Effects of Upper Body Exercise Training on Aerobic Fitness and Performance in Healthy People: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Physiology of UBET in Healthy Persons
Comparing Upper and Lower Body Endurance Training
1.2. Transfer Effects
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Data Extraction
3. Results
3.1. Subject Characteristics
3.2. Training Design
3.3. Test Protocols
3.4. Maximal UBET Responses
3.5. Submaximal UBET Responses
3.6. Transfer Effects
3.7. Training Devices for UBET
4. Discussion
4.1. Maximal UBET Responses
4.1.1. Effects of Training Intensity
4.1.2. Effects of Baseline Fitness and Length of Training Program
4.1.3. Effects of Motor Learning of UBET
4.2. Submaximal UBET Responses
4.3. Transfer Effects
4.3.1. Effects of Baseline Fitness Level and Age
4.3.2. Gender
4.3.3. Effects of Training Design
4.3.4. Effects of Training Device
5. Conclusions
- UBET studies are, in general, of small sample sizes and may, therefore, fail to detect potential training effects and may at the same time be at risk of overestimating training effects;
- UBET leads to the largest effects in improving physical capacity when training is performed for longer than 5 weeks at an intensity >70% of VO2peak ARM or HRR ARM;
- The SWEET training design was found to be very effective;
- ACSM guidelines for larger muscle masses (legs) (7 weeks of training, 3 × 30 min/ week at 65% HRR) can also be used on small muscle groups (arms) to improve aerobic fitness;
- Low-intensity training (30% HRR) improves (sub)maximal VO2 parameters and plays a decisive role in fat metabolism training;
- UBET is a complementary and useful workout but does not replace whole-body exercises;
- Since the majority of subjects were males (more than 85%), more studies need to be conducted in females to understand if the same effects occur in females and whether UBET recommendations are sex-specific.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blomqvist, C.G.; Saltin, B. Cardiovascular adaptations to physical training. Annu. Rev. Physiol. 1983, 45, 169–189. [Google Scholar] [CrossRef]
- Gibala, M.J.; Little, J.P.; Macdonald, M.J.; Hawley, J.A. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J. Physiol. 2012, 590, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Laursen, P.B.; Jenkins, D.G. The scientific basis for high-intensity interval training-Optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med. 2002, 32, 53–73. [Google Scholar] [CrossRef]
- Valent, L.; Dallmeijer, A.; Houdijk, H.; Talsma, E.; van der Woude, L. The effects of upper body exercise on the physical capacity of people with a spinal cord injury: A systematic review. Clin. Rehabil. 2007, 21, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Nevin, J.; Kouwijzer, I.; Stone, B.; Quittmann, O.J.; Hettinga, F.; Abel, T.; Smith, P.M. The Science of Handcycling: A Narrative Review. Int. J. Sports Physiol. Perform. 2022, 17, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, B.T.; Stone, B.; Mason, B.S.; Goosey-Tolfrey, V.L. Physiology of handcycling: A current sports perspective. Scand. J. Med. Sci. Sports 2021, 31, 4–20. [Google Scholar] [CrossRef]
- Calbet, J.A.; González-Alonso, J.; Helge, J.W.; Søndergaard, H.; Munch-Andersen, T.; Saltin, B.; Boushel, R. Central and peripheral hemodynamics in exercising humans: Leg vs arm exercise. Scand. J. Med. Sci. Sports 2015, 25 (Suppl. 4), 144–157. [Google Scholar] [CrossRef]
- Boushel, R.; Ara, I.; Gnaiger, E.; Helge, J.W.; González-Alonso, J.; Munck-Andersen, T.; Sondergaard, H.; Damsgaard, R.; van Hall, G.; Saltin, B.; et al. Low-intensity training increases peak arm VO2 by enhancing both convective and diffusive O2 delivery. Acta Physiol. 2014, 211, 122–134. [Google Scholar] [CrossRef]
- Secher, N.H.; Clausen, J.P.; Klausen, K.; Noer, I.; Trap-Jensen, J. Central and regional circulatory effects of adding arm exercise to leg exercise. Acta Physiol. Scand. 1977, 100, 288–297. [Google Scholar] [CrossRef]
- Volianitis, S.; Secher, N.H. Arm blood flow and metabolism during arm and combined arm and leg exercise in humans. J. Physiol. 2002, 544, 977–984. [Google Scholar] [CrossRef]
- Volianitis, S.; Krustrup, P.; Dawson, E.; Secher, N.H. Arm blood flow and oxygenation on the transition from arm to combined arm and leg exercise in humans. J. Physiol. 2003, 547, 641–648. [Google Scholar] [CrossRef]
- Volianitis, S.; Yoshiga, C.C.; Vogelsang, T.; Secher, N.H. Arterial blood pressure and carotid baroreflex function during arm and combined arm and leg exercise in humans. Acta Physiol. Scand. 2004, 181, 289–295. [Google Scholar] [CrossRef]
