Interaction of Metals, Menopause and COVID-19—A Review of the Literature
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Menopause—Course, Symptoms and Their Alleviation
3.2. Metals and Menopause
3.2.1. Arsenic
3.2.2. Cadmium
3.2.3. Mercury
3.2.4. Lead
3.2.5. Calcium
3.2.6. Magnesium
3.2.7. Molybdenum
Element Concentration in Blood | Premenopausal Period | Menopause |
---|---|---|
cadmium | lower | higher |
lead | lower | higher |
manganese | higher | lower |
arsenic | no data | no data |
calcium | lower | higher |
molybdenum | no data | no data |
zinc | higher | lower |
mercury | higher | lower |
3.2.8. Supplementation
3.3. Metals vs. COVID-19
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Santoro, N.; Roeca, C.; Peters, B.A.; Neal-Perry, G. The Menopause Transition: Signs, Symptoms, and Management Options. J. Clin. Endocrinol. Metab. 2021, 106, 1–15. [Google Scholar] [CrossRef]
- de Kruif, M.; Spijker, A.T.; Molendijk, M.L. Depression during the perimenopause: A meta-analysis. J. Affect. Disord. 2016, 206, 174–180. [Google Scholar] [CrossRef]
- Hu, F.B.; Grodstein, F.; Hennekens, C.H.; Colditz, G.A.; Johnson, M.; Manson, J.E.; Rosner, B.; Stampfer, M.J. Age at natural menopause and risk of cardiovascular disease. Arch. Intern. Med. 1999, 159, 1061–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atsma, F.; Bartelink, M.L.; Grobbee, D.E.; van der Schouw, Y.T. Postmenopausal status and early menopause as independent risk factors for cardiovascular disease: A meta-analysis. Menopause 2006, 13, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.A.E.; Muntner, P.; Woodward, M. Sex Differences in the Prevalence of, and Trends in, Cardiovascular Risk Factors, Treatment, and Control in the United States, 2001 to 2016. Circulation 2019, 139, 1025–1035. [Google Scholar] [CrossRef] [PubMed]
- Kritz-Silverstein, D.; Barrett-Connor, E. Early menopause, number of reproductive years, and bone mineral density in postmenopausal women. Am. J. Public Health 1993, 83, 983–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cawthon, P.M. Gender differences in osteoporosis and fractures. Clin. Orthop. Relat. Res. 2011, 469, 1900–1905. [Google Scholar] [CrossRef] [Green Version]
- Tramunt, B.; Smati, S.; Grandgeorge, N.; Lenfant, F.; Arnal, J.F.; Montagner, A.; Gourdy, P. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia 2020, 63, 453–461. [Google Scholar] [CrossRef] [Green Version]
- Mauvais-Jarvis, F.; Clegg, D.J.; Hevener, A.L. The Role of Estrogens in Control of Energy Balance and Glucose Homeostasis. Endocr. Rev. 2013, 34, 309–338. [Google Scholar] [CrossRef] [Green Version]
- Anagnostis, P.; Christou, K.; Artzouchaltzi, A.-M.; Gkekas, N.K.; Kosmidou, N.; Siolos, P.; Paschou, S.A.; Potoupnis, M.; Kenanidis, E.; Tsiridis, E.; et al. Early Menopause and Premature Ovarian Insufficiency Are Associated with Increased Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis. Eur. J. Endocrinol. 2019, 180, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Shuster, L.T.; Rhodes, D.J.; Gostout, B.S.; Grossardt, B.R.; Rocca, W.A. Premature Menopause or Early Menopause: Long-Term Health Consequences. Maturitas 2010, 65, 161–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendola, P.; Messer, L.C.; Rappazzo, K. Science Linking Environmental Contaminant Exposures with Fertility and Reproductive Health Impacts in the Adult Female. Fertil. Steril. 2008, 89, e81–e94. [Google Scholar] [CrossRef] [PubMed]
- ATSDR. Toxicological Profile for Lead, U.S.; Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 2020. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp13.pdf (accessed on 1 December 2022).
