Animal–Energy Relationships in a Changing Ocean: The Case of Continental Shelf Macrobenthic Communities on the Weddell Sea and the Vicinity of the Antarctic Peninsula
Abstract
:Simple Summary
Abstract
1. Introduction
2. Objectives
3. Methods
4. Results
4.1. General Aspects of the Physical Environment of the Weddell Sea and the Vicinity of the Antarctic Peninsula Continental Shelves
4.2. Macrobenthos and Biological Characteristics of the Environment
5. Discussion
5.1. Changing Ocean
5.2. Potential Future Developments
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutt, J.; Bertler, N.; Bracegirdle, T.J.; Buschmann, A.; Comiso, J.; Hosie, G.; Isla, E.; Schloss, I.R.; Smith, C.R.; Tournadre, J.; et al. The Southern Ocean ecosystem under multiple climate change stresses—An integrated circumpolar assessment. Global Chang. Biol. 2015, 21, 1434–1453. [Google Scholar] [CrossRef] [PubMed]
- Auger, M.; Morrow, R.; Kestenare, E.; Sallée, J.-B.; Cowley, R. Southern Ocean in-situ temperature trends over 25 years emerge from interannual variability. Nat. Commun. 2021, 12, 514. [Google Scholar] [CrossRef] [PubMed]
- Perren, B.B.; Hodgson, D.A.; Roberts, S.J.; Sime, L.; Van Nieuwenhuyze, W.; Verleyen, E.; Vyverman, W. Southward migration of the Southern Hemisphere westerly winds corresponds with warming climate over centennial timescales. Commun. Earth Environ. 2020, 1, 58. [Google Scholar] [CrossRef]
- Turner, J.; Guarino, M.V.; Arnatt, J.; Jena, B.; Marshall, G.J.; Phillips, T.; Bajish, C.C.; Clem, K.; Wang, Z.; Andersson, T.; et al. Recent decrease of summer sea ice in the Weddell Sea, Antarctica. Geophys. Res. Lett. 2020, 47, e2020GL087127. [Google Scholar] [CrossRef]
- Pinkerton, M.H.; Boyd, P.W.; Deppeler, S.; Hayward, A.; Höfer, J.; Moreau, S. Evidence for the Impact of Climate Change on Primary Producers in the Southern Ocean. Front. Ecol. Evol. 2021, 9, 592027. [Google Scholar] [CrossRef]
- Bertolin, M.L.; Schloss, I.R. Phytoplankton production after the collapse of the Larsen A Ice Shelf, Antarctica. Polar Biol. 2009, 32, 1435–1446. [Google Scholar] [CrossRef]
- Moreau, S.; Mostajir, B.; Bélanger, S.; Schloss, I.R.; Vancoppenolle, M.; Demers, S.; Ferreyra, G.A. Climate change enhances primary production in the western Antarctic Peninsula. Glob. Chang. Biol. 2015, 21, 2191–2205. [Google Scholar] [CrossRef]
- Anderson, J.B. The Antarctic continental shelf: Results from marine geological and geophysical investigations. In The Geology of Antarctica; Tingey, R.J., Ed.; Clarendon Press: Oxford, UK, 1991; pp. 285–334. [Google Scholar]
- Jacobs, S.S. Marine controls on modern sedimentation on the Antarctic continental shelf. Mar. Geol. 1989, 85, 121–153. [Google Scholar] [CrossRef]
- Cape, M.R.; Vernet, M.; Kahru, M.; Spreen, G. Polynya dynamics drive primary production in the Larsen A and B embayments following ice-shelf collapse. J. Geophys. Res. Oceans 2014, 119, 572–594. [Google Scholar] [CrossRef]
- Anderson, J.B.; Kurtz, D.D.; Domack, E.W.; Balshaw, K.M. Glacial and glacial marine sediments of the Antarctic continental shelf. J. Geol. 1980, 88, 399–414. [Google Scholar] [CrossRef]
- Owsianowski, N.; Richter, C. Exploration of an ice-cliff grounding zone in Antarctica reveals frozen-on meltwater and high productivity. Commun. Earth Environ. 2021, 2, 99. [Google Scholar] [CrossRef]
- Elverhøi, A.; Roaldset, E. Glaciomarine sediments and suspended particulate matter, Weddell Sea Shelf, Antarctica. Polar Res. 1983, 1, 1–21. [Google Scholar] [CrossRef]
- Isla, E.; DeMaster, D.J. Biogenic matter content in marine sediments in the vicinity of the Antarctic Peninsula: Recent sedimentary conditions under a diverse environment of production, transport, selective preservation and accumulation. Geochim. Cosmochim. Acta 2021, 304, 50–67. [Google Scholar] [CrossRef]