- Collins, H.L.; Augustyniak, R.A.; Ansorge, E.J.; O’Leary, D.S. Carotid baroreflex pressor responses at rest and during exercise: Cardiac output vs. regional vasoconstriction. Am. J. Physiol. Heart Circ. Physiol. 2001, 280, H642–H648. [Google Scholar] [CrossRef] [PubMed]
- Franklin, B.A.; Bonzheim, K.; Gordon, S.; Timmis, G.C. Snow shoveling: A trigger for acute myocardial infarction and sudden coronary death. Am. J. Cardiol. 1996, 77, 855–858. [Google Scholar] [CrossRef] [PubMed]
- Saltin, B.; Nazar, K.; Costill, D.L.; Stein, E.; Jansson, E.; Essén, B.; Gollnick, D. The nature of the training response; peripheral and central adaptations of one-legged exercise. Acta Physiol. Scand. 1976, 96, 289–305. [Google Scholar] [CrossRef]
- Clausen, J.P.; Klausen, K.; Rasmussen, B.; Trap-Jensen, J. Central and peripheral circulatory changes after training of the arms or legs. Am. J. Physiol. 1973, 225, 675–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klausen, K.; Rasmussen, B.; Clausen, J.P.; Trap-Jensen, J. Blood lactate from exercising extremities before and after arm or leg training. Am. J. Physiol. 1974, 227, 67–72. [Google Scholar] [CrossRef]
- McKenzie, D.C.; Fox, E.L.; Cohen, K. Specificity of metabolic and circulatory responses to arm or leg interval training. Eur. J. Appl. Physiol. Occup. Physiol. 1978, 39, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Marterer, N.; Menz, V.; Amin, S.; Faulhaber, M. 6-week High-intensity Interval Training (HIIT) of the Lower Extremities Improves VO2max of the Upper Extremities. Int. J. Sports Med. 2020, 41, 380–390. [Google Scholar] [CrossRef]
- Swensen, T.C.; Howley, E.T. Effect of one- and two-leg training on arm and two-leg maximum aerobic power. Eur. J. Appl. Physiol. Occup. Physiol. 1993, 66, 285–288. [Google Scholar] [CrossRef]
- Andersen, P.; Henriksson, J. Capillary supply of the quadriceps femoris muscle of man: Adaptive response to exercise. J. Physiol. 1977, 270, 677–690. [Google Scholar] [CrossRef] [PubMed]
- Gollnick, P.D.; Saltin, B. Significance of skeletal muscle oxidative enzyme enhancement with endurance training. Clin. Physiol. 1982, 2, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hoppeler, H.; Howald, H.; Conley, K.; Lindstedt, S.L.; Claassen, H.; Vock, P.; Weibel, E.R. Endurance training in humans: Aerobic capacity and structure of skeletal muscle. J. Appl. Physiol. 1985, 59, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.; Thompson, P.; Areskog, N.H.; Vodak, P.; Marconyak, M.; DeBusk, R.; Mellen, S.; Haskell, W. Transfer effects of endurance training to exercise with untrained limbs. Eur. J. Appl. Physiol. Occup. Physiol. 1980, 44, 25–34. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. J. Clin. Epidemiol. 2009, 62, 1006–1012. [Google Scholar] [CrossRef]
- Bhambhani, Y.N.; Eriksson, P.; Gomes, P.S. Transfer effects of endurance training with the arms and legs. Med. Sci. Sports Exerc. 1991, 23, 1035–1041. [Google Scholar] [CrossRef]
- El-Sayed, M.S.; Younesian, A.; Rahman, K.; Ismail, F.M.; El-Sayed Ali, Z. The effects of arm cranking exercise and training on platelet aggregation in male spinal cord individuals. Thromb. Res. 2004, 113, 129–136. [Google Scholar] [CrossRef]
- Hill, M.; Oxford, S.; Duncan, M.; Price, M. Arm-crank training improves postural stability and physical functioning in older people. Exp. Gerontol. 2018, 113, 218–227. [Google Scholar] [CrossRef]
- La Monica, M.B.; Fukuda, D.H.; Starling-Smith, T.M.; Clark, N.W.; Morales, J.; Hoffman, J.R.; Stout, J.R. Examining work-to-rest ratios to optimize upper body sprint interval training. Respir. Physiol. Neurobiol. 2019, 262, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Loftin, M.; Boileau, R.A.; Massey, B.H.; Lohman, T.G. Effect of arm training on central and peripheral circulatory function. Med. Sci. Sports Exerc. 1988, 20, 136–141. [Google Scholar] [CrossRef]
- Magel, J.R.; McArdle, W.D.; Toner, M.; Delio, D.J. Metabolic and cardiovascular adjustment to arm training. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1978, 45, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Pinto, N.; Salassi, J.W.; Donlin, A.; Schroeder, J.; Rozenek, R. Effects of a 6-Week Upper Extremity Low-Volume, High-Intensity Interval Training Program on Oxygen Uptake, Peak Power Output, and Total Exercise Time. J. Strength Cond. Res. 2019, 33, 1295–1304. [Google Scholar] [CrossRef]
- Pogliaghi, S.; Terziotti, P.; Cevese, A.; Balestreri, F.; Schena, F. Adaptations to endurance training in the healthy elderly: Arm cranking versus leg cycling. Eur. J. Appl. Physiol. 2006, 97, 723–731. [Google Scholar] [CrossRef]