- ATSDR. Toxicological Profile for Cadmium, U.S.; Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 2012. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp5.pdf (accessed on 1 December 2022).
- ATSDR. Toxicological Profile for Arsenic, U.S.; Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 2007. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp2.pdf (accessed on 1 December 2022).
- Yuk, J.-S.; Lee, J.H.; Jeon, J.-D.; Kim, T.J.; Lee, M.-H.; Park, W.I. Menopause and Blood Mercury Levels: The Korea National Health and Nutrition Examination Survey (KNHANES) 2008–2011. Biol. Trace Elem. Res. 2014, 162, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.B.; Warren, M.P. Reversible Alopecia Associated with High Blood Mercury Levels and Early Menopause: A Report of Two Cases. Menopause 2019, 26, 915–918. [Google Scholar] [CrossRef] [PubMed]
- Pollack, A.Z.; Schisterman, E.F.; Goldman, L.R.; Mumford, S.L.; Albert, P.S.; Jones, R.L.; Wactawski-Wende, J. Cadmium, Lead, and Mercury in Relation to Reproductive Hormones and Anovulation in Premenopausal Women. Environ. Health Perspect. 2011, 119, 1156–1161. [Google Scholar] [CrossRef] [Green Version]
- Jackson, L.W.; Howards, P.P.; Wactawski-Wende, J.; Schisterman, E.F. The Association between Cadmium, Lead and Mercury Blood Levels and Reproductive Hormones among Healthy, Premenopausal Women. Hum. Reprod. 2011, 26, 2887–2895. [Google Scholar] [CrossRef] [Green Version]
- Ossewaarde, M.E.; Bots, M.L.; Verbeek, A.L.M.; Peeters, P.H.M.; van der Graaf, Y.; Grobbee, D.E.; van der Schouw, Y.T. Age at Menopause, Cause-Specific Mortality and Total Life Expectancy. Epidemiology 2005, 16, 556–562. [Google Scholar] [CrossRef] [Green Version]
- Mondul, A.M.; Rodriguez, C.; Jacobs, E.J.; Calle, E.E. Age at natural menopause and cause-specific mortality. Am. J. Epidemiol. 2005, 162, 1089–1097. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, B.K. Age at Natural Menopause and All-Cause Mortality: A 37-Year Follow-up of 19,731 Norwegian Women. Am. J. Epidemiol. 2003, 157, 923–929. [Google Scholar] [CrossRef] [Green Version]
- Grindler, N.M.; Allsworth, J.E.; Macones, G.A.; Kannan, K.; Roehl, K.A.; Cooper, A.R. Persistent Organic Pollutants and Early Menopause in U.S. Women. PLoS ONE 2015, 10, e0116057. [Google Scholar] [CrossRef]
- Vabre, P.; Gatimel, N.; Moreau, J.; Gayrard, V.; Picard-Hagen, N.; Parinaud, J.; Leandri, R.D. Environmental Pollutants, a Possible Etiology for Premature Ovarian Insufficiency: A Narrative Review of Animal and Human Data. Environ. Health 2017, 16, 37. [Google Scholar] [CrossRef] [Green Version]
- Ding, N.; Harlow, S.D.; Randolph, J.F.; Calafat, A.M.; Mukherjee, B.; Batterman, S.; Gold, E.B.; Park, S.K. Associations of Perfluoroalkyl Substances with Incident Natural Menopause: The Study of Women’s Health across the Nation. J. Clin. Endocrinol. Metab. 2020, 105, e3169–e3182. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Mukherjee, B.; Batterman, S.; Harlow, S.D.; Park, S.K. Urinary Metals and Metal Mixtures in Midlife Women: The Study of Women’s Health across the Nation (SWAN). Int. J. Hyg. Environ. Health 2019, 222, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Eum, K.-D.; Weisskopf, M.G.; Nie, L.H.; Hu, H.; Korrick, S.A. Cumulative Lead Exposure and Age at Menopause in the Nurses’ Health Study Cohort. Environ. Health Perspect. 2014, 122, 229–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendola, P.; Brett, K.; DiBari, J.N.; Pollack, A.Z.; Tandon, R.; Shenassa, E.D. Menopause and Lead Body Burden among US Women Aged 45–55, NHANES 1999–2010. Environ. Res. 2013, 121, 110–113. [Google Scholar] [CrossRef] [Green Version]
