Nocturnal Heart Rate Variability Might Help in Predicting Severe Obstructive Sleep-Disordered Breathing
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Set
2.2. HRV Analysis
2.3. Statistical Analysis
3. Results
3.1. Nocturnal HRV in Patients with Sleep Breathing Disorders
3.2. Polytomous Logistic Regression Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heatley, E.M.; Harris, M.; Battersby, M.; McEvoy, R.D.; Chai-Coetzer, C.L.; Antic, N.A. Obstructive sleep apnoea in adults: A common chronic condition in need of a comprehensive chronic condition management approach. Sleep Med. Rev. 2013, 17, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Léger, D.; Stepnowsky, C. The economic and societal burden of excessive daytime sleepiness in patients with obstructive sleep apnea. Sleep Med. Rev. 2020, 51, 101275. [Google Scholar] [CrossRef] [PubMed]
- Benjafield, A.V.; Ayas, N.T.; Eastwood, P.R.; Heinzer, R.; Ip, M.S.M.; Morrell, M.J.; Nunez, C.M.; Patel, S.R.; Penzel, T.; Pépin, J.L.D.; et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir. Med. 2019, 7, 687–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, N.S.; Wong, K.K.; Liu, P.Y.; Cullen, S.R.; Knuiman, M.W.; Grunstein, R.R. Sleep apnea as an independent risk factor for all-cause mortality: The Busselton Health Study. Sleep 2008, 31, 1079–1085. [Google Scholar] [PubMed] [Green Version]
- World Health Organization. Global Surveillance, Prevention and Control of Chronic Respiratory Diseases: A Comprehensive Approach. 2007. Available online: https://apps.who.int/iris/handle/10665/43776 (accessed on 1 February 2022).
- Moyer, C.A.; Sonnad, S.S.; Garetz, S.L.; Helman, J.I.; Chervin, R.D. Quality of life in obstructive sleep apnea: A systematic review of the literature. Sleep Med. 2001, 2, 477–491. [Google Scholar] [CrossRef]
- Cheng, A.C.; Wu, G.J.; Chung, C.H.; Wu, K.H.; Sun, C.A.; Wang, I.D.; Chien, W.C. Effect of Obstructive Sleep Apnea on the Risk of Injuries-A Nationwide Population-Based Cohort Study. Int. J. Environ. Res. Public Health 2021, 18, 13416. [Google Scholar] [CrossRef]
- Idiaquez, J.; Santos, I.; Santin, J.; Del Rio, R.; Iturriaga, R. Neurobehavioral and autonomic alterations in adults with obstructive sleep apnea. Sleep Med. 2014, 15, 1319–1323. [Google Scholar] [CrossRef]
- Yeghiazarians, Y.; Jneid, H.; Tietjens, J.R.; Redline, S.; Brown, D.L.; El-Sherif, N.; Mehra, R.; Bozkurt, B.; Ndumele, C.E.; Somers, V.K. Obstructive sleep apnea and cardiovascular disease a scientific statement from the American Heart Association. Circulation 2021, 144, E56–E67. [Google Scholar] [CrossRef]
- Abboud, F.; Kumar, R. Obstructive sleep apnea and insight into mechanisms of sympathetic overactivity. J. Clin. Investig. 2014, 124, 1454–1457. [Google Scholar] [CrossRef] [Green Version]
- Sequeira, V.C.C.; Bandeira, P.M.; Azevedo, J.C.M. Heart rate variability in adults with obstructive sleep apnea: A systematic review. Sleep Sci. 2019, 12, 214–221. [Google Scholar] [CrossRef]
- Urbanik, D.; Gać, P.; Martynowicz, H.; Poręba, M.; Podgórski, M.; Negrusz-Kawecka, M.; Mazur, G.; Sobieszczańska, M.; Poręba, R. Obstructive sleep apnea as a predictor of reduced heart rate variability. Sleep Med. 2019, 54, 8–15. [Google Scholar] [CrossRef]
