Long Non-Coding RNAs in Hypoxia and Oxidative Stress: Novel Insights Investigating a Piglet Model of Perinatal Asphyxia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Study Design
2.2. RNA Isolation
2.3. cDNA Synthesis
2.4. Quantitative Real-Time Polymerase Chain Reaction
2.5. Digital Droplet PCR
2.6. Statistical Analysis
3. Results
3.1. Differences in the mRNA Expression of Target Genes Measured in Various Brain Regions and after Exposure to Hypoxia and Normoxic Reoxygenation
3.2. LncRNAs Are Significantly Altered in Various Brain Regions after Exposure to Hypoxia and Normoxic Reoxygenation
3.3. BDNF-AS Expression Was Significantly Increased after Hypoxia and Hyperoxic Exposure
3.4. Analysis Using ddPCR Revealed Further Significant Increase in BDNF-AS Relative to the Time of Hyperoxic Reoxygenation
4. Discussion
4.1. The Effects of Hypoxic Exposure on Protein-Coding Genes Associated with Hypoxia
4.2. Exposure to Hypoxia Resulted in Increased Expression of Various lncRNAs
4.3. BDNF-AS Expression Increases in a Time-Dependent Manner after Hyperoxic Reoxygenation
4.4. Comparing Gene Expressions across Brain Regions
4.5. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethics Approval
References
- Lawn, J.E.; Blencowe, H.; Oza, S.; You, D.; Lee, A.C.; Waiswa, P.; Lalli, M.; Bhutta, Z.; Barros, A.J.; Christian, P.; et al. Every Newborn: Progress, priorities, and potential beyond survival. Lancet 2014, 384, 189–205. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liddell, C.A.; Coates, M.M.; Mooney, M.D.; Levitz, C.E.; Schumacher, A.E.; Apfel, H.; Iannarone, M.; Phillips, B.; Lofgren, K.T.; et al. Global, regional, and national levels of neonatal, infant, and under-5 mortality during 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 957–979. [Google Scholar] [CrossRef] [Green Version]
- Strong, K.L.; Pedersen, J.; White Johansson, E.; Cao, B.; Diaz, T.; Guthold, R.; You, D.; Requejo, J.; Liu, L. Patterns and trends in causes of child and adolescent mortality 2000–2016: Setting the scene for child health redesign. BMJ Glob. Health 2021, 6, e004760. [Google Scholar] [CrossRef] [PubMed]
- Douglas-Escobar, M.; Weiss, M.D. Hypoxic-ischemic encephalopathy: A review for the clinician. JAMA Pediatr. 2015, 169, 397–403. [Google Scholar] [CrossRef]
- Allen, K.A.; Brandon, D.H. Hypoxic Ischemic Encephalopathy: Pathophysiology and Experimental Treatments. Newborn Infant Nurs. Rev. 2011, 11, 125–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Cuevas, I.; Corral-Debrinski, M.; Gressens, P. Brain oxidative damage in murine models of neonatal hypoxia/ischemia and reoxygenation. Free Radic. Biol. Med. 2019, 142, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Saugstad, O.D.; Sejersted, Y.; Solberg, R.; Wollen, E.J.; Bjoras, M. Oxygenation of the newborn: A molecular approach. Neonatology 2012, 101, 315–325. [Google Scholar] [CrossRef]
- Cobley, J.N.; Fiorello, M.L.; Bailey, D.M. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018, 15, 490–503. [Google Scholar] [CrossRef]
- Pugh, C.W.; Ratcliffe, P.J. New horizons in hypoxia signaling pathways. Exp. Cell Res. 2017, 356, 116–121. [Google Scholar] [CrossRef]