- Yunus, F.M.; Rahman, M.J.; Alam, M.Z.; Hore, S.K.; Rahman, M. Relationship between Arsenic Skin Lesions and the Age of Natural Menopause. BMC Public Health 2014, 14, 419. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.; Ye, X.; Zhu, Z.; Li, C.; Zhou, J.; Liu, J. A Case-Control Study of Arsenic Exposure with the Risk of Primary Ovarian Insufficiency in Women. Environ. Sci. Pollut. Res. Int. 2020, 27, 25220–25229. [Google Scholar] [CrossRef] [PubMed]
- Popovic, M.; McNeill, F.E.; Chettle, D.R.; Webber, C.E.; Lee, C.V.; Kaye, W.E. Impact of Occupational Exposure on Lead Levels in Women. Environ. Health Perspect. 2005, 113, 478–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapre, S.; Thakur, R. Lifestyle and Dietary Factors Determine Age at Natural Menopause. J. Mid-life 2014, 5, 3. [Google Scholar] [CrossRef]
- Biela, U. Determinants of the Age at Natural Menopause. Prz. Lek. 2002, 59, 165–169. [Google Scholar]
- Wang, X.; Ding, N.; Harlow, S.D.; Randolph, J.F.; Mukherjee, B.; Gold, E.B.; Park, S.K. Urinary Metals and Metal Mixtures and Timing of Natural Menopause in Midlife Women: The Study of Women’s Health across the Nation. Environ. Int. 2021, 157, 106781. [Google Scholar] [CrossRef] [PubMed]
- Bręborowicz, G.H.; Czajkowski, K. Położnictwo i Ginekologia; Położnictwo Tom 1. T. 1; Państwowy Zakład Wydawnictw Lekarskich(PZWL): Warsaw, Poland, 2020. [Google Scholar]
- Suchecka-Rachoń, K.; Rachoń, D. Rola Hormonalnej Terapii Zastępczej (HTZ) U Kobiet W Okresie Pomenopauzalnym. Chor. Serca I Naczyń 2005, 2, 115–124. [Google Scholar]
- Zouboulis, C.C.; Blume-Peytavi, U.; Kosmadaki, M.; Roó, E.; Vexiau-Robert, D.; Kerob, D.; Goldstein, S.R. Skin, Hair and Beyond: The Impact of Menopause. Climacteric 2022, 25, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Cosman, F.; de Beur, S.J.; LeBoff, M.S.; Lewiecki, E.M.; Tanner, B.; Randall, S.; Lindsay, R. Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporos. Int. 2014, 25, 2359–2381. [Google Scholar] [CrossRef] [Green Version]
- Somani, Y.B.; Pawelczyk, J.A.; De Souza, M.J.; Kris-Etherton, P.M.; Proctor, D.N. Aging Women and Their Endothelium: Probing the Relative Role of Estrogen on Vasodilator Function. Am. J. Physiol. Heart Circ. Physiol. 2019, 317, H395–H404. [Google Scholar] [CrossRef] [PubMed]
- Wenger, N.K.; Speroff, L.; Packard, B. Cardiovascular Health and Disease in Women. N. Engl. J. 1993, 329, 247–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portman, D.J.; Gass, M.L.S. Genitourinary Syndrome of Menopause. Menopause 2014, 21, 1063–1068. [Google Scholar] [CrossRef]
- Seth, S.; Mishra, N.; Sharma, R.; Mishra, P.; Singh, M.; Deori, T.; Jain, P. COVID-19 and Menstrual Status: Is Menopause an Independent Risk Factor for SARS Cov-2? J. Mid-Life Health 2020, 11, 240. [Google Scholar] [CrossRef]