- Montes-Hugo, M.A.; Yuan, X. Climate patterns and phytoplankton dynamics in Antarctic latent heat polynyas. J. Geophys. Res. 2012, 117, C05031. [Google Scholar] [CrossRef]
- Ebner, L.; Heinemann, G.; Haid, V.; Timmermann, R. Katabatic winds and polynya dynamics at Coats Land, Antarctica. Antarct. Sci. 2014, 26, 309–326. [Google Scholar] [CrossRef]
- Ducklow, H.W.; Wilson, S.E.; Post, A.F.; Stammerjohn, S.E.; Erickson, M.; Lee, S.H.; Lowry, K.E.; Sherrell, R.M.; Yager, P.L. Particle flux on the continental shelf in the Amundsen Sea Polynya and Western Antarctic Peninsula. Elem. Sci. Anthr. 2015, 3, 000046. [Google Scholar] [CrossRef]
- Han, Z.; Hu, C.; Sun, W.; Zhao, J.; Pan, J.; Fan, G.; Zhang, H. Characteristics of particle fluxes in the Prydz Bay polynya, Eastern Antarctica. Sci. China Earth Sci. 2019, 62, 657–670. [Google Scholar] [CrossRef]
- Arrigo, K.R.; van Dijken, G.L.; Strong, A.L. Environmental controls of marine productivity hot spots around Antarctica. J. Geophys. Res. 2015, 120, 5545–5565. [Google Scholar] [CrossRef]
- Dinniman, M.S.; St-Laurent, P.; Arrigo, K.R.; Hofmann, E.E.; van Dijken, G.L. Sensitivity of the relationship between Antarctic ice shelves and iron supply to projected changes in the atmospheric forcing. J. Geophys. Res. 2023, 128, e2022JC019210. [Google Scholar] [CrossRef]
- Isla, E.; Gerdes, D.; Palanques, A.; Arntz, W.E.; Köning-Langlo, G. Downward particle fluxes, wind and a phytoplankton bloom over a polar continental shelf: A stormy impulse for the biological pump. Mar. Geol. 2009, 259, 59–72. [Google Scholar] [CrossRef]
- Isla, E.; Gerdes, D. Ongoing ocean warming threatens the rich and diverse macrobenthic communities of the Antarctic continental shelf. Prog. Oceanogr. 2019, 178, 102180. [Google Scholar] [CrossRef]
- Peck, L.S. Antarctic marine biodiversity: Adaptations, environments and responses to change. Oceanogr. Mar. Biol. Ann. Rev. 2018, 56, 105–236. [Google Scholar]
- Gutt, J.; Starmans, A.; Dieckmann, G. Impact of iceberg scouring on polar benthic habitats. Mar. Ecol. Prog. Ser. 1996, 137, 311–316. [Google Scholar] [CrossRef]
- Gutt, J. On the direct impact of ice on marine benthic communities, a review. Polar Biol. 2001, 24, 553–564. [Google Scholar] [CrossRef]
- Schwerdtfeger, W. The Effect of the Antarctic Peninsula on the Temperature Regime of the Weddell Sea. Mon. Weather Rev. 1975, 103, 45–51. [Google Scholar] [CrossRef]
- Parish, T.R. The influence of the Antarctic Peninsula on the wind field over the western Weddell Sea. J. Geophys. Res. 1983, 88, 2684. [Google Scholar] [CrossRef]
- Carrasco, J.F.; Bozkurt, D.; Cordero, R.R. A review of the observed air temperature in the Antarctic Peninsula. Did the warming trend come back after the early 21st hiatus? Polar Sci. 2021, 28, 100653. [Google Scholar] [CrossRef]
- Dorschel, B.; Gutt, J.; Huhn, O.; Bracher, A.; Huntemann, M.; Huneke, W.; Gebhardt, C.; Schröder, M.; Herr, H. Environmental information for a marine ecosystem research approach for the northern Antarctic Peninsula [RV Polarstern expedition PS81, ANT-XXIX/3]. Polar Biol. 2016, 39, 765–787. [Google Scholar] [CrossRef]
- Lockhart, S.J.; Jones, C.D. Biogeographic patterns of benthic invertebrate megafauna on shelf areas within the Southern Ocean Atlantic sector. CCAMLR Sci. 2008, 15, 167–192. [Google Scholar]
- Huneke, W.G.C.; Huhn, O.; Schröder, M. Water masses in the Bransfield Strait and adjacent seas, austral summer 2013. Polar Biol. 2016, 39, 789–798. [Google Scholar] [CrossRef]