- Rasmussen, B.; Klausen, K.; Clausen, J.P.; Trap-Jensen, J. Pulmonary ventilation, blood gases, and blood pH after training of the arms or the legs. J. Appl. Physiol. 1975, 38, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Sedlock, D.A.; Knowlton, R.G.; Fitzgerald, P.I. The effects of arm crank training on the physiological responses to submaximal wheelchair ergometry. Eur. J. Appl. Physiol. Occup. Physiol. 1988, 57, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Simmons, R.; Shephard, R.J. Effects of physical conditioning upon the central and peripheral circulatory responses to arm work. Int. Z Angew. Physiol. 1971, 30, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Stamford, B.A.; Cuddihee, R.W.; Moffatt, R.J.; Rowland, R. Task specific changes in maximal oxygen uptake resulting from arm versus leg training. Ergonomics 1978, 21, 1–9. [Google Scholar] [CrossRef] [PubMed]
- de Groot, S.; de Bruin, M.; Noomen, S.P.; van der Woude, L.H. Mechanical efficiency and propulsion technique after 7 weeks of low-intensity wheelchair training. Clin. Biomech. 2008, 23, 434–441. [Google Scholar] [CrossRef]
- de Groot, S.; van der Scheer, J.W.; van der Windt, J.A.; Nauta, J.; van der Hijden, L.J.C.; Luigjes, L.; van der Woude, L.H.V. Hand rim wheelchair training: Effects of intensity and duration on physical capacity. Health 2013, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Glaser, R.M.; Sawka, M.N.; Durbin, R.J.; Foley, D.M.; Suryaprasad, A.G. Exercise program for wheelchair activity. Am. J. Phys. Med. 1981, 60, 67–75. [Google Scholar]
- Goosey-Tolfrey, V.L.; West, M.; Lenton, J.P.; Tolfrey, K. Influence of varied tempo music on wheelchair mechanical efficiency following 3-week practice. Int. J. Sports Med. 2011, 32, 126–131. [Google Scholar] [CrossRef]
- Grange, C.C.; Bougenot, M.P.; Groslambert, A.; Tordi, N.; Rouillon, J.D. Perceived exertion and rehabilitation with wheelchair ergometer: Comparison between patients with spinal cord injury and healthy subjects. Spinal. Cord. 2002, 40, 513–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tordi, N.; Belli, A.; Mougin, F.; Rouillon, J.D.; Gimenez, M. Specific and transfer effects induced by arm or leg training. Int. J. Sports Med. 2001, 22, 517–524. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, R.; de Groot, S.; Swart, K.M.; van der Woude, L.H. Physical capacity after 7 weeks of low-intensity wheelchair training. Disabil. Rehabil. 2010, 32, 2244–2252. [Google Scholar] [CrossRef] [PubMed]
- van der Woude, L.H.; van Croonenborg, J.J.; Wolff, I.; Dallmeijer, A.J.; Hollander, A.P. Physical work capacity after 7 wk of wheelchair training: Effect of intensity in able-bodied subjects. Med. Sci. Sports Exerc. 1999, 31, 331–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abonie, U.S.; Monden, P.; van der Woude, L.; Hettinga, F.J. Effect of a 7-week low intensity synchronous handcycling training programme on physical capacity in abled-bodied women. J. Sports Sci. 2021, 39, 1472–1480. [Google Scholar] [CrossRef]
- Hettinga, F.J.; Hoogwerf, M.; van der Woude, L.H. Handcycling: Training effects of a specific dose of upper body endurance training in females. Eur. J. Appl. Physiol. 2016, 116, 1387–1394. [Google Scholar] [CrossRef] [Green Version]
- Schoenmakers, P.; Reed, K.; Van Der Woude, L.; Hettinga, F.J. High Intensity Interval Training in Handcycling: The Effects of a 7 Week Training Intervention in Able-bodied Men. Front. Physiol. 2016, 7, 638. [Google Scholar] [CrossRef] [Green Version]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. American College of Sports Medicine Position Stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Shvartz, E.; Reibold, R.C. Aerobic fitness norms for males and females aged 6 to 75 years: A review. Aviat. Space Environ. Med. 1990, 61, 3–11. [Google Scholar]
- Knechtle, B.; Müller, G.; Willmann, F.; Eser, P.; Knecht, H. Comparison of fat oxidation in arm cranking in spinal cord-injured people versus ergometry in cyclists. Eur. J. Appl. Physiol. 2003, 90, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Achten, J.; Jeukendrup, A.E. Optimizing fat oxidation through exercise and diet. Nutrition 2004, 20, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Price, M.; Bottoms, L.; Hill, M.; Eston, R. Maximal Fat Oxidation during Incremental Upper and Lower Body Exercise in Healthy Young Males. Int. J. Environ. Res. Public Health 2022, 19, 15311. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E. Dietary fat and physical performance. Curr. Opin. Clin. Nutr. Metab. Care 1999, 2, 521–526. [Google Scholar] [CrossRef]
