Morphological Abnormalities in Early-Onset Schizophrenia Revealed by Structural Magnetic Resonance Imaging
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants, Data Acquisition, and Preprocessing
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Southard, E.E. A study of the dementia praecox group in the light of certain cases showing anomalies or scleroses in particular brain-regions. Am. J. Psychiatry 1910, 67, 119–176. [Google Scholar] [CrossRef] [Green Version]
- Southard, E.E. On the topographical distribution of cortex lesions and anomalies in dementia praecox, with some account of their functional significance. Am. J. Psychiatry 1915, 71, 603–671. [Google Scholar] [CrossRef]
- Jacobi, W.; Winkler, H. Encephalographische Studien an Schizophrenen. Arch. Psychiatr. Nervenkrankh. 1928, 84, 208–226. [Google Scholar] [CrossRef]
- Haug, J.O. Pneumoencephalographic studies in mental disease. Acta Psychiatr. Scand. Suppl. 1962, 38 (Suppl. S165), 104. [Google Scholar]
- Johnstone, E.C.; Crow, T.J.; Frith, C.D.; Husband, J.; Kreel, L. Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet 1976, 2, 924–926. [Google Scholar] [CrossRef]
- Nordström, A.-L.; Williamson, P. Structural neuroimaging in schizophrenia. Acta Psychiatr. Scand. 2003, 108, 321–323. [Google Scholar] [CrossRef]
- Shenton, M.E.; Dickey, C.C.; Frumin, M.; McCarley, R.W. A review of MRI findings in schizophrenia. Schizophr. Res. 2001, 49, 1–52. [Google Scholar] [CrossRef] [Green Version]
- Kubicki, M.; Park, H.; Westin, C.F.; Nestor, P.G.; Mulkern, R.V.; Maier, S.E.; Niznikiewicz, M.; Connor, E.E.; Levitt, J.J.; Frumin, M.; et al. DTI and MTR abnormalities in schizophrenia: Analysis of white matter integrity. NeuroImage 2005, 26, 1109–1118. [Google Scholar] [CrossRef] [Green Version]
- Haukvik, U.K.; Hartberg, C.B.; Agartz, I. Schizophrenia—What does structural MRI show? Tidsskr. Nor. Laegeforen. 2013, 133, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Zalesky, A.; Fornito, A.; Egan, G.F.; Pantelis, C.; Bullmore, E.T. The relationship between regional and inter-regional functional connectivity deficits in schizophrenia. Hum. Brain Mapp. 2012, 33, 2535–2549. [Google Scholar] [CrossRef]
- Wu, C.-H.; Hwang, T.-J.; Chen, Y.-J.; Hsu, Y.-C.; Lo, Y.-C.; Liu, C.-M.; Isaac Tseng, W.-Y. Altered integrity of the right arcuate fasciculus as a trait marker of schizophrenia: A sibling study using tractography-based analysis of the whole brain. Hum. Brain Mapp. 2015, 36, 1065–1076. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Chung, C.K.; Jo, H.J.; Lee, J.M.; Kown, J.S. Regional thinning of cerebral cortical thickness in first-episode and chronic schizophrenia. Int. J. Imaging Syst. Technol. 2012, 22, 73–80. [Google Scholar] [CrossRef]
- Sporn, A.L.; Greenstein, D.K.; Gogtay, N.; Jeffries, N.O.; Lenane, M.; Gochman, P.; Clasen, L.S.; Blumenthal, J.; Giedd, J.N.; Rapoport, J.L. Progressive brain volume loss during adolescence in childhood-onset schizophrenia. Am. J. Psychiatry 2003, 160, 2182–2189. [Google Scholar] [CrossRef] [PubMed]
- Gogtay, N. Cortical Brain Development in Schizophrenia: Insights From Neuroimaging Studies in Childhood-Onset Schizophrenia. Schizophr. Bull. 2008, 34, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Ordonez, A.E.; Luscher, Z.I.; Gogtay, N. Neuroimaging findings from childhood onset schizophrenia patients and their non-psychotic siblings. Schizophr. Res. 2016, 173, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Marquardt, R.K.; Levitt, J.G.; Blanton, R.E.; Caplan, R.; Asarnow, R.; Siddarth, P.; Fadale, D.; McCracken, J.T.; Toga, A.W. Abnormal development of the anterior cingulate in childhood onset schizophrenia: A preliminary quantitative MRI study. Psychiatry Res. Neuroimaging 2005, 138, 221–233. [Google Scholar] [CrossRef]