- Ding, T.; Zhang, J.; Wang, T.; Cui, P.; Chen, Z.; Jiang, J.; Zhou, S.; Dai, J.; Wang, B.; Yuan, S.; et al. Potential Influence of Menstrual Status and Sex Hormones on Female Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Cross-sectional Multicenter Study in Wuhan, China. Clin. Infect. Dis. 2021, 72, e240–e248. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhou, H.; Zhou, Y.; Wu, X.; Zhao, Y.; Lu, Y.; Tan, W.; Yuan, M.; Ding, X.; Zou, J.; et al. Risk Factors Associated with Disease Severity and Length of Hospital Stay in COVID-19 Patients. J. Infect. 2020, 81, e95–e97. [Google Scholar] [CrossRef]
- Gersh, F.; Lavie, C.J.; O’Keefe, J.H. Menopause Status and Coronavirus Disease 2019 (COVID-19). Clin. Infect. Dis. 2021, 73, e2825–e2826. [Google Scholar] [CrossRef]
- Devita, V.T.; Hellman, B.; Rosenberg, S.A. (Eds.) Cancer of the Breast. In Cancer: Principles and Practice of Oncology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2008; Volume 2, p. 1608-8. [Google Scholar]
- Dunneram, Y.; Greenwood, D.C.; Burley, V.J.; Cade, J.E. Dietary Intake and Age at Natural Menopause: Results from the UK Women’s Cohort Study. J. Epidemiol. Community Health 2018, 72, 733–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Lobdell, D.T.; Wright, C.W.; Gocheva, V.V.; Hudgens, E.; Bowler, R.M. Blood Metal Concentrations of Manganese, Lead, and Cadmium in Relation to Serum Ferritin Levels in Ohio Residents. Biol. Trace Elem. Res. 2015, 165, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y. Sex, Pregnancy, and Age-Specific Differences of Blood Manganese Levels in Relation to Iron Status; What Does It Mean? Toxicol. Rep. 2018, 5, 28–30. [Google Scholar] [CrossRef] [PubMed]
- González-Estecha, M.; Trasobares, E.; Fuentes, M.; Martínez, M.J.; Cano, S.; Vergara, N.; Gaspar, M.J.; González-Revaldería, J.; Barciela, M.C.; Bugarín, Z.; et al. Blood Lead and Cadmium Levels in a Six Hospital Employee Population. PESA Study, 2009. J. Trace Elem. Med. Biol. 2011, 25, S22–S29. [Google Scholar] [CrossRef]
- Sokoll, L.J.; Dawson-Hughes, B. Effect of Menopause and Aging on Serum Total and Ionized Calcium and Protein Concentrations. Calcif. Tissue Int. 1989, 44, 181–185. [Google Scholar] [CrossRef]
- Tubek, S.Ł. Selected Zinc Metabolism Parameters in Premenopausal and Postmenopausal Women with Moderate and Severe Primary Arterial Hypertension. Biol. Trace Elem. Res. 2007, 116, 249–255. [Google Scholar] [CrossRef]
- Pandey, R.; Garg, A.; Gupta, K.; Shukla, P.; Mandrah, K.; Roy, S.; Chattopadhyay, N.; Bandyopadhyay, S. Arsenic Induces Differential Neurotoxicity in Male, Female, and E2-Deficient Females: Comparative Effects on Hippocampal Neurons and Cognition in Adult Rats. Mol. Neurobiol. 2022, 59, 2729–2744. [Google Scholar] [CrossRef]
- Akram, Z.; Jalali, S.; Shami, S.A.; Ahmad, L.; Batool, S.; Kalsoom, O. Adverse Effects of Arsenic Exposure on Uterine Function and Structure in Female Rat. Exp. Toxicol. Pathol. 2010, 62, 451–459. [Google Scholar] [CrossRef]
- Myers, S.L.; Lobdell, D.T.; Liu, Z.; Xia, Y.; Ren, H.; Li, Y.; Kwok, R.K.; Mumford, J.L.; Mendola, P. Maternal Drinking Water Arsenic Exposure and Perinatal Outcomes in Inner Mongolia, China. J. Epidemiol. Community Health 2010, 64, 325–329. [Google Scholar] [CrossRef]