- Jeukendrup, A.E.; Saris, W.H.; Wagenmakers, A.J. Fat metabolism during exercise: A review. Part I: Fatty acid mobilization and muscle metabolism. Int. J. Sports Med. 1998, 19, 231–244. [Google Scholar] [CrossRef] [Green Version]
- Jeukendrup, A.E.; Saris, W.H.; Wagenmakers, A.J. Fat metabolism during exercise: A review--part II: Regulation of metabolism and the effects of training. Int. J. Sports Med. 1998, 19, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Jeukendrup, A.E.; Saris, W.H.; Wagenmakers, A.J. Fat metabolism during exercise: A review--part III: Effects of nutritional interventions. Int. J. Sports Med. 1998, 19, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Borresen, J.; Lambert, M.I. The quantification of training load, the training response and the effect on performance. Sports Med. 2009, 39, 779–795. [Google Scholar] [CrossRef]
Study (Author, Year) | Sample | Control Group/ Leg Group/SCII | Training Status | Training Design | Physical Capacity Outcomes | Other Outcomes | Test Protocol | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Sex | Age (y) | n | Sex | Age (y) | Length | Intensity | Duration (min) | Test Device | VO2peak ARM | VO2submax ARM | ||||
Bhambhani 1991 [26] | 8 | ♂ | 38 | 8 LG | ♂ | 41 | Physically active, no specific arm training | 3 d × wk−1 8 wk | Con, 72% VO2peak | 30 | A Arm cycling device | VO2peak POpeak | Peak and submax VO2, PO, HR, VE, RER, O2pulse, RPE for arm and leg exercise | ITP: Initial PO: 0W; +12.5W every 2 min; 50 rpm | 6min at VT; 50 rpm |
Clausen 1973 [16] | 5 | ♂ | 23 | 5 LG | ♂ | 24 | Physically active, no specific training | 5 d × wk−1 5 wk | I- 4 × 5 min at 170 bpm | 4 × 5 | A Modified cycle ergometer | not measured | Submax VO2, LA, RER, HR | 2 × 15 min at 130 and 170 bpm | |
El-Sayed 2004 [27] | 7 | n.d. | 32 | 5 SCII | n.d. | 31 | Untrained, sedentary lifestyle | 3 d × wk−1 12 wk | Con, 65% VO2peak | 30 | A Arm crank ergometer | VO2peak POpeak | Peak HR, VE; submax platelet aggregation | ITP: Initial PO: 30W; +30 W every 2 min; 60–65 rpm | 30 min at 60–65% VO2peak; 60–65 rpm |
Hill 2018 [28] | 10 | ♀/♂ | 66 | 10 LG | ♀/♂ | 66 | Physically active, no specific training | 3 d × wk−1 6 wk | Con, 50–70% POpeak | 20–45 | A Arm crank ergometer | VO2peak POpeak | Peak HR, VE, RER, RPE for arm and leg exercise | ITP: Initial PO: 25W; +10 every min; 60 rpm | |
Klausen 1974 [17] | 5 | ♂ | 23 | 5 LG | ♂ | 24 | Physically active, no specific training | 5 d × wk−1 5 wk | I, 4 × 5 min at 170 bpm | 4 × 5 | A Modified cycle ergometer | not measured | Submax LA, VO2, RER, HR | 2 × 15 min at 130 and 170 bpm | |
La Monica 2019 [29] | T1: 11 | ♂ | 23 | 8 CG | ♂ | 24 | Physically active, no specific arm training | 3 d × wk−1 2 wk | Int, All-out sprints using 0.05kg × kg−1 body mass loading | 4 × 10 s (2 min rest) | A Modified cycle ergometer | VO2peak POpeak | Wingate Test (CP, W‘, PP, MP, TW), EMGFT | ITP: Initial PO: 30W; +10W every min; 50 rpm | |
T2: 11 | ♂ | 22 | 4 × 10 s (4 min rest) | ||||||||||||
T3: 10 | ♂ | 23 | 4 × 30 s (4 min rest) | ||||||||||||
Lewis 1980 [24] | 5 | ♂ | 20 | 5 LG | ♂ | 22 | Physically active, no specific training | 4 d × wk−1 11 wk | Con, 75–80% VO2peak | 30 | A Modified cycle ergometer | VO2peak | Peak and submax VO2, HR, VE, VE/VO2, RPE for arm and leg exercise | ITP: Initial PO: 25W; +17W every min, 70 rpm | 2 × 10min at 70% VO2peak; 60 rpm |
Loftin 1988 [30] | 19 | ♀ | 22 | 19 CG | ♀ | 24 | n.d. | 4 d × wk−1 5 wk | Int, 2 × 70% HRR, 2 × 80% HRR, 2 × 90% HRR | 6–4 | A Modified cycle ergometer | VO2peak | Peak VE, Q, HR, SV, (a-v) O2diff, for arm and leg exercise | ITP: Initial PO: 44.1W; +14.7 every 3 min, 60 rpm | 5 min at 14.7 W and 5 min at 29.4 W |
Magel 1978 [31] | 9 | ♂ | 24 | 7 CG | ♂ | 23 | n.d. | 3 d × wk−1 10 wk | Int, 85% HRpeak | 6 × 4 | A Modified cycle ergometer | VO2peak | Peak and submax VO2, VE, RER, Q, HR, SV, (a-v) O2diff. for arm and leg exercise (running) | DTP: 4 min work and 10 min rest; Initial PO: 0W, 40 rpm; resistance was increased to 1.0 kg (240 kg × m−1 × min−1) and then by 0.5 kg (120 kg·m−1·min−1) | |
McKenzie 1978 [18] | 7 | ♂ | 20 | 8 LG | ♂ | 20 | Untrained, sedentary lifestyle | 5 d × wk−1 5 wk | Int, close to 180 bpm | 40–45 (work bouts between 30 s and 2 min) | A Modified cycle ergometer | not measured | Submax VO2, HR, LA, total exercise time | 8–10 min at 63 and 83 W, 50 rpm | |