- Nugent, T.F., III; Herman, D.H.; Ordonez, A.; Greenstein, D.; Hayashi, K.M.; Lenane, M.; Clasen, L.; Jung, D.; Toga, A.W.; Giedd, J.N.; et al. Dynamic mapping of hippocampal development in childhood onset schizophrenia. Schizophr. Res. 2007, 90, 62–70. [Google Scholar] [CrossRef]
- Giedd, J.N.; Jeffries, N.O.; Blumenthal, J.; Castellanos, F.X.; Vaituzis, A.C.; Fernandez, T.; Hamburger, S.D.; Liu, H.; Nelson, J.; Bedwell, J.; et al. Childhood-onset schizophrenia: Progressive brain changes during adolescence. Biol. Psychiatry 1999, 46, 892–898. [Google Scholar] [CrossRef]
- Jacobsen, L.K.; Giedd, J.N.; Castellanos, F.X.; Vaituzis, A.C.; Hamburger, S.D.; Kumra, S.; Lenane, M.C.; Rapoport, J.L. Progressive reduction of temporal lobe structures in childhood-onset schizophrenia. Am. J. Psychiatry 1998, 155, 678–685. [Google Scholar] [CrossRef]
- Keller, A.; Castellanos, F.X.; Vaituzis, A.C.; Jeffries, N.O.; Giedd, J.N.; Rapoport, J.L. Progressive loss of cerebellar volume in childhood-onset schizophrenia. Am. J. Psychiatry 2003, 160, 128–133. [Google Scholar] [CrossRef]
- Taylor, J.L.; Blanton, R.E.; Levitt, J.G.; Caplan, R.; Nobel, D.; Toga, A.W. Superior temporal gyrus differences in childhood-onset schizophrenia. Schizophr. Res. 2005, 73, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Keller, A.; Jeffries, N.O.; Blumenthal, J.; Clasen, L.S.; Liu, H.; Giedd, J.N.; Rapoport, J.L. Corpus callosum development in childhood-onset schizophrenia. Schizophr. Res. 2003, 62, 105–144. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, J.L.; Giedd, J.; Kumra, S.; Jacobsen, L.; Smith, A.; Lee, P.; Nelson, J.; Hamburger, S. Childhood-Onset Schizophrenia Progressive Ventricular Change During Adolescence. Arch. Gen. Psychiatry 1997, 54, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Mehler, C.; Warnke, A. Structural brain abnormalities specific to childhood-onset schizophrenia identified by neuroimaging techniques. J. Neural Transm. 2002, 109, 219–234. [Google Scholar] [CrossRef]
- Fischl, B. FreeSurfer. NeuroImage 2012, 62, 774–781. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Lai, Y.; Wang, X.; Hao, C.; Chen, L.; Zhou, Z.; Yu, X.; Hong, N. A combined DTI and structural MRI study in medicated-naïve chronic schizophrenia. Magn. Reson. Imaging 2014, 32, 1–8. [Google Scholar] [CrossRef]
- Wisco, J.J.; Kuperberg, G.; Manoach, D.; Quinn, B.T.; Busa, E.; Fischl, B.; Heckers, S.; Sorensen, A.G. Abnormal cortical folding patterns within Broca’s area in schizophrenia: Evidence from structural MRI. Schizophr. Res. 2007, 94, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Perez-Rando, M.; Elvira, U.K.; García-Martí, G.; Gadea, M.; Aguilar, E.J.; Escarti, M.J.; Ahulló-Fuster, M.A.; Grasa, E.; Corripio, I.; Sanjuan, J.; et al. Alterations in the volume of thalamic nuclei in patients with schizophrenia and persistent auditory hallucinations. NeuroImage Clin. 2022, 35, 103070. [Google Scholar] [CrossRef]
- Ohi, K.; Ishibashi, M.; Torii, K.; Hashimoto, M.; Yano, Y.; Shioiri, T. Differences in subcortical brain volumes among patients with schizophrenia and bipolar disorder and healthy controls. J. Psychiatry Neurosci. 2022, 47, E77–E85. [Google Scholar] [CrossRef]
- Tu, P.C.; Chang, W.C.; Chen, M.H.; Hsu, J.W.; Lin, W.C.; Li, C.T.; Su, T.P.; Bai, Y.M. Identifying common and distinct subcortical volumetric abnormalities in 3 major psychiatric disorders: A single-site analysis of 640 participants. J. Psychiatry Neurosci. 2022, 47, E230–E238. [Google Scholar] [CrossRef]
