2019).
- Brewer, T.E.; Handley, K.M.; Carini, P.; Gilbert, J.A.; Fierer, N. Genome reduction in an abundant and ubiquitous soil bacterium ‘Candidatus Udaeobacter copiosus’. Nat. Microbiol. 2017, 2, 16198. [Google Scholar] [CrossRef] [PubMed]
- Patiño-torres, C.O.; Sanclemente-Reyes, O.E. MSF una alternativa biotecnol. Entramado 2014, 10, 288–297. [Google Scholar]
- Das, A.J.; Kumar, M.; Kumar, R. Plant Growth Promoting Rhizobacteria (PGPR): An Alternative of Chemical Fertilizer for Sustainable, Environment Friendly Agriculture. Res. J. Agric. For. Sci. 2013, 1, 2320–6063. [Google Scholar]
- Spang, A.; Poehlein, A.; Offre, P.; Zumbrägel, S.; Haider, S.; Rychlik, N.; Wagner, M. The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: Insights into metabolic versatility and environmental adaptations. Environ. Microbiol. 2012, 14, 3122–3145. [Google Scholar] [CrossRef]
- Daims, H.; Lebedeva, E.; Pjevac, P.; Han, P.; Herbold, C.; Albertsen, M.; Wagner, M. Complete nitrification by Nitrospira bacteria. Nature 2015, 528, 504. [Google Scholar] [CrossRef]
- Lienhard, P.; Terrat, S.; Prévost-Bouré, N.C.; Nowak, V.; Régnier, T.; Sayphoummie, S.; Ranjard, L. Pyrosequencing evidences the impact of cropping on soil bacterial and fungal diversity in Laos tropical grassland. Agron. Sustain. Dev. 2014, 34, 525–533. [Google Scholar] [CrossRef]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 2009, 75, 5111–5120. [Google Scholar] [CrossRef]
- Tripathi, B.M.; Kim, M.; Singh, D.; Lee-Cruz, L.; Lai-Hoe, A.; Ainuddin, A.N.; Adams, J.M. Tropical Soil Bacterial Communities in Malaysia: pH Dominates in the Equatorial Tropics Too. Microb. Ecol. 2012, 64, 474–484. [Google Scholar] [CrossRef]
- Brower, J.E.; Zar, J.H.; Von Ende, C.A. Field and Laboratory Methods for General Ecology; Wm. C. Brown Publishers: Dubuque, IA, USA, 1984. [Google Scholar]
- Félix Herrán, J.A.; Torres Sañudo, R.R.; Rojo Martínez, G.E.; Martínez Ruiz, R.; Olalde Portugal, V. Importancia de los abonos orgánicos. Ra Ximhai 2008, 4, 57–68. [Google Scholar] [CrossRef]
- Hernández, J.C. Edafologia Y Fertilidad; Universidad NAcional Abierta y a Distancia: Bogotá, Colombia, 2013. [Google Scholar]
- Xiang, X.; Shi, Y.; Yang, J.; Kong, J.; Lin, X.; Zhang, H.; Chu, H. Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest. Sci. Rep. 2014, 4, 3829. [Google Scholar] [CrossRef] [PubMed]
- Madigan, M.; Martinko, J.; Dunlap, P.; Clark, D. BROCK, Biología De Los Microorganismos; Pearson Educational International: Upper Saddle River, NJ, USA, 2004; Volume 12. [Google Scholar] [CrossRef]
- Carbonetto, B.; Rascovan, N.; Álvarez, R.; Mentaberry, A.; Vázquez, M.P. Structure, Composition and Metagenomic Profile of Soil Microbiomes Associated to Agricultural Land Use and Tillage Systems in Argentine Pampas. PLoS ONE 2014, 9, e99949. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an Ecological Classification of Soil Bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef]
- Calderoli, P. Análisis de las poblaciones de microorganismos fijadores de nitrógeno del suelo aplicando procedimientos metagenómicos. Doctoral Thesis, Universidad Nacional de la Plata, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina, 2016. [Google Scholar]