Pinto 2019 [32] | T1: 10 | ♀/♂ | 24 | physically active, no specific training | 2 d × wk−1 6 wk | Con, 80% HRpeak | 20 | A Arm cycling device | VO2peak POpeak | Peak HR, RPE; LA | ITP: Initial PO: ♀: 20 W; +10 W/min up to 50 W, then +5 W/min ♂: 20 W; +20 W/min up to 60 W, then +10 W/min; >50 rpm | ||||
T2: 10 | ♀/♂ | 23 | Int, 90% HRpeak | 20 (1 min on, 1 min off) | |||||||||||
Pogliaghi 2006 [33] | 6 | ♂ | 68 | 6 LG | ♂ | 66 | Untrained, sedentary lifestyle | 3 d × wk−1 12 wk | C at VT | 30 | A Arm crank ergometer | VO2peak POpeak | Peak and at VT (submax) VO2, PO, VE, RER, HR, O2pulse | ITP: Initial PO: 40 W; +5 W/min | No extra submax test protocol; VT was detected by visual inspection based on ventilatory equivalents and end-tidal fractions of O2 and CO2 |
6 CG | ♂ | 73 | |||||||||||||
Rasmussen 1975 [34] | 5 | ♂ | 23 | 5 LG | ♂ | 24 | not described | 5 d × wk−1 5 wk | Int, Intermittent, maximal and dynamic exercise | 60 | A Not described | not measured | Submax VO2, VE, VT, Fresp, HR, SaO2, SvO2 | 15 min at a moderate and at a heavy submaximal workload | |
Sedlock 1988 [35] | 6 | ♀ | 25 | 4 CG | ♀ | 23 | Untrained, sedentary lifestyle | 3 d × wk−1 5 wk | Int. 85% HRpeak | 4 × 4 | A Modified cycle ergometer | VO2peak POpeak | Peak HR, LA and submax VO2, HR, LA, Q, SV | DTP: Initial PO: 12 W; PO levels were progressively increased by 12 W with 4 min rest periods, 50 rpm | 10 min at 70% VO2peak |
Simmons 1978 [36] | 10 | ♂ | 25 | No regular physical exercise | 2 d × wk−1 4 wk | Con, 80% VO2peak | 30 | A Modified cycle ergometer | VO2peak POpeak | Peak and submax GE, Q, HR (*graphic) | DTP: 5 min work bouts, 5 min rest; 4 workloads were selected so that each individual reached his maximum oxygen intake; 60 rpm | ||||
Stamford 1978 [37] | 8 | ♂ | 20 | 9 LG | ♂ | 19 | Untrained, sedentary lifestyle | 3 d × wk−1 10 wk | Con, 180bpm | 10 | A Modified cycle ergometer | VO2peak | Peak HR, RER, VE | DTP: 5 min work bouts, 10 min rest; initial resistance: 1.5 kg, +0.5 kg/ work bout; 60 rpm |
Study (Author, Year) | Sample | Control Group/ Leg Group/ SCII | Training Status | Training Design | Physical Capacity Outcomes | Other Outcomes | Test Protocol | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | sex | age (y) | n | sex | age (y) | Length | Intensity | Duration (min) | Test Device | VO2peak ARM | VO2submax ARM | ||||
De Groot 2008 [38] | 14 | ♂ | 24 | 7 | 23 | Physically active, no specific arm training | 3 d × wk−1 7 wk | Con, 30% HRR | 70 | W Standardized wheelchair | Submax VO2, HR; GE | 2 × 3 min at 20% and 40% POpeak; 1.39 m·s−1 | |||
De Groot 2013 [39] | T1: 14 | ♂ | 24 | Physically active, no specific arm training | 3 d × wk−1 7 wk | Con, 30% HRR | 70 | W Standardized wheelchair | VO2peak POpeak | Isometric strength, sprint power, peak HR; submax VO2, HR; GE | ITP: Initial PO: 20% POpeak; +10% estimated POpeak every min; 1.39 m·s−1 | 2 × 3 min at 20% and 40% POpeak; 1.39 m·s−1 | |||
T2: 10 | ♂ | 23 | Con, 30% HRR | 30 | |||||||||||
T3: 13 | ♂ | 22 | Con, 70% HRR | 30 | |||||||||||
Glaser 1981 [40] | 7 | ♀ | 21 | 6 CG | ♀ | 22 | n.d. | 3 d × wk−1 7 wk | Int, 80% HRpeak | 3 × 4 | W Wheelchair ergometer | VO2peak POpeak (*graphic) | Peak and submax VO2, VE, HR | DTP: Exercising at each PO level (30, 60, 90, 120, 150 kpm·min−1) for 4 min; 30 rpm | |
Goosey-Tolfrey 2011 [41] | T1: 8 | n.d. | 20 | 6 CG | n.d. | 20 | Physically active, no specific arm training | 3 d × wk−1 3 wk | Listened to 170bpm | 1 × 4 | W Basketball wheelchair | VO2peak | Peak HR, RPE; GE; propulsion technique | ITP: 0.1–0.2 m·s−1 increments every min | |
T2: 8 | n.d. | 20 | Listened to 125bpm | ||||||||||||
Grange 2002 [42] | 7 | ♂ | 27 | 7 SCII | ♂ | 35 | Physically active, no specific training | 3 d × wk−1 6 wk | Int, 4min at VT and 1 min at POpeak | 9 × 5 (SWEET) | W Standardized wheelchair | VO2peak POpeak | Peak RPE, HR | ITP: Initial PO: 0 W; +10 W every 2 min; 30 rpm | |
Tordi 2001 [43] | 5 | ♂ | 23 | 5 LG | ♂ | 23 | Physically active, no specific training | 3 d × wk−1 6 wk | Int, 4min at VT and 1 min at POpeak | 9 × 5 (SWEET) | W Wheelchair ergometer | VO2peak POpeak | Maximal and at VT VO2, VE, HR, O2pulse | ITP: Initial PO: 8 W; +10 W every 2 min; 30 rpm | VT was detected by visual inspection based on ventilatory equivalents and end-tidal fractions of O2 and CO2 |
5 CG | ♂ | 23 | |||||||||||||
Van den Berg 2010 [44] | 10 | ♂ | 23 | 15 CG | ♂ | 23 | Not actively engaged in sports over the last year | 3 d × wk−1 7 wk | Con, 30% HRR | 30 | W Standardized wheelchair | VO2peak POpeak | Fiso, peak HR, submax VO2, HR, RER; GE | ITP: Initial PO: 20% POpeak; +10% POpeak/ min; 1.39m·s−1 | 2 × 3 min (20% POpeak and 40% POpeak) at 1.39m·s−1 |