- Shi, J.; Guo, H.; Liu, S.; Xue, W.; Fan, F.; Li, H.; Fan, H.; An, H.; Wang, Z.; Tan, S.; et al. Subcortical Brain Volumes Relate to Neurocognition in First-Episode Schizophrenia, Bipolar Disorder, Major Depression Disorder, and Healthy Controls. Front. Psychiatry 2022, 12, 747386. [Google Scholar] [CrossRef] [PubMed]
- Barth, C.; Nerland, S.; de Lange, A.M.G.; Wortinger, L.A.; Hilland, E.; Andreassen, O.A.; Jørgensen, K.N.; Agartz, I. In Vivo Amygdala Nuclei Volumes in Schizophrenia and Bipolar Disorders. Schizophr. Bull. 2021, 47, 1431–1441. [Google Scholar] [CrossRef] [PubMed]
- Curtis, M.T.; Coffman, B.A.; Salisbury, D.F. Parahippocampal area three gray matter is reduced in first-episode schizophrenia spectrum: Discovery and replication samples. Hum. Brain Mapp. 2021, 42, 724–736. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.V.; Sasabayashi, D.; Takahashi, T.; Takayanagi, Y.; Kubota, M.; Furuichi, A.; Kido, M.; Noguchi, K.; Suzuki, M. Longitudinal Changes in Brain Gyrification in Schizophrenia Spectrum Disorders. Front. Aging Neurosci. 2021, 13, 752575. [Google Scholar] [CrossRef] [PubMed]
- Sasabayashi, D.; Takayanagi, Y.; Takahashi, T.; Furuichi, A.; Kobayashi, H.; Noguchi, K.; Suzuki, M. Increased brain gyrification and subsequent relapse in patients with first-espisode schizophrenia. Front. Psychiatry 2022, 13, 937605. [Google Scholar] [CrossRef] [PubMed]
- Rosa, P.G.P.; Zugman, A.; Cerqueira, C.T.; Serpa, M.H.; de Souza Duran, F.L.; Zanetti, M.V.; Bassitt, D.P.; Elkis, H.; Crippa, J.A.S.; Sallet, P.C.; et al. Cortical surface abnormalities are different depending on the stage of schizophrenia: A cross-sectional vertexwise mega-analysis of thickness, area and gyrification. Schizophr. Res. 2021, 236, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Kim, W.S.; Shen, J.; Tsogt, U.; Kang, N.I.; Lee, K.H.; Chung, Y.C. Altered Neuroanatomical Signatures of Patients With Treatment-Resistant Schizophrenia Compared With Early-Stage Schizophrenia and Healthy Controls. Front. Psychiatry 2022, 13, 802025. [Google Scholar] [CrossRef]
- Levman, J.; Jennings, M.; Rouse, E.; Berger, D.; Kabaria, P.; Nangaku, M.; Gondra, I.; Takahashi, E. A morphological study of schizophrenia with magnetic resonance imaging, advanced analytics, and machine learning. Front. Neurosci. 2022, 16, 926426. [Google Scholar] [CrossRef]
- Haukvik, U.K.; Westlye, L.T.; Mørch-Johnsen, L.; Jørgensen, K.N.; Lange, E.H.; Dale, A.M.; Melle, I.; Andreassen, O.A.; Agartz, I. In Vivo Hioppocampal Subfield Volumes in Schizophrenia and Bipolar Disorder. Biol. Psychiatry 2015, 77, 581–588. [Google Scholar] [CrossRef] [Green Version]
- Zugman, A.; Gadelha, A.; Assunção, I.; Sato, J.; Ota, V.K.; Rocha, D.L.; Mari, J.J.; Belangero, S.I.; Bressan, R.A.; Brietzke, E.; et al. Reduced dorso-lateral prefrontal cortex in treatment resistant schizophrenia. Schizophr. Res. 2013, 148, 81–86. [Google Scholar] [CrossRef]
- Laidi, C.; d’Albis, M.A.; Wessa, M.; Linke, J.; Phillips, M.L.; Delavest, M.; Bellivier, F.; Versace, A.; Almeida, J.; Sarrazin, S.; et al. Cerebellar volume in schizophrenia and bipolar I disorder with and without psychotic features. Acta Psychiatr. Scand. 2015, 131, 223–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Erp, T.G.; Hibar, D.P.; Rasmussen, J.M.; Glahn, D.C.; Pearlson, G.D.; Andreassen, O.A.; Agartz, I.; Westlye, L.T.; Haukvik, U.K.; Dale, A.M.; et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol. Psychiatry 2016, 21, 547–553. [Google Scholar] [CrossRef]