- Taylor, K.S.; Millar, P.J.; Murai, H.; Haruki, N.; Kimmerly, D.S.; Bradley, T.D.; Floras, J.S. Cortical autonomic network gray matter and sympathetic nerve activity in obstructive sleep apnea. Sleep 2018, 41, zsx208. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.; Keenan, B.T.; Mazzotti, D.R.; Vaquerizo-Villar, F.; Kraemer, J.F.; Wessel, N.; Tufik, S.; Bittencourt, L.; Cistulli, P.A.; De Chazal, P.; et al. Heart rate variability during wakefulness as a marker of obstructive sleep apnea severity. Sleep 2021, 44, zsab018. [Google Scholar] [CrossRef]
- Ucak, S.; Dissanayake, H.U.; Sutherland, K.; de Chazal, P.; Cistulli, P.A. Heart rate variability and obstructive sleep apnea: Current perspectives and novel technologies. J. Sleep Res. 2021, 30, e13274. [Google Scholar] [CrossRef]
- Penzel, T.; Moody, G.B.; Mark, R.G.; Goldberger, A.L.; Peter, J.H. Apnea-ECG Database. Comput. Cardiol. 2000, 27, 255–258. [Google Scholar]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, E215–E220. [Google Scholar] [CrossRef] [Green Version]
- American Academy of Sleep Medicine Task Force. Sleep-related breathing disorders in adults: Recommendations for syndrome definition and measurement techniques in clinical research. Sleep 1999, 22, 667–689. [Google Scholar] [CrossRef]
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Sassi, R.; Cerutti, S.; Lombardi, F.; Malik, M.; Huikuri, H.V.; Peng, C.; Schmidt, G. Advances in heart rate variability signal analysis: Joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. EP Eur. 2015, 44, 1341–1353. [Google Scholar] [CrossRef]
- Wu, Y.; Tian, L.; Ma, D.; Wu, P.; Tang, Y.; Cui, X.; Xu, Z. Autonomic nervous function and low-grade inflammation in children with sleep-disordered breathing. Pediatr. Res. 2021, 91, 1834–1840. [Google Scholar] [CrossRef] [PubMed]
- Vitelli, O.; Del Pozzo, M.; Baccari, G.; Rabasco, J.; Pietropaoli, N.; Barreto, M.; Villa, M.P. Autonomic imbalance during apneic episodes in pediatric obstructive sleep apnea. Clin. Neurophysiol. 2016, 127, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Gammoudi, N.; Cheikh, R.B.; Saafi, M.A.; Sakly, G.; Dogui, M. Cardiac autonomic control in the obstructive sleep apnea. Libyan J. Med. 2015, 10, 26989. [Google Scholar] [CrossRef] [PubMed]
- Aeschbacher, S.; Bossard, M.; Schoen, T.; Schmidlin, D.; Muff, C.; Maseli, A.; Leuppi, J.D.; Miedinger, D.; Probst-Hensch, N.M.; Schmidt-Trucksäss, A.; et al. Heart Rate Variability and Sleep-Related Breathing Disorders in the General Population. Am. J. Cardiol. 2016, 118, 912–917. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; Chemla, D.; Roisman, G.; Mao, W.; Bazizi, S.; Lefevre, A.; Escourrou, P. Overnight heart rate variability in patients with obstructive sleep apnoea: A time and frequency domain study. Clin. Exp. Pharmacol. Physiol. 2012, 39, 901–908. [Google Scholar] [CrossRef]
- Nam, E.-C.; Chun, K.J.; Won, J.Y.; Kim, J.-W.; Lee, W.H. The differences between daytime and night-time heart rate variability may usefully predict the apnea-hypopnea index in patients with obstructive sleep apnea. J. Clin. Sleep Med. 2022. online ahead of print. [Google Scholar] [CrossRef]
- Lado, M.J.; Méndez, A.J.; Rodríguez-Liñares, L.; Otero, A.; Vila, X.A. Nocturnal evolution of heart rate variability indices in sleep apnea. Comput. Biol. Med. 2012, 42, 1179–1185. [Google Scholar] [CrossRef]