Van der Woude 1999 [45] | T1: 9 | ♂ | 23 | 8 CG | ♂ | 22 | Not actively engaged in sports over the last year | 3 d × wk−1 7 wk | Con, 50% HRR | 30 | W Wheelchair ergometer | VO2peak POpeak | Fiso, sprint power, peak HR, RER, submax HR; GE | ITP: Initial PO: 20% POpeak; +10% POpeak/ min; 1.39 m·s−1 | 2 × 3 min (20% POpeak and 40% POpeak) at 1.39 m·s−1 |
T2: 10 | ♂ | 23 | Con, 70% HRR |
Study (Author, Year) | Sample | Control Group/ Leg Group/ SCII | Training Status | Training Design | Physical Capacity Outcomes | Other Outcomes | Test Protocol | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Sex | Age (y) | n | Sex | Age (y) | Length | Intensity | Duration (min) | Test Device | VO2peak ARM | VO2submax ARM | ||||
Abonie 2021 [46] | 9 | ♀ | 21 | 10 CG | ♀ | 21 | Physically active, no specific training | 3 d × wk−1 7 wk | Con, 30% HRR | 30 | H Attachable- unit handbike | VO2peak POpeak | Peak HR, RER, VE RPE; submax VO2, HR, RER, VE, RPE; GE | ITP: Initial PO: 20 W; +7 W every min, 1.11 m·s−1 | No extra submax protocol: 2nd, 4th and 6th stages of incremental test (PO of 27 W, 41 W and 65 W) were evaluated for submaximal performance |
Hettinga 2016 [47] | 11 | ♀ | 22 | 11 CG | ♀ | 21 | Physically active, no specific training | 3 d × wk−1 7 wk | Con, 65% HRR | 30 | H Attachable- unit handbike | VO2peak POpeak | Peak HR, VE, RPE, RER for arm and leg exercise | ITP: Initial PO: 20 W; +7 W every min; 1.39 m·s−1, 70 rpm | |
Schoenmakers 2016 [48] | T1: 8 | ♂ | 21 | 8 CG | ♂ | 23 | Physically active, no specific training | 3 d × wk−1 7 wk | Con, 66% HRR | 30 | H Attachable- unit handbike | VO2peak POpeak | Peak VE, RER, HR | ITP: Initial PO: 30 W; +10 W every min; 70 rpm | |
T2: 8 | 23 | Int, 85% HRR | 4x4 |
Study (Author, Year) | Test Device | n | VO2peak ARM | POpeak ARM | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Test | Post-Test | % Change | Pre-Test (W) | Post-Test (W) | % Change | ||||||
(L × min−1) | (ml × min−1 × kg−1) | (L × min−1) | (ml × min−1 × kg−1) | (L × min−1) | (ml × min−1 × kg−1) | ||||||
Bhambhani 1991 [26] | A | 8 | 2.72 | 32.0 | 3.15 | 37.5 | +15.8 * | +17.2 * | 96.4 | 108.7 | +12.8 * |
El Sayed 2004 [27] | A | 7 | 1.81 | 24.1 | 1.94 | 26.2 | +7.2 * | +8.7 * | 168 | 185 | +10.1 * |
Hill 2018 [28] | A | 10 | 1.12 | 17 | 1.39 | 22 | +24.1 * | +29.4 * | 51 | 65 | +27.5 * |
La Monica 2019 [29] | A | T1: 11 | 2.53 | 29.0 | 2.53 | 29.6 | 0 | +2.1 | 140 | 143 | +2.1 |
T2: 11 | 2.60 | 27.9 | 2.58 | 28.9 | −0.8 | +3.6 | 130 | 136 | +4.6 | ||
T3: 10 | 2.21 | 28.6 | 2.36 | 31.1 | +6.8 * | +8.7 | 125 | 136 | +8.8 | ||
Loftin 1988 [30] | A | 19 | +33 * | +32 * | |||||||
Lewis 1980 [24] | A | 5 | 1.64 | 2.22 | +35.4 ** | ||||||
Magel 1978 [31] | A | 9 | 2.69 | 33.9 | 3.13 | 39.3 | +16.4 ** | +15.9 ** | |||
Pinto 2019 [32] | A | T1: 10 | 1.8 | 27.2 | 1.9 | 28.3 | +5.6 | +4.0 | 72 | 79 | +9.7 * |
T2: 10 | 2.2 | 33.5 | 2.5 | 38.3 | +13.6 ** | +14.3 ** | 89 | 101 | +13.5 * | ||
Pogliaghi 2006 [33] | A | 6 | 1.62 | 22.0 | 1.99 | 26.8 | +22.8 * | +21.8 * | 87 | 106 | +21.8 * |
Sedlock 1988 [35] | A | 6 | 1.38 | 1.43 | +3.6 | 60.4 | 68.8 | +13.9 * | |||
Simmons 1971 [36] | A | 10 | 2.76 | 2.99 | +8.3 * | figure | |||||
Stamford 1978 [37] | A | 8 | 2.82 | 36.9 | 3.3 | 44 | +17 ** | +19.2 ** | |||
De Groot 2008 [38] | W | 14 | 1.75 | 1.95 | +11.4 * | 43.7 | 66.7 | +52.6 * | |||
De Groot 2013 [39] | W | T1: 14 | 1.75 | 1.95 | +11.4 * | 43.7 | 66.7 | +52.6 * | |||
T2: 10 | 2.13 | 2.09 | −1.9 | 56.5 | 75.6 | +33.8 * | |||||
T3: 13 | 1.80 | 2.0 | +11.1 * | 52.9 | 79.0 | +49.3 * | |||||
Goosey-Tolfrey 2011 [41] | W | 8 | 1.73 | 1.99 | +15 * | ||||||
8 | 1.73 | 1.89 | +9.2 * | ||||||||
Grange 2002 [42] | W | 7 | 34.7 | 37.5 | +8.3 * | 61.6 | 89.3 | +45 * | |||
Tordi 2001 [43] | W | 5 | 30.4 | 39.3 | +29.3 ** | 66 | 108 | +63.6 *** | |||
van den Berg 2010 [44] | W | 9 | 2.13 | 27.8 | 2.09 | 27.2 | −1.9 | −2.2 | 56.4 | 75.6 | +34 * |
van der Woude 1999 [45] | W | T1: 9 | 1.79 | 1.88 | +5 | 56.3 | 73 | +29.7 * | |||
T2: 10 | 1.85 | 2.03 | +9.7 * | 57.9 | 82.3 | +42.1 * | |||||
Abonie 2021 [46] | H | 9 | 1.60 | 26.4 | 1.68 | 27.5 | +5 | +4.2 | 81.1 | 97.4 | +20.1 * |
Hettinga 2016 [47] | H | 11 | 1897 | 28.3 | 2240 | 33.2 | +18.1 * | +17.3 * | 89 | 117.4 | +31.9 * |
Schoenmakers 2016 [48] | H | T1: 8 | 33.2 | 36.5 | +9.9 * | 128.9 | 169 | +31.1 * | |||
T2: 8 | 34.3 | 41.9 | +22.2 * | 133.2 | 191.3 | +43.6 * |
Study (Author, Year) | Test Device | n | VO2subamx ARM | POsubmax ARM | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Test | Post-Test | % Change | Pre-Test (W) | Post-Test (W) | % Change | ||||||