- Harden, S.L.; DeMaster, D.J.; Nittrouer, C.A. Developing sediment geochronologies for high-latitude continental shelf deposits: A radiochemical approach. Mar. Geol. 1992, 103, 69–97. [Google Scholar] [CrossRef]
- Isla, E.; Masqué, P.; Palanques, A.; Guillén, J.; Puig, P.; Sánchez-Cabeza, J.A. Sedimentation of biogenic constituents during the last century in western Bransfield and Gerlache straits, Antarctica: A relation to currents, primary production, and sea floor relief. Mar. Geol. 2004, 209, 265–277. [Google Scholar] [CrossRef]
- von Gyldenfeldt, A.-B.; Fahrbach, E.; García, M.A.; Schröder, M. Flow variability at the tip of the Antarctic Peninsula. Deep-Sea Res. II 2002, 49, 4743–4766. [Google Scholar] [CrossRef]
- Savidge, D.K.; Amft, J.A. Circulation on the West Antarctic Peninsula derived from 6 years of shipboard ADCP transects. Deep-Sea Res. I 2009, 56, 1633–1655. [Google Scholar] [CrossRef]
- Sangrà, P.; Stegner, A.; Hernández-Arencibia, M.; Marrero-Díaz, A.; Salinas, C.; Aguiar-González, B.; Henríquez-Pastene, C.; Mouriño-Carballido, B. The Bransfield Gravity Current. Deep-Sea Res. I 2017, 119, 1–15. [Google Scholar] [CrossRef]
- Arrigo, K.R.; Worthen, D.; Schnell, A.; Lizotte, M.P. Primary production in Southern Ocean waters. J. Geophys. Res. 1998, 103, 15587–15600. [Google Scholar] [CrossRef]
- Gutt, J.; Starmans, A.; Dieckmann, G. Phytodetritus deposited on the Antarctic shelf and upper slope: Its relevance for the benthic system. J. Mar. Syst. 1998, 17, 435–444. [Google Scholar] [CrossRef]
- Mincks, S.L.; Smith, C.R.; DeMaster, D.J. Persistence of labile organic matter and microbial biomass in Antarctic shelf sediments: Evidence of a sediment “food bank”. Mar. Ecol. Prog. Ser. 2005, 300, 3–19. [Google Scholar] [CrossRef]
- Isla, E.; Rossi, S.; Palanques, A.; Gili, J.-M.; Gerdes, D.; Arntz, W. Biochemical composition of marine sediment from the eastern Weddell Sea [Antarctica]: High nutritive value in a high benthic-biomass environment. J. Mar. Syst. 2006, 360, 255–267. [Google Scholar] [CrossRef]
- Grémare, A.; Amouroux, J.M.; Charles, F.; Dinet, A.; Riaux-Gobin, C.; Baudart, J.; Medernach, L.; Bodiou, J.Y.; Vétion, G.; Colomines, J.C.; et al. Temporal changes in the biochemical composition and nutritional value of the particulate organic matter available to surface deposit-feeders: A two year study. Mar. Ecol. Prog. Ser. 1997, 150, 195–206. [Google Scholar] [CrossRef]
- Grémare, A.; Medernach, L.; deBoveé, F.; Amoroux, J.M.; Vétion, G.; Albert, P. Relationships between sedimentary organics and benthic meiofauna on the continental shelf and the upper slope of the Gulf of Lions [NWMediterranean]. Mar. Ecol. Prog. Ser. 2002, 234, 85–94. [Google Scholar] [CrossRef]
- Isla, E.; Gerdes, D.; Rossi, S.; Fiorillo, I.; Sañé, E.; Gili, J.-M.; Arntz, W.E. Biochemical characteristics of surface sediments on the eastern Weddell Sea continental shelf, Antarctica: Is there any evidence of seasonal patterns? Polar Biol. 2011, 34, 1125–1133. [Google Scholar] [CrossRef]
- Arndt, J.E.; Schenke, H.W.; Jakobsson, M.; Nitsche, F.; Buys, G.; Goleby, B.; Rebesco, M.; Bohoyo, F.; Hong, J.K.; Black, J.; et al. The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0—A new bathymetric compilation covering circum-Antarctic waters. Geophys. Res. Lett. 2013, 40, 3111–3117. [Google Scholar] [CrossRef]
- Isla, E. Some Aspects of Environmental Controls on Organic Carbon and Biogenic Silica Contents in Sediment over the Weddell Sea Con-Tinental Shelf. SOOS Weddell Sea-Dronning Maud Land Working Group Online Workshop 2020, October 20–23. Available online: https://epic.awi.de/id/eprint/53847/1/SOOS-WSDML2020.pdf (accessed on 20 October 2020).