- Shrivastava, S.; Egamberdieva, D.; Varma, A. Plant Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants: The State of the Art. In Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–16. [Google Scholar] [CrossRef]
- Dobbelaere, S.; Vanderleyden, J.; Okon, Y. Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit. Rev. Plant Sci. 2003, 22, 107–149. [Google Scholar] [CrossRef]
- Rivas, R.; Velázquez, E.; Willems, A.; Vizcaíno, N.; Subba-Rao, N.S.; Mateos, P.F.; Martínez-Molina, E. A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.) druce. Appl. Environ. Microbiol. 2002, 68, 5217–5222. [Google Scholar] [CrossRef]
- Chauhan, A.; Shirkot, C.K.; Kaushal, R.; Rao, D.L.N. Plant Growth-Promoting Rhizo-bacteria of Medicinal Plants in NW Himalayas: Current Status and Future Prospects. In Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants; Springer: Berlin/Heidelberg, Germany, 2015; pp. 381–412. [Google Scholar] [CrossRef]
- Giri, S.; Pati, B.R. A comparative study on phyllosphere nitrogen fixation by newly isolated Corynebacterium sp. & Flavobacterium sp. and their potentialities as biofertilizer. Acta Microbiol. Et Immunol. Hung. 2004, 51, 47–56. [Google Scholar]
- Marcondes de Souza, J.A.; Carareto Alves, L.M.; de Mello Varani, A.; de Macedo Lemos, E.G. The Family Bradyrhizobiaceae BT—The Prokaryotes: Alphaproteobacteria and Betap-Roteobacteria; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 135–154. [Google Scholar] [CrossRef]
- Gupta, V.; Kroker, S.J.; Hicks, M.; Davoren, C.W.; Descheemaeker, K.; Llewellyn, R. Nitrogen cycling in summer active perennial grass systems in South Australia: Non-symbiotic nitrogen fixation. Crop Pasture Sci. 2014, 65, 1044. [Google Scholar] [CrossRef]
- Wu, M.L.; Van Teeseling, M.C.F.; Willems, M.J.R.; Van Donselaar, E.G.; Klingl, A.; Rachel, R.; Van Niftrik, L. Ultrastructure of the Denitrifying Methanotroph “Candidatus Methylomirabilis oxyfera” a Novel Polygon-Shaped Bacterium. J. Bacteriol. 2012, 194, 284–291. [Google Scholar] [CrossRef]
- Bonilla Buitrago, R.R.; González de Bashan, L.E.; Pedraza, R.O.; Estrada Bonilla, G.A.; Pardo Díaz, S. Bacterias promotoras de crecimiento vegetal en sistemas de agricultura sostenible. Bacterias Promotoras De Crecimiento Vegetal En Sistemas De Agricultura Sostenible; Agrosavia: Mosquera, Colombia, 2021. [Google Scholar] [CrossRef]
- Vijayabharathi, R.; Sathya, A.; Gopalakrishnan, S. Plant Growth-Promoting Microbes from Herbal Vermicompost. In Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants; Springer: Cham, Switzerland, 2015; pp. 71–88. [Google Scholar] [CrossRef]
- Tourna, M.; Stieglmeier, M.; Spang, A.; Könneke, M.; Schintlmeister, A.; Urich, T.; Richter, A. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc. Natl. Acad. Sci. USA 2011, 108, 8420–8425. [Google Scholar] [CrossRef]
- Bautista-Guerrero, H.; Valdés, M. Frankia y la simbiosis actinorrízica. Rev. Lat.-Am. De Microbiol. 2008, 50, 90–102. Available online: www.medigraphic.com (accessed on 5 May 2019).