- Iavicoli, I.; Fontana, L.; Bergamaschi, A. The Effects of Metals as Endocrine Disruptors. J. Toxicol. Environ. Health. Part B Crit. Rev. 2009, 12, 206–223. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Bourguignon, J.-P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.; Bannigan, J. Cadmium: Toxic Effects on the Reproductive System and the Embryo. Reprod. Toxicol. 2008, 25, 304–315. [Google Scholar] [CrossRef]
- Byrne, C.; Divekar, S.D.; Storchan, G.B.; Parodi, D.A.; Martin, M.B. Cadmium—A Metallohormone? Toxicol. Appl. Pharmacol. 2009, 238, 266–271. [Google Scholar] [CrossRef] [Green Version]
- Stoica, A.; Katzenellenbogen, B.S.; Martin, M.B. Activation of Estrogen Receptor-α by the Heavy Metal Cadmium. Mol. Endocrinol. 2000, 14, 545–553. [Google Scholar] [CrossRef]
- Revankar, C.M. A Transmembrane Intracellular Estrogen Receptor Mediates Rapid Cell Signaling. Science 2005, 307, 1625–1630. [Google Scholar] [CrossRef] [Green Version]
- Ronchetti, S.A.; Miler, E.A.; Duvilanski, B.H.; Cabilla, J.P. Cadmium Mimics Estrogen-Driven Cell Proliferation and Prolactin Secretion from Anterior Pituitary Cells. PLoS ONE 2013, 8, e81101. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Penttinen-Damdimopoulou, P.E.; Mäkelä, S.I.; Berglund, M.; Stenius, U.; Åkesson, A.; Håkansson, H.; Halldin, K. Estrogen-like Effects of Cadmium in Vivo Do Not Appear to Be Mediated via the Classical Estrogen Receptor Transcriptional Pathway. Environ. Health Perpect. 2010, 118, 1389–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fechner, P.; Damdimopoulou, P.; Gauglitz, G. Biosensors Paving the Way to Understanding the Interaction between Cadmium and the Estrogen Receptor Alpha. PLoS ONE 2011, 6, e23048. [Google Scholar] [CrossRef] [Green Version]
- Kluxen, F.M.; Höfer, N.; Kretzschmar, G.; Degen, G.H.; Diel, P. Cadmium Modulates Expression of Aryl Hydrocarbon Receptor-Associated Genes in Rat Uterus by Interaction with the Estrogen Receptor. Arch. Toxicol. 2011, 86, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Pillai, P.; Pandya, C.; Gupta, S.; Gupta, S. Biochemical and Molecular Effects of Gestational and Lactational Coexposure to Lead and Cadmium on Ovarian Steroidogenesis Are Associated with Oxidative Stress in F1 Generation Rats. J. Biochem. Mol. Toxicol. 2010, 24, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Samuel, J.B.; Stanley, J.A.; Princess, R.A.; Shanthi, P.; Sebastian, M.S. Gestational Cadmium Exposure-Induced Ovotoxicity Delays Puberty through Oxidative Stress and Impaired Steroid Hormone Levels. J. Med. Toxicol. 2011, 7, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Vahter, M.; Berglund, M.; Åkesson, A.; Lidén, C. Metals and Women’s Health. Environ. Res. 2002, 88, 145–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bárány, E.; Bergdahl, I.A.; Bratteby, L.-E.; Lundh, T.; Samuelson, G.; Skerfving, S.; Oskarsson, A. Iron Status Influences Trace Element Levels in Human Blood and Serum. Environ. Res. 2005, 98, 215–223. [Google Scholar] [CrossRef]
- Gallagher, C.M.; Chen, J.J.; Kovach, J.S. The Relationship between Body Iron Stores and Blood and Urine Cadmium Concentrations in US Never-Smoking, Non-Pregnant Women Aged 20–49 Years. Environ. Res. 2011, 111, 702–707. [Google Scholar] [CrossRef]