(L × min−1) | (ml × min−1 × kg−1) | (L × min−1) | (ml × min−1 × kg−1) | (L × min−1) | (ml × min−1 × kg−1) | ||||||
Bhambhani 1991 [26] | A | 8 | 1.18 | 13.8 | 1.46 | 17.4 | +23.7 * | +26.1 * | 50.7 | 59.8 | +17.9 * |
Clausen 1973 [16] | A | 5 | 1.25 | 1.15 | −8 | ||||||
Klausen 1974 [17] | A | 5 | 1.25 | 1.15 | −8 | ||||||
Lewis 1980 [24] | A | 5 | 1.24 | 1.08 | −12.9 ** | ||||||
Magel 1978 [31] | A | 9 | 1.67 | 1.64 | −1.8 | ||||||
McKenzie 1978 [18] | A | 7 | 1.36 | 1.12 | −17.6 ** | ||||||
Pogliaghi 2006 [33] | A | 6 | 1.07 | 1.26 | +17.8 * | 60 | 70 | +16.7 * | |||
Rasmussen 1975 [34] | A | 5 | 1.76 | 1.64 | −6.8 | ||||||
Sedlock 1988 [35] | A | 6 | 0.82 | 0.85 | +3.7 | 39.5 | 44.5 | +12.7 * | |||
Simmons 1975 [36] | A | 10 | graphic | ||||||||
De Groot 2008 [38] | W | 14 | 1.17 | 0.92 | −21.4 * | ||||||
De Groot 2013 [39] | W | T1: 14 | 1.17 | 0.92 | −21.4 * | ||||||
T2: 10 | 1.17 | 0.95 | −18.8 * | ||||||||
T3: 13 | 1.15 | 0.98 | −14.8 * | ||||||||
Tordi 2001 [43] | W | 5 | 17 | 25.4 | +49.4 * | 32 | 72 | +125 * | |||
Van den Berg 2010 [44] | W | 9 | 1.16 | 0.95 | −18.1 * | ||||||
Abonie 2021 [46] | H | 9 | 0.96 | 0.80 | −16.7 * |
Study (Author, Year) | Test Device | n | VO2peak ARM | VO2peak LEG | POpeak ARM | POpeak LEG | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Test | Post-Test | % Change | Pre-Test | Post-Test | % Change | Pre-Test (w) | Post-Test (W) | % Change | Pre-Test (W) | Post-Test (W) | % Change | |||||||||
(L × min−1) | (ml × min−1 × kg−1) | (L × min−1) | (ml × min−1 × kg−1) | (L × min−1) | (ml × min−1 × kg−1) | (L × min−1) | (ml × min−1 × kg−1) | (L × min−1) | (ml × min−1 × kg−1) | (L × min−1) | (ml × min−1 × kg−1) | |||||||||
Bhambhani 1991 [26] | A/CYC | 8 | 2.72 | 32.0 | 3.15 | 37.5 | +15.8 * | +17.2 * | 3.77 | 44.5 | 3.84 | 45.7 | +1.9 | +2.7 | 96.4 | 108.7 | +12.8 * | 250 | 264.7 | +5.9 |
Hill 2018 [28] | A/CYC | 10 | 1.12 | 17 | 1.39 | 22 | +24.1 * | +29.4 * | 1.44 | 23 | 1.64 | 26 | +13.8 * | +13 * | 51 | 65 | +27.5 * | 98 | 108 | +10.2 * |
Lewis 1980 [24] | A/CYC | 5 | 1.64 | 2.22 | +35.4 * | 2.69 | 3.02 | +12.3 | ||||||||||||
Loftin 1988 [30] | A/CYC | 19 | +33 * | +32 * | +7 * | +7 * | ||||||||||||||
Magel 1978 [31] | A/TM | 9 | 2.69 | 33.9 | 3.13 | 39.3 | +16.4 * | +15.9 * | 4.48 | 56.4 | 4.57 | 57.2 | +2 | +1.4 | ||||||
Pogliaghi 2006 [33] | A/CYC | 6 | 1.62 | 22.0 | 1.99 | 26.8 | +22.8 * | +21.8 * | 2.31 | 31.3 | 2.52 | 33.8 | +9.1 * | +8 * | 87 | 106 | +21.8 * | 158 | 170 | +7.6 * |
Stamford 1978 [37] | A/CYC | 9 | 2.82 | 36.9 | 3.3 | 44 | +17 * | +19.2 * | 3.2 | 42.7 | 3.2 | 43.1 | +/-0 | +0.9 | ||||||
Tordi 2001 [43] | W/CYC | 5 | 30.4 | 39.3 | +29.3 ** | 46 | 47 | +2.2 | 66 | 108 | +63.6 *** | 228 | 228 | +/-0 | ||||||
Hettinga 2016 [47] | H/CYC | 11 | 1.9 | 28.3 | 2.2 | 33.2 | +18.1 * | +17.3 * | 3.2 | 47.1 | 3.1 | 46.7 | -1.1 | -0.8 | 89 | 117.4 | +31.9 * | 274.5 | 278.2 | +1.3 |
Study (Author, Year) | Test Device | n | VOsubmax ARM | VO2submax LEG | POsubmax ARM | POsubmax LEG | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PRE-TEST | Post-Test | % Change | Pre-Test | Post-Test | % Change | Pre-Test (w) | Post-Test (W) | % Change | Pre-Test (W) | Post-Test (W) | % Change | |||||||||
(L × min−1) | (ml × min−1 xkg−1) | (L × min−1) | (ml × min−1 × kg−1) | (L × min−1) | (ml × min−1 × kg−1) | (L × min−1) | (ml × min−1 × kg−1) | (L × min−1) | (ml × min−1 × kg−1) | (L × min−1) | (ml × min−1 × kg−1) | |||||||||
Bhambhani 1991 [26] | A/CYC | 8 | 1.18 | 13.8 | 1.46 | 17.4 | +23.7 * | +26.1 * | 2.30 | 27.5 | 2.31 | 28.0 | +0.43 | +1.81 | 50.7 | 59.8 | +17.9 * | 143.3 | 158.0 | +10.5 |
Clausen 1973 [16] | A/CYC | 5 | 1.25 | 1.15 | −8 | 1.64 | 1.63 | −0.6 | ||||||||||||
Klausen 1974 [17] | A/CYC | 5 | 1.25 | 1.15 | −8 | 1.64 | 1.63 | −0.6 | ||||||||||||
Lewis 1980 [24] | A/CYC | 5 | 1.24 | 1.08 | −12.9 * | 1.37 | 1.28 | −6.6 * | ||||||||||||
McKenzie 1978 [18] | A/CYC | 7 | 1.36 | 1.12 | −17.6 * | 1.64 | 1.50 | −8.5 * | ||||||||||||
Pogliaghi 2006 [33] | A/CYC | 6 | 1.07 | 1.26 | +17.8 * | 1.65 | 1.74 | +5.5 * | 60 | 70 | +16.7 * | 110 | 115 | +9.1 * | ||||||
Rasmussen 1975 [34] | A/CYC | 5 | 1.76 | 1.64 | −6.8 | 2.61 | 2.64 | +1.1 | ||||||||||||
Tordi 2001 [43] | W/CYC | 5 | 17 | 25.4 | +49.4 * | 28 | 34 | +21.4 * | 32 | 72 | +125 * | 132 | 156 | +18.2 * |
Study (Author, Year) | Test Device | n | Training Design | Increase/Decrease in VO2peak ARM | Increase/Decrease in VO2submax ARM | Increase/Decrease in VO2peak LEG | Increase/Decrease in VO2submax LEG | |
---|---|---|---|---|---|---|---|---|
Intensity (High/Moderate/Low) | Length (Days/Weeks) | |||||||
Bhambhani 1991 [26] | A | 8 | Moderate | 3 d × wk−1 8 wk | + | + | + (not significant) | + (not significant) |