- Saugstad, O.D.; Oei, J.L.; Lakshminrusimha, S.; Vento, M. Oxygen therapy of the newborn from molecular understanding to clinical practice. Pediatr. Res. 2019, 85, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yao, L.; Yang, J.; Wang, Z.; Du, G. PI3K/Akt and HIF-1 signaling pathway in hypoxia-ischemia (Review). Mol. Med. Rep. 2018, 18, 3547–3554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garberg, H.T.; Huun, M.U.; Baumbusch, L.O.; Asegg-Atneosen, M.; Solberg, R.; Saugstad, O.D. Temporal Profile of Circulating microRNAs after Global Hypoxia-Ischemia in Newborn Piglets. Neonatology 2017, 111, 133–139. [Google Scholar] [CrossRef]
- Kim, C.; Kang, D.; Lee, E.K.; Lee, J.-S. Long Noncoding RNAs and RNA-Binding Proteins in Oxidative Stress, Cellular Senescence, and Age-Related Diseases. Oxidative Med. Cell. Longev. 2017, 2017, 21. [Google Scholar] [CrossRef] [Green Version]
- Qiao, L.X.; Zhao, R.B.; Wu, M.F.; Zhu, L.H.; Xia, Z.K. Silencing of long noncoding antisense RNA brainderived neurotrophic factor attenuates hypoxia/ischemiainduced neonatal brain injury. Int. J. Mol. Med. 2020, 46, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, F.; Xiao, H.; Han, F. Long noncoding RNA BDNF-AS inversely regulated BDNF and modulated high-glucose induced apoptosis in human retinal pigment epithelial cells. J. Cell. Biochem. 2018, 119, 817–823. [Google Scholar] [CrossRef]
- Gabory, A.; Jammes, H.; Dandolo, L. The H19 locus: Role of an imprinted noncoding RNA in growth and development. Bioessays 2010, 32, 473–480. [Google Scholar] [CrossRef]
- Wu, W.; Hu, Q.; Nie, E.; Yu, T.; Wu, Y.; Zhi, T.; Jiang, K.; Shen, F.; Wang, Y.; Zhang, J.; et al. Hypoxia induces H19 expression through direct and indirect Hif-1alpha activity, promoting oncogenic effects in glioblastoma. Sci. Rep. 2017, 7, 45029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Z.; Qiu, Y.; Lin, Y.; Medina, R.; Zhuang, S.; Rosenblum, J.S.; Cui, J.; Li, Z.; Zhang, X.; Guo, L. Blocking lncRNA H19-miR-19a-Id2 axis attenuates hypoxia/ischemia induced neuronal injury. Aging 2019, 11, 3585–3600. [Google Scholar] [CrossRef]
- Ji, P.; Diederichs, S.; Wang, W.; Boing, S.; Metzger, R.; Schneider, P.M.; Tidow, N.; Brandt, B.; Buerger, H.; Bulk, E.; et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 2003, 22, 8031–8041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, H.; Li, H.F.; He, M.H.; Yan, J.Y.; Yang, M.; Zhang, F.X.; Wang, R.R.; Wang, Q.Y.; Zhang, J.P. Long noncoding RNA MALAT1 sponges microRNA-429 to regulate apoptosis of hippocampal neurons in hypoxic-ischemic brain damage by regulating WNT1. Brain Res. Bull. 2019, 152, 1–10. [Google Scholar] [CrossRef]
- Li, X.; Song, Y.; Liu, F.; Liu, D.; Miao, H.; Ren, J.; Xu, J.; Ding, L.; Hu, Y.; Wang, Z.; et al. Long NonCoding RNA MALAT1 Promotes Proliferation, Angiogenesis, and Immunosuppressive Properties of Mesenchymal Stem Cells by Inducing VEGF and IDO. J. Cell. Biochem. 2017, 118, 2780–2791. [Google Scholar] [CrossRef]
- Yang, L.; Xu, F.; Zhang, M.; Shang, X.Y.; Xie, X.; Fu, T.; Li, J.P.; Li, H.L. Role of LncRNA MALAT-1 in hypoxia-induced PC12 cell injury via regulating p38MAPK signaling pathway. Neurosci. Lett. 2018, 670, 41–47. [Google Scholar] [CrossRef]
- Wei, X.; Wang, C.; Ma, C.; Sun, W.; Li, H.; Cai, Z. Long noncoding RNA ANRIL is activated by hypoxia-inducible factor-1alpha and promotes osteosarcoma cell invasion and suppresses cell apoptosis upon hypoxia. Cancer Cell Int. 2016, 16, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, T.C.; Kung, H.J.; Shih, J.W. Signaling in and out: Long-noncoding RNAs in tumor hypoxia. J. Biomed. Sci. 2020, 27, 59. [Google Scholar] [CrossRef]