- Galal, I. Nocturnal heart rate variability analysis as a screening tool for obstructive sleep apnea syndrome. Egypt. J. Chest Dis. Tuberc. 2012, 61, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Roche, F.; Gaspoz, J.M.; Court-Fortune, I.; Minini, P.; Pichot, V.; Duverney, D.; Costes, F.; Lacour, J.R.; Barthélémy, J.C. Screening of obstructive sleep apnea syndrome by heart rate variability analysis. Circulation 1999, 100, 1411–1415. [Google Scholar] [CrossRef]
- Kim, J.W.; Kwon, S.O.; Lee, W.H. Nocturnal heart rate variability may be useful for determining the efficacy of mandibular advancement devices for obstructive sleep apnea. Sci. Rep. 2020, 10, 1511–1518. [Google Scholar] [CrossRef] [Green Version]
- Efazati, N.; Rahimi, B.; Mirdamadi, M.; Edalatifard, M.; Tavoosi, A. Changes in heart rate variability (HRV) in patients with severe and moderate obstructive sleep apnea before and after acute CPAP therapy during nocturnal polysomnography. Sleep Sci. 2020, 13, 97–102. [Google Scholar] [CrossRef]
- Galal, I.H. Nocturnal heart rate variability in obstructive sleep apnea syndrome: Effect of automatic positive airway pressure. Egypt. J. Bronchol. 2017, 11, 372–378. [Google Scholar] [CrossRef]
- Chemla, D.; Attal, P.; Maione, L.; Veyer, A.S.; Mroue, G.; Baud, D.; Salenave, S.; Kamenicky, P.; Bobin, S.; Chanson, P. Impact of successful treatment of acromegaly on overnight heart rate variability and sleep apnea. J. Clin. Endocrinol. Metab. 2014, 99, 2925–2931. [Google Scholar] [CrossRef] [Green Version]
- Billman, G.E. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front. Physiol. 2013, 4, 26. [Google Scholar] [CrossRef] [Green Version]
- Eckberg, D.L. Sympathovagal balance: A critical appraisal. Circulation 1997, 96, 3224–3232. [Google Scholar] [CrossRef]
- Gilman, M.P.; Floras, J.S.; Usui, K.; Kaneko, Y.; Leung, R.S.; Bradley, T.D. Continuous positive airway pressure increases heart rate variability in heart failure patients with obstructive sleep apnoea. Clin. Sci. 2008, 114, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Lv, T.; She, F.; Miao, G.; Liu, Y.; He, R.; Xue, Y.; Nu, N.K.; Yang, J.; Li, K.; et al. The impact of continuous positive airway pressure on heart rate variability in obstructive sleep apnea patients during sleep: A meta-analysis. Heart Lung J. Crit. Care 2018, 47, 516–524. [Google Scholar] [CrossRef]
- Oh, D.M.; Johnson, J.; Shah, B.; Bhat, S.; Nuoman, R.; Ming, X. Treatment of vagus nerve stimulator-induced sleep-disordered breathing: A case series. Epilepsy Behav. Rep. 2019, 12, 100325. [Google Scholar] [CrossRef]
- Ebben, M.R.; Sethi, N.K.; Conte, M.; Pollak, C.P.; Labar, D. Vagus nerve stimulation, sleep apnea, and CPAP titration. J. Clin. Sleep Med. 2008, 4, 471–473. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.; Steenbergen, N.; Glos, M.; Wessel, N.; Kraemer, J.F.; Vaquerizo-Villar, F.; Penzel, T. The Different Facets of Heart Rate Variability in Obstructive Sleep Apnea. Front. Psychiatry 2021, 12, 642333. [Google Scholar] [CrossRef]