- Grémare, A.; Medernach, L.; deBoveé, F.; Amoroux, J.M.; Charles, F.; Dinet, A.; Vétion, G.; Albert, P.; Colomines, J.-C. Relationship between sedimentary organic matter and benthic fauna within the Gulf of Lion: Synthesis on the identification of new biochemical descriptors of sedimentary organic nutritional value. Oceanol. Acta 2003, 26, 391–406. [Google Scholar] [CrossRef]
- Purinton, B.L.; DeMaster, D.J.; Thomas, C.J.; Smith, C.R. 14C as a tracer of labile organic matter in Antarctic benthic food webs. Deep-Sea Res. II 2008, 55, 2438–2450. [Google Scholar] [CrossRef]
- Isla, E.; DeMaster, D. Labile organic carbon dynamics in continental shelf sediments after the recent collapse of the Larsen ice shelves off the eastern Antarctic Peninsula: A radiochemical approach. Geochim. Cosmochim. Acta 2018, 242, 34–50. [Google Scholar] [CrossRef]
- Isla, E.; Gerdes, D.; Palanques, A.; Gili, J.-M.; Arntz, W. Particle fluxes and tides near the continental ice edge on the eastern Weddell Sea shelf. Deep-Sea Res. II 2006, 53, 866–874. [Google Scholar] [CrossRef]
- Gutt, J.; Starmans, A. Structure and biodiversity of megabenthos in the Weddell and Lazarev Seas [Antarctica]: Ecological role of physical parameters and biological interactions. Polar Biol. 1998, 20, 229–247. [Google Scholar] [CrossRef]
- Gutt, J. Some “driving forces” structuring communities of the sublittoral Antarctic macrobenthos. Antarct. Sci. 2000, 72, 297–373. [Google Scholar] [CrossRef]
- Gerdes, D.; Hilbig, B.; Montiel, A. Impact of iceberg scouring on macrobenthic communities in the high-Antarctic Weddell Sea. Polar Biol. 2003, 26, 295–301. [Google Scholar] [CrossRef]
- Gutt, J.; Starmans, A. Quantification of iceberg impact and benthic recolonisation patterns in the Weddell Sea [Antarctica]. Polar Biol. 2001, 24, 615–619. [Google Scholar] [CrossRef]
- Sañé, E.; Isla, E.; Gerdes, D.; Montiel, A.; Gili, J.-M. Benthic macrofauna assemblages and biochemical properties of sediments in two Antarctic regions differently affected by climate change. Cont. Shelf Res. 2012, 35, 53–63. [Google Scholar] [CrossRef]
- Pineda-Metz, S.E.A.; Isla, E.; Gerdes, D. Benthic communities of the Filchner Region [Weddell Sea, Antarctica]. Mar. Ecol. Prog. Ser. 2019, 628, 37–54. [Google Scholar] [CrossRef]
- Gutt, J.; Koltun, V.M. Sponges of the Lazarev and Weddell Sea, Antarctica: Explanations for their patchy occurrence. Antarct. Sci. 1995, 7, 227–234. [Google Scholar] [CrossRef]
- Teixidó, N.; Gili, J.-M.; Uriz, M.-J.; Gutt, J.; Arntz, W.E. Observations of asexual reproductive strategies in Antarctic hexactinellid sponges from ROV video records. Deep-Sea Res. II 2006, 53, 972–984. [Google Scholar] [CrossRef]
- Piepenburg, D.; Schmid, M.K.; Gerdes, D. The benthos off King George Island [South Shetland Islands, Antarctica]: Further evidence for a lack of a latitudinal biomass cline in the Southern Ocean. Polar Biol. 2002, 25, 146–158. [Google Scholar] [CrossRef]
- Gutt, J.; Alvaro, M.C.; Barco, A.; Böhmer, A.; Bracher, A.; David, B.; Ridder, C.D.; Dorschel, B.; Eléaume, M.; Janussen, D.; et al. Macroepibenthic communities at the tip of the Antarctic Peninsula, an ecological survey at different spatial scales. Polar Biol. 2016, 39, 829–849. [Google Scholar] [CrossRef]