- Hung, T.; Wang, Y.; Lin, M.F.; Koegel, A.K.; Kotake, Y.; Grant, G.D.; Horlings, H.M.; Shah, N.; Umbricht, C.; Wang, P.; et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat. Genet. 2011, 43, 621–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotake, Y.; Goto, T.; Naemura, M.; Inoue, Y.; Okamoto, H.; Tahara, K. Long Noncoding RNA PANDA Positively Regulates Proliferation of Osteosarcoma Cells. Anticancer Res. 2017, 37, 81–85. [Google Scholar] [CrossRef]
- Chen, L.; Xu, J.Y.; Tan, H.B. LncRNA TUG1 regulates the development of ischemia-reperfusion mediated acute kidney injury through miR-494-3p/E-cadherin axis. J. Inflamm. 2021, 18, 12. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhao, S.; Li, C.; Liu, C. LncRNA TUG1 serves an important role in hypoxia-induced myocardial cell injury by regulating the miR1455pBinp3 axis. Mol. Med. Rep. 2018, 17, 2422–2430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kung, J.T.; Colognori, D.; Lee, J.T. Long noncoding RNAs: Past, present, and future. Genetics 2013, 193, 651–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, M.; Kraus, W.L. From discovery to function: The expanding roles of long noncoding RNAs in physiology and disease. Endocr. Rev. 2015, 36, 25–64. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Shen, C.; Zhu, J.; Shen, G.; Li, Z.; Dong, J. Long Noncoding RNAs in the Regulation of Oxidative Stress. Oxidative Med. Cell. Longev. 2019, 2019, 1318795. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.J.; Hamblin, M.; Chen, Y.E. Noncoding RNAs in cerebral endothelial pathophysiology: Emerging roles in stroke. Neurochem. Int. 2014, 77, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, J.W.; Jiang, Y.G. Long noncoding RNA MALAT1 inhibits apoptosis induced by oxygen-glucose deprivation and reoxygenation in human brain microvascular endothelial cells. Exp. Ther. Med. 2017, 13, 1225–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dotinga, B.M.; Solberg, R.; Saugstad, O.D.; Bos, A.F.; Kooi, E.M.W. Splanchnic oxygen saturation during reoxygenation with 21% or 100% O(2) in newborn piglets. Pediatr. Res. 2022, 92, 445–452. [Google Scholar] [CrossRef]
- Benterud, T.; Pankratov, L.; Solberg, R.; Bolstad, N.; Skinningsrud, A.; Baumbusch, L.; Sandvik, L.; Saugstad, O.D. Perinatal Asphyxia May Influence the Level of Beta-Amyloid (1–42) in Cerebrospinal Fluid: An Experimental Study on Newborn Pigs. PLoS ONE 2015, 10, e0140966. [Google Scholar] [CrossRef]
- Jacob, F.; Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 1961, 3, 318–356. [Google Scholar] [CrossRef]
- Alfadda, A.A.; Sallam, R.M. Reactive oxygen species in health and disease. J. Biomed. Biotechnol. 2012, 2012, 936486. [Google Scholar] [CrossRef] [Green Version]
- Auten, R.L.; Davis, J.M. Oxygen toxicity and reactive oxygen species: The devil is in the details. Pediatr. Res. 2009, 66, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Perez, M.; Robbins, M.E.; Revhaug, C.; Saugstad, O.D. Oxygen radical disease in the newborn, revisited: Oxidative stress and disease in the newborn period. Free Radic. Biol. Med. 2019, 142, 61–72. [Google Scholar] [CrossRef]
- Dai, C.; Gu, W. p53 post-translational modification: Deregulated in tumorigenesis. Trends Mol. Med. 2010, 16, 528–536. [Google Scholar] [CrossRef] [Green Version]