- Yeh, C.Y.; Chang, H.Y.; Hu, J.Y.; Lin, C.C. Contribution of Different Subbands of ECG in Sleep Apnea Detection Evaluated Using Filter Bank Decomposition and a Convolutional Neural Network. Sensors 2022, 22, 510. [Google Scholar] [CrossRef] [PubMed]
- Karimi Moridani, M. An automated method for sleep apnoea detection using HRV. J. Med. Eng. Technol. 2022, 46, 158–173. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Wang, Y.-W.; Setiawan, F.; Trang, N.T.H.; Lin, C.-W. Sleep Apnea Classification Algorithm Development Using a Machine-Learning Framework and Bag-of-Features Derived from Electrocardiogram Spectrograms. J. Clin. Med. 2021, 11, 192. [Google Scholar] [CrossRef] [PubMed]
- Glos, M.; Romberg, D.; Fietze, I.; Penzel, T. Heart rate and systolic blood pressure variability before and during obstructive sleep apnea episodes. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 263–266. [Google Scholar] [CrossRef]
- Mendez, M.O.; Ruini, D.D.; Villantieri, O.P.; Matteucci, M.; Penzel, T.; Cerutti, S.; Bianchi, A.M. Detection of sleep apnea from surface ECG based on features extracted by an autoregressive model. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 6106–6109. [Google Scholar] [CrossRef]
- Penzel, T.; Kantelhardt, J.W.; Grote, L.; Peter, J.H.; Bunde, A. Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea. IEEE Trans. Bio-Med. Eng. 2003, 50, 1143–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobaldini, E.; Nobili, L.; Strada, S.; Casali, K.R.; Braghiroli, A.; Montano, N. Heart rate variability in normal and pathological sleep. Front. Physiol. 2013, 4, 294. [Google Scholar] [CrossRef] [Green Version]
- Krause, H.; Kraemer, J.F.; Penzel, T.; Kurths, J.; Wessel, N. On the difference of cardiorespiratory synchronisation and coordination. Chaos 2017, 27, 093933. [Google Scholar] [CrossRef]
- Garcia, A.J.; Koschnitzky, J.E.; Dashevskiy, T.; Ramirez, J.M. Cardiorespiratory coupling in health and disease. Auton. Neurosci. Basic Clin. 2013, 175, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Appleton, S.; Gill, T.; Taylor, A.; McEvoy, D.; Shi, Z.; Hill, C.; Reynolds, A.; Adams, R. Influence of Gender on Associations of Obstructive Sleep Apnea Symptoms with Chronic Conditions and Quality of Life. Int. J. Environ. Res. Public Health 2018, 15, 930. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.M.; Davidson, T.M.; Ancoli-Israel, S. Gender differences in obstructive sleep apnea and treatment implications. Sleep Med. Rev. 2008, 12, 481–496. [Google Scholar] [CrossRef] [Green Version]
- Bonsignore, M.R.; Saaresranta, T.; Riha, R.L. Sex differences in obstructive sleep apnoea. Eur. Respir. Rev. Off. J. Eur. Respir. Soc. 2019, 28, 190030. [Google Scholar] [CrossRef]
- Carnevali, L.; Statello, R.; Sgoifo, A. Resting Heart Rate Variability Predicts Vulnerability to Pharmacologically-Induced Ventricular Arrhythmias in Male Rats. J. Clin. Med. 2019, 8, 655. [Google Scholar] [CrossRef] [Green Version]
- Laborde, S.; Mosley, E.; Thayer, J.F. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research—Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Front. Psychol. 2017, 8, 213. [Google Scholar] [CrossRef] [Green Version]
- Statello, R.; Carnevali, L.; Alinovi, D.; Pisani, F.; Sgoifo, A. Heart rate variability in neonatal patients with seizures. Clin. Neurophysiol. Off. J. Int. Fed. Clin. 2018, 129, 2534–2540. [Google Scholar] [CrossRef]