- Pienaar, R.; Rannou, N.; Haehn, D.; Grant, P.E. ChRIS: Real-time web-based MRI data collection, analysis, and sharing. In Proceedings of the 20th Annual Meeting of the Organization for Human Brain Mapping 2014, Hamburg, Germany, 8–12 June 2014. [Google Scholar]
- Levman, J.; MacDonald, P.; Lim, A.R.; Forgeron, C.; Takahashi, E. A Pediatric Structural MRI Analysis of Healthy Brain Development From Newborns to Young Adults. Hum. Brain Mapp. 2017, 38, 5931–5942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Student. The Probable Error of a Mean. Biometrika 1908, 6, 1–25. [Google Scholar] [CrossRef]
- White, T.; Andreasen, N.C.; Nopoulos, P.; Magnotta, V. Gyrification abnormalities in childhood- and adolescent-onset schizophrenia. Biol. Psychiatry 2003, 54, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Herold, C.J.; Zöllner, F.; Salat, D.H.; Lässer, M.M.; Schmid, L.A.; Fellhauer, I.; Thomann, P.A.; Essig, M.; Schad, L.R.; et al. Comparison of grey matter volume and thickness for analysing cortical changes in chronic schizophrenia: A matter of surface area, grey/white matter intensity contrast, and curvature. Psychiatry Res. Neuroimaging 2015, 231, 176–183. [Google Scholar] [CrossRef]
- Ronan, L.; Voets, N.L.; Hough, M.; Mackay, C.; Roberts, N.; Suckling, J.; Bullmore, E.; James, A.; Fletcher, P.C. Consistency and interpretation of changes in millimeter-scale cortical intrinsic curvature across three independent datasets in schizophrenia. NeuroImage 2012, 63, 611–621. [Google Scholar] [CrossRef] [Green Version]
- Fornito, A.; Yücel, M.; Wood, S.J.; Adamson, C.; Velakoulis, D.; Saling, M.M.; McGorry, P.D.; Pantelis, C. Surface-Based Morphometry of the Anterior Cingulate Cortex in First Episode Schizophrenia. Hum. Brain Mapp. 2008, 29, 478–489. [Google Scholar] [CrossRef]
- Schultz, C.C.; Koch, K.; Wagner, G.; Roebel, M.; Nenadic, I.; Gaser, C.; Schachtzabel, C.; Reichenbach, J.R.; Sauer, H.; Schlösser, R.G. Increased parahippocampal and lingual gyrification in first-episode schizophrenia. Schizophr. Res. 2010, 123, 137–144. [Google Scholar] [CrossRef]
- Garcia, K.E.; Kroenke, C.D.; Bayly, P.V. Mechanics of cortical folding: Stress, growth and stability. Philisophical Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 20170321. [Google Scholar] [CrossRef] [Green Version]
- Feinberg, I. Cortical pruning and the development of schizophrenia. Schizophr. Bull. 1990, 16, 567–568. [Google Scholar] [CrossRef] [Green Version]
- Keshavan, M.S.; Anderson, S.; Pettegrew, J.W. Is Schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. J. Psychiatr. Res. 1994, 28, 239–265. [Google Scholar] [CrossRef]
- Sellgren, C.M.; Gracias, J.; Watmuff, B.; Biag, J.D.; Thanos, J.M.; Whittredge, P.B.; Fu, T.; Worringer, K.; Brown, H.E.; Wang, J.; et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat. Neurosci. 2019, 22, 374–385. [Google Scholar] [CrossRef]
- Tsuang, M.T. Heterogeneity of schizophrenia. Biol. Psychiatry 1975, 10, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Farmer, A.E.; McGuffin, P.; Spitznagel, E.L. Heterogeneity in schizophrenia: A cluster-analytic approach. Psychiatry Res. 1983, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Seaton, B.E.; Goldstein, G.; Allen, D.N. Sources of Heterogeneity in Schizophrenia: The Role of Neuropsychological Functioning. Neuropsychol. Rev. 2001, 11, 45–67. [Google Scholar] [CrossRef] [PubMed]
- Alnaes, D.; Kaufmann, T.; van der Meer, D.; Córdova-Palomera, A.; Rokicki, J.; Moberget, T.; Bettella, F.; Agartz, I.; Barch, D.M.; Bertolino, A.; et al. Brain Heterogeneity in Schizophrenia and Its Association With Polygenic Risk. JAMA Psychiatry 2019, 76, 739–748. [Google Scholar] [CrossRef]