- Bode, A.M.; Dong, Z. Post-translational modification of p53 in tumorigenesis. Nat. Rev. Cancer 2004, 4, 793–805. [Google Scholar] [CrossRef] [PubMed]
- Dengler, V.L.; Galbraith, M.; Espinosa, J.M. Transcriptional regulation by hypoxia inducible factors. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Minet, E.; Ernest, I.; Michel, G.; Roland, I.; Remacle, J.; Raes, M.; Michiels, C. HIF1A gene transcription is dependent on a core promoter sequence encompassing activating and inhibiting sequences located upstream from the transcription initiation site and cis elements located within the 5’UTR. Biochem. Biophys. Res. Commun. 1999, 261, 534–540. [Google Scholar] [CrossRef]
- Galban, S.; Kuwano, Y.; Pullmann, R., Jr.; Martindale, J.L.; Kim, H.H.; Lal, A.; Abdelmohsen, K.; Yang, X.; Dang, Y.; Liu, J.O.; et al. RNA-binding proteins HuR and PTB promote the translation of hypoxia-inducible factor 1alpha. Mol. Cell. Biol. 2008, 28, 93–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrysik, Z.; Bender, H.; Galbraith, M.D.; Espinosa, J.M. Multi-omics analysis reveals contextual tumor suppressive and oncogenic gene modules within the acute hypoxic response. Nat. Commun. 2021, 12, 1375. [Google Scholar] [CrossRef]
- Ma, I.T.; McConaghy, S.; Namachivayam, K.; Halloran, B.A.; Kurundkar, A.R.; MohanKumar, K.; Maheshwari, A.; Ohls, R.K. VEGF mRNA and protein concentrations in the developing human eye. Pediatr. Res. 2015, 77, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Song, Y.; Zhu, J.; Liu, Q.; Lu, P.; Ye, N.; Zhang, Z.; Pang, Y.; Qi, J.; Wu, H. LRG1 promotes angiogenesis through upregulating the TGFbeta1 pathway in ischemic rat brain. Mol. Med. Rep. 2016, 14, 5535–5543. [Google Scholar] [CrossRef] [Green Version]
- Miao, Z.; Wang, Y.; Sun, Z. The Relationships Between Stress, Mental Disorders, and Epigenetic Regulation of BDNF. Int. J. Mol. Sci. 2020, 21, 1375. [Google Scholar] [CrossRef] [Green Version]
- Shahulhameed, S.; Swain, S.; Jana, S.; Chhablani, J.; Ali, M.J.; Pappuru, R.R.; Tyagi, M.; Vishwakarma, S.; Sailaja, N.; Chakrabarti, S.; et al. A Robust Model System for Retinal Hypoxia: Live Imaging of Calcium Dynamics and Gene Expression Studies in Primary Human Mixed Retinal Culture. Front. Neurosci. 2019, 13, 1445. [Google Scholar] [CrossRef] [Green Version]
- Young, T.L.; Matsuda, T.; Cepko, C.L. The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr. Biol. 2005, 15, 501–512. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.C.; Huang, H.D.; Chang, C.C.; Chang, Y.S.; Yen, J.C.; Lee, C.C.; Chang, W.H.; Liu, T.C.; Chang, J.G. Long noncoding RNA TUG1 is downregulated in non-small cell lung cancer and can regulate CELF1 on binding to PRC2. BMC Cancer 2016, 16, 583. [Google Scholar] [CrossRef] [Green Version]
- Rohowetz, L.J.; Kraus, J.G.; Koulen, P. Reactive Oxygen Species-Mediated Damage of Retinal Neurons: Drug Development Targets for Therapies of Chronic Neurodegeneration of the Retina. Int. J. Mol. Sci. 2018, 19, 3362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, C.; Li, Z.; Wu, D. The long noncoding RNA H19 induces hypoxia/reoxygenation injury by up-regulating autophagy in the hepatoma carcinoma cells. Biol. Res. 2019, 52, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, L.C.; Xu, H.M.; Guo, G.L.; Zhang, T.; Shi, J.W.; Chang, C. Long Non-Coding RNA H19 Protects H9c2 Cells against Hypoxia-Induced Injury by Targeting MicroRNA-139. Cell. Physiol. Biochem. 