- Walker, C.B.; De La Torre, J.R.; Klotz, M.G.; Urakawa, H.; Pinel, N.; Arp, D.J.; Stahl, D.A. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc. Natl. Acad. Sci. USA 2010, 107, 8818–8823. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Dungan, R.S.; Kwon, S.W.; Weon, H.Y. The community composition of root-associated bacteria of the tomato plant. World J. Microbiol. Biotechnol. 2006, 22, 1267–1273. [Google Scholar] [CrossRef]
Farm | Location | Altitude (MASL) | Area (ha) | Farm Type | Sampling Points |
---|---|---|---|---|---|
Guadalajara | Buitrera | 1303–1307 | 3.6 | Organic (OF_1) | 6 |
La Esmeralda | Arenillo | 1695–1830 | 6.8 | Organic (OF_2) | 8 |
Esmeralda | El Mesón | 1580–1596 | 1.0 | Organic (OF_3) | 7 |
El Mesón | El Mesón | 1607–1662 | 3.4 | Agroecological (AF_1) | 10 |
El Sendero | El Mesón | 1644–1722 | 3.2 | Agroecological (AF_2) | 12 |
El Descanso | Arenillo | 1679–1686 | 0.15 | Conventional (CF_1) | 4 |
El Paraíso No.1 | El Mesón | 1576–1584 | 0.13 | Conventional (CF_2) | 5 |
El Paraíso No.2 | El Mesón | 1630–1672 | 0.39 | Conventional (CF_3) | 5 |
Physicochemical Variables | Agroecological Farm (AF) | Organic Farm (OF) | Conventional Farm (CF) |
---|---|---|---|
pH (1:1; p/v) | 6.12 | 6.08 | 6.6 |
Organic Carbon—OC (%) | 3.55 | 3.24 | 2.78 |
Organic matter—OM (%) | 6.12 | 5.59 | 4.78 |
Nitrogen—N (%) | 0.31 | 0.28 | 0.24 |
Calcium—Ca (meq/100 g) | 25.39 | 22.23 | 27.04 |
Magnesium—Mg (meq/100 g) | 13.08 | 8.26 | 8.6 |
Potassium—K (meq/100 g) | 0.46 | 0.42 | 1.33 |
Sodium—Na (meq/100 g) | 0.07 | 0.09 | 0.13 |
Cation Exchange Capacity—CEC (meq/100g) | 39.47 | 38.03 | 38.21 |
Phosphorus—P (ppm) | 43.56 | 54.9 | 82.97 |
Copper—Cu (mg/kg) | 3.65 | 4.71 | 3.71 |
Zinc—Zn (mg/kg) | 4.36 | 2.26 | 6.54 |
Manganese—Mn (mg/kg) | 8.38 | 11.25 | 3.43 |
Iron—Fe (mg/kg) | 30.1 | 82.59 | 38.22 |
Boron—B (mg/kg) | 0.04 | 0.08 | 0.92 |
Bulk density—BD (g m3) | 0.9 | 0.89 | 0.92 |
Real density—RD (g cm3) | 2.2 | 2.23 | 2.23 |
Total porosity (g cm3) | 59.34 | 60.35 | 59.13 |
Macroporosity (%) | 26.08 | 26.78 | 23.95 |
Microporosity (%) | 33.26 | 33.57 | 33.26 |
Aggregate stability index—ASI | 0.19 | 0.44 | 0.45 |
Available water (mm) | 26.36 | 26.11 | 27.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rugeles-Silva, P.A.; Londoño, J.A.; Sánchez de Prager, M.; Muñoz Flórez, J.E.; López-Álvarez, D. Soil Bacterial Communities from Three Agricultural Production Systems in Rural Landscapes of Palmira, Colombia. Biology 2023, 12, 701. https://doi.org/10.3390/biology12050701
Rugeles-Silva PA, Londoño JA, Sánchez de Prager M, Muñoz Flórez JE, López-Álvarez D. Soil Bacterial Communities from Three Agricultural Production Systems in Rural Landscapes of Palmira, Colombia. Biology. 2023; 12(5):701. https://doi.org/10.3390/biology12050701
Chicago/Turabian StyleRugeles-Silva, Paula Andrea, Jairo Andrés Londoño, Marina Sánchez de Prager, Jaime Eduardo Muñoz Flórez, and Diana López-Álvarez. 2023. "Soil Bacterial Communities from Three Agricultural Production Systems in Rural Landscapes of Palmira, Colombia" Biology 12, no. 5: 701. https://doi.org/10.3390/biology12050701
APA StyleRugeles-Silva, P. A., Londoño, J. A., Sánchez de Prager, M., Muñoz Flórez, J. E., & López-Álvarez, D. (2023). Soil Bacterial Communities from Three Agricultural Production Systems in Rural Landscapes of Palmira, Colombia. Biology, 12(5), 701. https://doi.org/10.3390/biology12050701