- Statello, R.; Carnevali, L.; Paterlini, S.; Gioiosa, L.; Bertocchi, I.; Oberto, A.; Eva, C.; Palanza, P.; Sgoifo, A. Reduced NPY Y1 receptor hippocampal expression and signs of decreased vagal modulation of heart rate in mice. Physiol. Behav. 2017, 172, 31–39. [Google Scholar] [CrossRef]
- Koenig, J.; Thayer, J.F. Sex differences in healthy human heart rate variability: A meta-analysis. Neurosci. Biobehav. Rev. 2016, 64, 288–310. [Google Scholar] [CrossRef]
- Williams, D.P.; Joseph, N.; Gerardo, G.M.; Hill, L.K.; Koenig, J.; Thayer, J.F. Gender Differences in Cardiac Chronotropic Control: Implications for Heart Rate Variability Research. Appl. Psychophysiol. Biofeedback 2022, 47, 65–75. [Google Scholar] [CrossRef]
Model 1—Full Model | Model 2 | Model 3 | Model 4—Final Model | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
95% CI for Odds Ratio | 95% CI for Odds Ratio | 95% CI for Odds Ratio | 95% CI for Odds Ratio | |||||||||
Lower | Odds Ratio | Upper | Lower | Odds Ratio | Upper | Lower | Odds Ratio | Upper | Lower | Odds Ratio | Upper | |
Severe OSA vs. Normal | ||||||||||||
SDNN | 0.92 | 1.06 | 1.21 | 0.93 | 1.05 | 1.19 | 0.99 | 1.09 | 1.20 | 1.02 | 1.11 * | 1.21 |
RMSSD | 0.77 | 0.89 | 1.01 | 0.77 | 0.88 | 1.01 | 0.78 | 0.89 | 1.02 | 0.77 | 0.86 * | 0.96 |
Total Power | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | - | - | - | - | - | - |
HFnu | 0.50 | 0.95 | 1.82 | 0.86 | 0.96 | 1.08 | 0.86 | 0.96 | 1.07 | - | - | - |
LFnu | 0.52 | 0.99 | 1.88 | - | - | - | - | - | - | - | - | - |
Moderate-Mild OSA vs. Normal | ||||||||||||
SDNN | 0.83 | 1.02 | 1.27 | 0.84 | 1.02 | 1.23 | 0.89 | 1.01 | 1.13 | 0.90 | 0.99 | 1.10 |
RMSSD | 0.79 | 0.95 | 1.14 | 0.80 | 0.95 | 1.14 | 0.81 | 0.95 | 1.13 | 0.87 | 0.98 | 1.10 |
Total Power | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | - | - | - | - | - | - |
HFnu | 0.51 | 0.98 | 1.90 | 0.89 | 1.02 | 1.16 | 0.90 | 1.02 | 1.16 | - | - | - |
LFnu | 0.50 | 0.96 | 1.84 | - | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Statello, R.; Rossi, S.; Pisani, F.; Bonzini, M.; Andreoli, R.; Martini, A.; Puligheddu, M.; Cocco, P.; Miragoli, M. Nocturnal Heart Rate Variability Might Help in Predicting Severe Obstructive Sleep-Disordered Breathing. Biology 2023, 12, 533. https://doi.org/10.3390/biology12040533
Statello R, Rossi S, Pisani F, Bonzini M, Andreoli R, Martini A, Puligheddu M, Cocco P, Miragoli M. Nocturnal Heart Rate Variability Might Help in Predicting Severe Obstructive Sleep-Disordered Breathing. Biology. 2023; 12(4):533. https://doi.org/10.3390/biology12040533
Chicago/Turabian StyleStatello, Rosario, Stefano Rossi, Francesco Pisani, Matteo Bonzini, Roberta Andreoli, Agnese Martini, Monica Puligheddu, Pierluigi Cocco, and Michele Miragoli. 2023. "Nocturnal Heart Rate Variability Might Help in Predicting Severe Obstructive Sleep-Disordered Breathing" Biology 12, no. 4: 533. https://doi.org/10.3390/biology12040533
APA StyleStatello, R., Rossi, S., Pisani, F., Bonzini, M., Andreoli, R., Martini, A., Puligheddu, M., Cocco, P., & Miragoli, M. (2023). Nocturnal Heart Rate Variability Might Help in Predicting Severe Obstructive Sleep-Disordered Breathing. Biology, 12(4), 533. https://doi.org/10.3390/biology12040533