- Diekmann, B.; Kuhn, G. Provenance and dispersal of glacial-marine surface sediments in the Weddell Sea and adjoining areas, Antarctica: Ice-rafting versus current transport. Mar. Geol. 1999, 158, 209–231. [Google Scholar] [CrossRef]
- Dawson, H.R.S.; Morrison, A.K.; England, M.H.; Tamsitt, V. Pathways and timescales of connectivity around the Antarctic continental shelf. J. Geophys. Res. 2023, 128, e2022JC018962. [Google Scholar] [CrossRef]
- Sañé, E.; Isla, E.; Pruski, A.M.; Bárcena, M.A.; Vétion, G.; DeMaster, D.J. Diatom valve distribution and sedimentary fatty acid composition in Larsen Bay, Eastern Antarctic Peninsula. Cont. Shelf Res. 2011, 31, 1161–1168. [Google Scholar]
- Griffiths, H.J.; Anker, P.; Linse, K.; Maxwell, J.; Post, A.L.; Stevens, C.; Tulaczyk, S.; Smith, J.A. Breaking All the Rules: The First Recorded Hard Substrate Sessile Benthic Community Far Beneath an Antarctic Ice Shelf. Front. Mar. Sci. 2021, 8, 642040. [Google Scholar] [CrossRef]
- Grosfeld, K.; Schröder, M.; Fahrbach, E.; Gerdes, R.; Mackensen, A. How iceberg calving and grounding change the circulation and hydrography in the Filchner Ice Shelf–Ocean System. J. Geophys. Res. 2001, 106, 9039–9055. [Google Scholar] [CrossRef]
- Stern, A.A.; Johnson, E.; Holland, D.M.; Wagner, T.J.W.; Wadhams, P.; Bates, R.; Abrahamsen, E.P.; Nicholls, K.W.; Crawford, A.; Gagnon, J.; et al. Wind-driven upwelling around grounded tabular icebergs. J. Geophys. Res. 2015, 120, 5820–5835. [Google Scholar] [CrossRef]
- Le Quéré, C.; Rodenbeck, C.; Buitenhuis, E.T.; Conway, T.J.; Langenfelds, R.; Gomez, A.; Labuschagne, C.; Ramonet, M.; Nakazawa, T.; Metzl, N.; et al. Saturation of the Southern Ocean CO2 Sink Due to Recent Climate Change. Science 2007, 316, 1735–1738. [Google Scholar] [CrossRef] [PubMed]
- Wille, J.D.; Favier, V.; Jourdain, N.C.; Kittel, C.; Turton, J.V.; Agosta, C.; Gorodetskaya, I.V.; Picard, G.; Codron, F.; Leroy-Dos Santos, C.; et al. Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula. Commun. Earth Environ. 2022, 3, 90. [Google Scholar] [CrossRef]
- Pineda-Metz, S.A.E.; Gerdes, D.; Richter, C. Benthic fauna declined on a whitening Antarctic continental shelf. Nat. Commun. 2020, 11, 2226. [Google Scholar] [CrossRef]
- Jena, B.; Bajish, C.C.; Turner, J.; Ravichandran, M.; Anilkumar, N.; Kshitija, S. Record low sea ice extent in the Weddell Sea, Antarctica in April/May 2019 driven by intense and explosive polar cyclones. Npj Clim. Atmos. Sci. 2022, 5, 19. [Google Scholar] [CrossRef]
- Wang, J.F.; Luo, H.; Yang, Q.; Liu, J.; Yu, L.; Shi, Q.; Han, B. An unprecedented record low Antarctic sea-ice extent during austral summer 2022. Adv. Atmos. Sci. 2022, 39, 1591–1597. [Google Scholar] [CrossRef]
- Smith, K.L., Jr.; Sherman, A.D.; Shaw, T.J.; Sprintall, J. Icebergs as Unique Lagrangian Ecosystems in Polar Seas. Ann. Rev. Mar. Sci. 2013, 5, 269–287. [Google Scholar]
- Moline, M.A.; Claustre, H.; Frazer, T.K.; Schofield, O.; Vernet, M. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob. Chang. Biol. 2004, 10, 1973–1980. [Google Scholar] [CrossRef]