- Fang, K.; Wen, B.; Niu, L.; Wan, B.; Zhang, W. Higher brain structural heterogeneity in schizophrenia. Front. Psychiatry 2022, 13, 1017399. [Google Scholar] [CrossRef]
- Di Biase, M.A.; Geaghan, M.P.; Reay, W.R.; Seidlitz, J.; Weickert, C.S.; Pébay, A.; Green, M.J.; Quidé, Y.; Atkins, J.R.; Coleman, M.J.; et al. Cell type-specific manifestations of cortical thickness heterogeneity in schizophrenia. Mol. Psychiatry 2022, 27, 2052–2060. [Google Scholar] [CrossRef]
- Levman, J.; MacDonald, P.; Rowley, S.; Stewart, N.; Lim, A.; Ewenson, B.; Galaburda, A.; Takahashi, E. Structural Magnetic Resonance Imaging Demonstrates Abnormal Regionally-Differential Cortical Thickness Variability in Autism: From Newborns to Adults. Front. Hum. Neurosci. 2019, 13, 75. [Google Scholar] [CrossRef]
Demographic Feature | Schizophrenia | Neurotypical |
---|---|---|
Minimum age | 7.44 years | 7.45 years |
Maximum age | 23.25 years | 22.63 years |
Average age | 14.07 years | 13.49 years |
Female Count | 10 | 472 |
Male Count | 13 | 262 |
Regional Gaussian Curvature Measurements | M (Std) Sc | M (Std) H | p-Value | Cohen’s d |
---|---|---|---|---|
Right Pars Orbitalis Gaussian Curvature (aparc.DKTatlas40) | 0.14 (0.22) | 0.07 (0.04) | 2.82 × 10−11 | 1.39 |
Right Anterior Segment of the Circular Sulcus of the Insula Gaussian Curvature (aparc.a2009s) | 0.21 (0.70) | 0.04 (0.06) | 1.52 × 10−8 | 1.19 |
Left Subcentral Gyrus and Sulcus Gaussian Curvature (aparc.a2009s) | 1.47 (6.71) | 0.08 (0.17) | 2.31 × 10−8 | 1.17 |
Right Posterior-Dorsal Cingulate Gyrus Gaussian Curvature (aparc.a2009s) | 1.19 (5.23) | 0.11 (0.26) | 5.48 × 10−8 | 1.14 |
Right Posterior Cingulate Gaussian Curvature (aparc.DKTatlas40) | 0.60 (2.21) | 0.11 (0.25) | 3.52 × 10−7 | 1.07 |
Regional Curvature/Folding Index Measurements | ||||
Left Inferior Occipital Gyrus and Sulcus Curvature Index (aparc.a2009s) | 6.58 (12.38) | 3.71 (1.60) | 3.48 × 10−7 | 1.07 |
Left Medial Occipito-Temporal Sulcus and Lingual Sulcus Folding Index (aparc.a2009s) | 125.00 (481.60) | 26.76 (39.45) | 4.32 × 10−7 | 1.06 |
Right Frontal Pole Curvature Index (aparc) | 4.59 (8.95) | 2.46 (1.32) | 6.96 × 10−7 | 1.04 |
Right Orbital Gyrus Curvature Index (aparc.a2009) | 33.32 (90.50) | 13.29 (11.12) | 7.36 × 10−7 | 1.04 |
Right Lateral Orbitofrontal Curvature Index (aparc.DKTatlas40) | 39.46 (91.72) | 18.43 (14.80) | 4.03 × 10−6 | 0.97 |
Right Pars Triangularis Curvature Index (aparc.DKTatlas40) | 10.96 (21.40) | 5.68 (4.07) | 5.07 × 10−6 | 0.96 |
Right Pars Orbitalis Curvature Index (aparc.DKTatlas40) | 5.13 (5.74) | 3.34 (1.71) | 1.51 × 10−5 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levman, J.; Kabaria, P.; Nangaku, M.; Takahashi, E. Morphological Abnormalities in Early-Onset Schizophrenia Revealed by Structural Magnetic Resonance Imaging. Biology 2023, 12, 353. https://doi.org/10.3390/biology12030353
Levman J, Kabaria P, Nangaku M, Takahashi E. Morphological Abnormalities in Early-Onset Schizophrenia Revealed by Structural Magnetic Resonance Imaging. Biology. 2023; 12(3):353. https://doi.org/10.3390/biology12030353
Chicago/Turabian StyleLevman, Jacob, Priya Kabaria, Masahito Nangaku, and Emi Takahashi. 2023. "Morphological Abnormalities in Early-Onset Schizophrenia Revealed by Structural Magnetic Resonance Imaging" Biology 12, no. 3: 353. https://doi.org/10.3390/biology12030353
APA StyleLevman, J., Kabaria, P., Nangaku, M., & Takahashi, E. (2023). Morphological Abnormalities in Early-Onset Schizophrenia Revealed by Structural Magnetic Resonance Imaging. Biology, 12(3), 353. https://doi.org/10.3390/biology12030353