2017, 44, 857–869. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Yu, L.; Zhang, J.; Zhou, Z.; Li, C.; Zhou, B.; Hu, X.; Xu, G.; Tang, Y. Long noncoding RNA H19 protects H9c2 cells against hypoxiainduced injury by activating the PI3K/AKT and ERK/p38 pathways. Mol. Med. Rep. 2020, 21, 1709–1716. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Li, H.F.; Pan, Q.; Yang, M.; Zhang, F.X.; Wang, R.R.; Wang, Q.Y.; Zhang, J.P. Long Noncoding RNA H19 Overexpression Protects against Hypoxic-Ischemic Brain Damage by Inhibiting miR-107 and Up-Regulating Vascular Endothelial Growth Factor. Am. J. Pathol. 2021, 191, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Guo, J.; Ai, F. Circulating long noncoding RNA ANRIL downregulation correlates with increased risk, higher disease severity and elevated pro-inflammatory cytokines in patients with acute ischemic stroke. J. Clin. Lab. Anal. 2019, 33, e22629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, M.; Zheng, Y.; Gao, M.; Ma, H.; Zhang, X.; Li, Y.; Wang, F.; Huang, H. Expression and clinical value of lncRNA MALAT1 and lncRNA ANRIL in glaucoma patients. Exp. Ther. Med. 2020, 19, 1329–1335. [Google Scholar] [CrossRef] [Green Version]
- Solberg, R.; Loberg, E.M.; Andresen, J.H.; Wright, M.S.; Charrat, E.; Khrestchatisky, M.; Rivera, S.; Saugstad, O.D. Resuscitation of newborn piglets. short-term influence of FiO2 on matrix metalloproteinases, caspase-3 and BDNF. PLoS ONE 2010, 5, e14261. [Google Scholar] [CrossRef] [Green Version]
- Ravasi, T.; Suzuki, H.; Pang, K.C.; Katayama, S.; Furuno, M.; Okunishi, R.; Fukuda, S.; Ru, K.; Frith, M.C.; Gongora, M.M.; et al. Experimental validation of the regulated expression of large numbers of noncoding RNAs from the mouse genome. Genome. Res. 2006, 16, 11–19. [Google Scholar] [CrossRef] [Green Version]
- de Lange, C.; Solberg, R.; Holtedahl, J.E.; Tulipan, A.; Barlinn, J.; Trigg, W.; Wickstrom, T.; Saugstad, O.D.; Malinen, E.; Revheim, M.E. Dynamic TSPO-PET for assessing early effects of cerebral hypoxia and resuscitation in new born pigs. Nucl. Med. Biol. 2018, 66, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Huun, M.U.; Garberg, H.; Loberg, E.M.; Escobar, J.; Martinez-Orgado, J.; Saugstad, O.D.; Solberg, R. DHA and therapeutic hypothermia in a short-term follow-up piglet model of hypoxia-ischemia: Effects on H+MRS biomarkers. PLoS ONE 2018, 13, e0201895. [Google Scholar] [CrossRef] [PubMed]
- Guillen, J. FELASA guidelines and recommendations. J. Am. Assoc. Lab. Anim. Sci. 2012, 51, 311–321. [Google Scholar] [PubMed]
lncRNA | Genomic Location | Associated mRNAs | Oxidative Stress | Hypoxia | Ischemia | Angiogenesis | Inflammation | Apoptosis | DNA Damage | References |
---|---|---|---|---|---|---|---|---|---|---|
BDNF-AS | 11p14.1 | BDNF | ● | ● | [14,15] | |||||
H19 | 11p15.5 | HIF1α | ● | ● | ● | [16,17,18] | ||||
MALAT1 | 11q13.1 | HIF1α | ● | ● | ● | ● | ● | [19,20,21,22] | ||
ANRIL | 9p21.3 | HIF1α | ● | ● | ● | ● | ● | ● | [23,24] | |
PANDA | 6p21.2 | P21, P53 | ● | [25,26] | ||||||
TUG1 | 22q12.2 | HIF1α, P53 | ● | ● | ● | ● | [27,28] |
Working Name | Gene Name | (F/R) | Primer Sequence (5´-3´) | Tm °C |
---|---|---|---|---|
Endogenous controls | ||||