- Borges Mendes, C.R.; Tavano, V.M.; Costa Leal, M.; Silva de Souza, M.; Brotas, V.; Eiras Garcia, C.A. Shifts in the dominance between diatoms and cryptophytes during three late summers in the Bransfield Strait [Antarctic Peninsula]. Polar Biol. 2013, 36, 537–547. [Google Scholar] [CrossRef]
- Borges Mendes, C.R.; Tavano, V.M.; Dotto Segabinazzi, T.; Kerr, R.; Silva de Souza, M.; Eiras Garcia, C.A.; Resende Secchi, E. New insights on the dominance of cryptophytes in Antarctic coastal waters: A case study in Gerlache Strait. Deep-Sea Res. II 2018, 149, 161–170. [Google Scholar] [CrossRef]
- Pauli, N.-C.; Flintrop, C.M.; Konrad, C.; Pakhomov, E.A.; Swoboda, S.; Koch, F.; Wang, J.-L.; Zhang, J.C.; Brierley, A.S.; Bernasconi, M.; et al. Krill and salp faecal pellets contribute equally to the carbon flux at the Antarctic Peninsula. Nat. Commun. 2021, 12, 7168. [Google Scholar] [CrossRef]
- Hall, B. Holocene glacial history of Antarctica and the sub-Antarctic islands. Quat. Sci. Rev. 2009, 28, 2213–2230. [Google Scholar] [CrossRef]
- Masson, V.; Vimeux, F.; Jouzel, J.; Morgan, V.; Delmotte, M.; Ciais, P.; Hammer, C.; Johnsen, S.; Lipenkov, V.Y.; Mosley-Thompson, E.; et al. Holocene Climate Variability in Antarctica Based on 11 Ice-Core Isotopic Records. Quat. Res. 2000, 54, 348–358. [Google Scholar] [CrossRef]
- Domack, E.; Duran, D.; Leventer, A.; Ishman, S.; Doane, S.; McCallum, S.; Amblas, D.; Ring, J.; Gilbert, R.; Prentice, M. Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature 2005, 436, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Sañé, E.; Isla, E.; Grémare, A.; Gutt, J.; Vetion, G.; DeMaster, D.J. Pigments in sediments beneath a recently collapsed ice shelves: The case of Larsen A and B shelves, Antarctic Peninsula. J. Sea Res. 2011, 65, 94–102. [Google Scholar] [CrossRef]
- Vaughan, D.G.; Marshall, G.J.; Connolley, W.M.; King, J.C.; Mulvaney, R. Devil in the Detail. Science 2001, 293, 1777–1779. [Google Scholar] [CrossRef]
- Gille, S.T. Warming of the Southern Ocean since the 1950s. Science 2002, 295, 1275–1277. [Google Scholar] [CrossRef]
- Hellmer, H.; Kauker, F.; Timmermann, R.; Determann, J.; Rae, J. Twenty-first century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature 2012, 485, 225–228. [Google Scholar] [CrossRef]
- Kawaguchi, S.; Ishida, A.; King, R.B.; Waller, R.N.; Constable, A.; Nicol, S.; Wakita, M.; Ishimatsu, A. Risk maps for Antarctic krill under projected Southern Ocean acidification. Nat. Clim. Chang. 2013, 3, 843–847. [Google Scholar] [CrossRef]
- Mendes, C.R.B.; Costa, R.R.; Ferreira, A.; Jesus, B.; Tavano, V.M.; Dotto, T.S.; Leal, M.C.; Kerr, R.; Islabão, C.A.; Franco, A.D.; et al. Cryptophytes: An emerging algal group in the rapidly changing Antarctic Peninsula marine environments. Glob. Chang. Biol. 2023, 29, 1791–1808. [Google Scholar] [CrossRef]
- Moy, A.; Howard, W.; Bray, S.; Trull, T.W. Reduced calcification in modern Southern Ocean planktonic foraminifera. Nat. Geosci. 2009, 2, 276–280. [Google Scholar] [CrossRef]