Clausen 1973 [16] | A | 5 | High | 5 d × wk−1 5 wk | not measured | - (not significant) | - (not significant) | - (not significant) |
Klausen 1974 [17] | A | 5 | High | 5 d × wk−1 5 wk | not measured | - (not significant) | - (not significant) | - (not significant) |
El-Sayed 2004 [27] | A | 7 | Moderate | 3 d × wk−1 12 wk | + | not measured | not measured | not measured |
Hill 2018 [28] | A | 10 | Moderate | 3 d × wk−1 6 wk | + | not measured | + | not measured |
La Monica 2019 [29] | A | T1: 11 | High | 3 d × wk−1 2 wk | + (not significant) | not measured | not measured | not measured |
T2: 11 | High | + (not significant | not measured | not measured | not measured | |||
T3: 10 | High | + | not measured | not measured | not measured | |||
Lewis 1980 [24] | A | 5 | Moderate | 4 d × wk−1 11 wk | + | - | + (not significant) | - |
Loftin 1988 [30] | A | 19 | Moderate/ High | 4 d × wk−1 5 wk | + | not measured | + | not measured |
Magel 1978 [31] | A | 9 | High | 3 d × wk−1 10 wk | + | - (not significant) | + (not significant) | not measured |
McKenzie 1978 [18] | A | 7 | High | 5 d × wk−1 5 wk | not measured | - | not measured | - |
Pinto 2019 [32] | A | T1: 10 | High | 2 d × wk−1 6 wk | + (not significant) | not measured | not measured | not measured |
T2: 10 | High | + | not measured | not measured | not measured | |||
Pogliaghi 2006 [33] | A | 6 | Moderate | 3 d × wk−1 12 wk | + | + | + | + |
Rasmussen 1975 [34] | A | 5 | Moderate/High | 5 d × wk−1 5 wk | not measured | - (not significant) | + (not significant) | |
Sedlock 1988 [35] | A | 6 | High | 3 d × wk−1 5 wk | + (not significant) | + (not significant) | not measured | not measured |
Simmons 1978 [36] | A | 10 | High | 2 d × wk−1 4 wk | + | *Graphic/no exact data | *Graphic/ no exact data | *Graphic/ no exact data |
Stamford 1978 [37] | A | 8 | High | 3d × wk−1 10wk | + | not measured | did not change | not measured |
De Groot 2008 [38] | W | 14 | Low | 3 d × wk−1 7 wk | + | - | not measured | not measured |
De Groot 2013 [39] | W | T1: 14 | Low | 3 d × wk−1 7 wk | + | - | not measured | not measured |
T2: 10 | Low | - (not significant) | - | not measured | not measured | |||
T3: 13 | Moderate | + | - | not measured | not measured | |||
Glaser 1981 [40] | W | 7 | High | 3 d × wk−1 7 wk | *Graphic/no exact data | *Graphic/no exact data | *Graphic/no exact data | *Graphic/ no exact data |
Goosey-Tolfrey 2011 [41] | W | T1: 8 | Moderate | 3 d × wk−1 3 wk | + | not measured | not measured | not measured |
T2: 8 | Moderate | + | not measured | not measured | not measured | |||
Grange 2002 [42] | W | 7 | Moderate/High | 3 d × wk−1 6 wk | + | not measured | not measured | not measured |
Tordi 2001 [43] | W | 5 | Moderate/High | 3 d × wk−1 6 wk | + | + | + (not significant) | + |
Van den Berg 2010 [44] | W | 10 | Low | 3 d × wk−1 7 wk | - (not significant) | - | not measured | not measured |
Van der Woude 1999 [45] | W | T1: 9 | Low | 3 d × wk−1 7 wk | + (not significant) | not measured | not measured | not measured |
T2: 10 | Moderate | + | not measured | not measured | not measured | |||
Abonie 2021 [46] | A | 9 | Low | 3 d × wk−1 7 wk | + (not significant) | - | not measured | not measured |
Hettinga 2016 [47] | A | 11 | Moderate | 3 d × wk−1 7 wk | + | not measured | - (not significant) | not measured |
Schoenmakers 2016 [48] | A | T1: 8 | Moderate | 3 d × wk−1 7 wk | + | not measured | not measured | not measured |
T2: 8 | High | + | not measured | not measured | not measured |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marterer, N.; Mugele, H.; Schäfer, S.K.; Faulhaber, M. Effects of Upper Body Exercise Training on Aerobic Fitness and Performance in Healthy People: A Systematic Review. Biology 2023, 12, 355. https://doi.org/10.3390/biology12030355
Marterer N, Mugele H, Schäfer SK, Faulhaber M. Effects of Upper Body Exercise Training on Aerobic Fitness and Performance in Healthy People: A Systematic Review. Biology. 2023; 12(3):355. https://doi.org/10.3390/biology12030355
Chicago/Turabian StyleMarterer, Natalie, Hendrik Mugele, Sarah K. Schäfer, and Martin Faulhaber. 2023. "Effects of Upper Body Exercise Training on Aerobic Fitness and Performance in Healthy People: A Systematic Review" Biology 12, no. 3: 355. https://doi.org/10.3390/biology12030355
APA StyleMarterer, N., Mugele, H., Schäfer, S. K., & Faulhaber, M. (2023). Effects of Upper Body Exercise Training on Aerobic Fitness and Performance in Healthy People: A Systematic Review. Biology, 12(3), 355. https://doi.org/10.3390/biology12030355