RPLP0 a | Ribosomal protein, large, P0 | F | ACAATGTGGGCTCCAAGCA | 58.1 |
R | CATCAGCACCACGGCTTTC | 57.8 | ||
TBP b | TATA-box binding protein | F | GACCATTGCACTTCGTGCC | 58.7 |
R | CTGGACTGTTCTTCACTCTTGGC | 59.0 | ||
mRNAs | ||||
VEGFA | Vascular endothelial growth factor A | F | ACGAAGTGGTGAAGTTCATGGA | 57.5 |
R | CACCAGGGTCTCGATTGGA | 56.9 | ||
BDNF | Brain-derived neurotrophic factor | F | GTGACTGAAAAGTTCCACCAGGT | 58.4 |
R | CCTCGGACGTTGGCTTCTT | 58.3 | ||
HIF1α | Hypoxia-inducible factor 1 subunit α | F | TGGCAGCAATGACACAGAAAC | 58.4 |
R | TGATTGAGTGCAGGGTCAGC | 58.4 | ||
P53 | tumor suppressor gene p53 | F | AGCACTAAGCGAGCACTGCC | 59.4 |
R | CAGCTCTCGGAACATCTCGAA | 59.2 | ||
TNFα | tumor necrosis factor α | F | CAAGGACTCAGATCATCGTCTCA | 57.1 |
R | CATACCCACTCGCCATTGGA | 57.8 | ||
lncRNAs | ||||
BDNF-AS | Brain-derived neurotrophic factor antisense | F | GGACAGAACAGTGGACTCTCAGACT | 60.6 |
R | CCCAGGTGTATGTTCTGCATCA | 58.0 | ||
H19 | Imprinted maternally expressed transcript | F | CCTGAACACTCTCGGCTGG | 58.0 |
R | GCTGGGTAGCACCATCTCTTG | 58.4 | ||
MALAT1 | Metastasis-associated lung adenocarcinoma transcript 1 | F | CTGAAGCCTTTAGTCTTTTCCAGATG | 59.8 |
R | TTACTGGGTCTGGCTTCTCTGG | 59.4 | ||
ANRIL | The antisense non-coding RNA in the INK4 locus | F | TGCTCTATCCGCCAATCAGG | 59.8 |
R | ACTCAGTGTCCAGATGTCGCAG | 59.0 | ||
PANDA | P21-associated ncRNA DNA-damage-activated | F | GCTCTGATGTTTTCTTTGCCTTC | 58.2 |
R | ACATGACGAAGGGCCTTGTT | 58.1 | ||
TUG1 | Taurine-upregulated gene 1 | F | CCCTGTCACTCCCAGATGTAGC | 59.6 |
R | AGCCAGGCTATGATCTGGAAGA | 58.9 |
Cortex | Hippocampus | White Matter | Cerebellum | ||
---|---|---|---|---|---|
mRNA | Total | ||||
HIF1α | - | - | - | - | 0/4 |
VEGFA | ▲** | ▲**** | - | ▲**** | 3/4 |
BDNF | ▲* | ▲ | ▲ | - | 3/4 |
TP53 | - | - | - | - | 0/4 |
TNFα | ▲ | - | - | ▲* | 2/4 |
lncRNA | |||||
BDNF-AS | ▲* | - | - | ▲ | 2/4 |
H19 | ▲* | ▲ | ▲* | - | 3/4 |
MALAT1 | - | ▲* | - | - | 1/4 |
ANRIL | - | - | - | ▲* | 1/4 |
TUG1 | ▼ | ▼* | N/A | N/A | 2/2 |
PANDA | - | - | N/A | N/A | 0/2 |
Total | 6/11 | 5/11 | 2/9 | 4/9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grebstad Tune, B.; Melheim, M.; Åsegg-Atneosen, M.; Dotinga, B.; Saugstad, O.D.; Solberg, R.; Baumbusch, L.O. Long Non-Coding RNAs in Hypoxia and Oxidative Stress: Novel Insights Investigating a Piglet Model of Perinatal Asphyxia. Biology 2023, 12, 549. https://doi.org/10.3390/biology12040549
Grebstad Tune B, Melheim M, Åsegg-Atneosen M, Dotinga B, Saugstad OD, Solberg R, Baumbusch LO. Long Non-Coding RNAs in Hypoxia and Oxidative Stress: Novel Insights Investigating a Piglet Model of Perinatal Asphyxia. Biology. 2023; 12(4):549. https://doi.org/10.3390/biology12040549
Chicago/Turabian StyleGrebstad Tune, Benedicte, Maria Melheim, Monica Åsegg-Atneosen, Baukje Dotinga, Ola Didrik Saugstad, Rønnaug Solberg, and Lars Oliver Baumbusch. 2023. "Long Non-Coding RNAs in Hypoxia and Oxidative Stress: Novel Insights Investigating a Piglet Model of Perinatal Asphyxia" Biology 12, no. 4: 549. https://doi.org/10.3390/biology12040549
APA StyleGrebstad Tune, B., Melheim, M., Åsegg-Atneosen, M., Dotinga, B., Saugstad, O. D., Solberg, R., & Baumbusch, L. O. (2023). Long Non-Coding RNAs in Hypoxia and Oxidative Stress: Novel Insights Investigating a Piglet Model of Perinatal Asphyxia. Biology, 12(4), 549. https://doi.org/10.3390/biology12040549