- Deppeler, S.; Schulz, K.G.; Hancock, A.; Pascoe, P.; McKinlay, J.; Davidson, A. Ocean acidification reduces growth and grazing impact of Antarctic heterotrophic nanoflagellates. Biogeosciences 2020, 17, 4153–4171. [Google Scholar] [CrossRef]
- Meredith, M.P.; King, J.C. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett. 2005, 32, L19604. [Google Scholar] [CrossRef]
- Turner, J.; Marshall, G.J.; Clem, K.; Colwell, S.; Phillips, T.; Lu, H. Antarctic Temperature Variability and Change from Station Data. Int. J. Clim. 2020, 40, 2986–3007. [Google Scholar] [CrossRef]
- González-Herrero, S.; Barriopedro, D.; Trigo, R.M.; López-Bustins, J.A.; Oliva, M. Climate warming amplified the 2020 record-breaking heatwave in the Antarctic Peninsula. Commun. Earth Environ. 2022, 3, 12. [Google Scholar] [CrossRef]
- Arntz, W.E.; Brey, T.; Gallardo, V.A. Antarctic zoobenthos. Oceanogr. Mar. Biol. Ann. Rev. 1994, 32, 241–304. [Google Scholar]
- Peck, L.S. Organisms and responses to environmental change. Mar. Genom. 2011, 4, 237–243. [Google Scholar] [CrossRef]
- Sahade, R.; Lagger, C.; Torre, L.; Momo, F.; Monien, P.; Schloss, I.; Barnes, D.K.A.; Servetto, N.; Tarantelli, S.; Tatián, M.; et al. Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Sci. Adv. 2015, 1, e1500050. [Google Scholar] [CrossRef]
- Barnes, D.K.A.; Fleming, A.; Sands, C.J.; Quartino, M.L.; Deregibus, D. Icebergs, sea ice, blue carbon and Antarctic climate feedbacks. Philos. Trans. R. Soc. A 2018, 376, 20170176. [Google Scholar] [CrossRef]
- Bax, N.; Sands, C.J.; Gogarty, B.; Downey, R.V.; Moreau, C.V.E.; Moreno, B.; Held, C.; Lund Paulsen, M.; McGee, J.; Haward, M.; et al. Perspective: Increasing Blue Carbon around Antarctica is an ecosystem service of considerable societal and economic value worth protecting. Glob. Chang. Biol. 2020, 27, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Sands, C.J.; Zwerschke, N.; Bax, N.; Barnes, D.K.A.; Moreau, C.; Downey, R.; Moreno, B.; Held, C.; Paulsen, M. Perspective: The growing potential of Antarctic blue carbon. Oceanography 2023, 36, 16–17. [Google Scholar] [CrossRef]
- Keil, R. Anthropogenic Forcing of Carbonate and Organic Carbon Preservation in Marine Sediments. Ann. Rev. Mar. Sci. 2017, 9, 151–172. [Google Scholar] [CrossRef] [PubMed]
- Isla, E. Organic carbon and biogenic silica in marine sediments in the vicinities of the Antarctic Peninsula: Spatial patterns across a climatic gradient. Polar Biol. 2016, 39, 819–828. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isla, E. Animal–Energy Relationships in a Changing Ocean: The Case of Continental Shelf Macrobenthic Communities on the Weddell Sea and the Vicinity of the Antarctic Peninsula. Biology 2023, 12, 659. https://doi.org/10.3390/biology12050659
Isla E. Animal–Energy Relationships in a Changing Ocean: The Case of Continental Shelf Macrobenthic Communities on the Weddell Sea and the Vicinity of the Antarctic Peninsula. Biology. 2023; 12(5):659. https://doi.org/10.3390/biology12050659
Chicago/Turabian StyleIsla, Enrique. 2023. "Animal–Energy Relationships in a Changing Ocean: The Case of Continental Shelf Macrobenthic Communities on the Weddell Sea and the Vicinity of the Antarctic Peninsula" Biology 12, no. 5: 659. https://doi.org/10.3390/biology12050659