- Gallagher, C.M.; Moonga, B.S.; Kovach, J.S. Cadmium, Follicle-Stimulating Hormone, and Effects on Bone in Women Age 42–60 Years, NHANES III. Environ. Res. 2010, 110, 105–111. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, G.; Jin, T. Effects of Cadmium Exposure on Age of Menarche and Menopause. Toxics 2017, 6, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vahter, M.; Berglund, M.; Åkesson, A. Toxic Metals and the Menopause. J. Br. Menopause Soc. 2004, 10, 60–65. [Google Scholar] [CrossRef]
- Pollack, A.Z.; Louis, G.M.B.; Chen, Z.; Peterson, C.M.; Sundaram, R.; Croughan, M.S.; Sun, L.; Hediger, M.L.; Stanford, J.B.; Varner, M.W.; et al. Trace Elements and Endometriosis: The ENDO Study. Reprod. Toxicol. 2013, 42, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Pollack, A.Z.; Ranasinghe, S.; Sjaarda, L.A.; Mumford, S.L. Cadmium and Reproductive Health in Women: A Systematic Review of the Epidemiologic Evidence. Curr. Environ. Health Rep. 2014, 1, 172–184. [Google Scholar] [CrossRef] [Green Version]
- Sim, C.-S.; Kim, Y.; Lee, H.; Park, C.-Y.; Ham, J.-O.; Lee, B.-K. Iron Deficiency Increases Blood Lead Levels in Boys and Pre-Menarche Girls Surveyed in KNHANES 2010-2011. Environ. Res. 2014, 130, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Nagata, C.; Takatsuka, N.; Inaba, S.; Kawakami, N.; Shimizu, H. Association of Diet and Other Lifestyle with Onset of Menopause in Japanese Women. Maturitas 1998, 29, 105–113. [Google Scholar] [CrossRef]
- Strause, L.; Saltman, P.; Smith, K.T.; Bracker, M.; Andon, M.B. Spinal Bone Loss in Postmenopausal Women Supplemented with Calcium and Trace Minerals. J. Natur. 1994, 124, 1060–1064. [Google Scholar] [CrossRef]
- Mahdavi-Roshan, M. Copper, Magnesium, Zinc and Calcium Status in Osteopenic and Osteoporotic Post-Menopausal Women. Clin. Cases Miner. Bone Metab. 2015, 12, 18–21. [Google Scholar] [CrossRef]
- Wood, R.J. Potassium bicarbonate supplementation and calcium metabolism in postmenopausal women: Are we barking up the wrong tree? Nutr. Rev. 1994, 52 Pt 1, 278–280. [Google Scholar] [CrossRef] [PubMed]
- Parazzini, F.; Di Martino, M.; Pellegrino, P. Magnesium in the Gynecological Practice: A Literature Review. J. Magnes. 2017, 30, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-K.; Kim, Y. Association between Bone Mineral Density and Blood Lead Level in Menopausal Women: Analysis of 2008–2009 Korean National Health and Nutrition Examination Survey Data. Environ. Res. 2012, 115, 59–65. [Google Scholar] [CrossRef]
- Lee, B.-K.; Kim, Y. Effects of Menopause on Blood Manganese Levels in Women: Analysis of 2008–2009 Korean National Health and Nutrition Examination Survey Data. Neuro Toxicol. 2012, 33, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-K.; Kim, Y. Sex-Specific Profiles of Blood Metal Levels Associated with Metal–Iron Interactions. Saf. Health Work 2014, 5, 113–117. [Google Scholar] [CrossRef] [Green Version]
- Grosbois, B.; Decaux, O.; Cador, B.; Cazalets, C.; Jego, P. Les carencesen fer chez l’homme [Human iron deficiency]. Bull. Acad. Natl. Med. 2005, 189, 1649–1663. [Google Scholar]
- Nasiadek, M.; Stragierowicz, J.; Klimczak, M.; Kilanowicz, A. The Role of Zinc in Selected Female Reproductive System Disorders. Nutrients 2020, 12, 2464. [Google Scholar] [CrossRef] [PubMed]
- Saltman, P.D.; Strause, L.G. The Role of Trace Minerals in Osteoporosis. J. Am. Coll. Nutr. 1993, 12, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, A.; Harris, S.T.; Ottaway, J.H.; Todd, K.M.; Morris, R.C. Improved Mineral Balance and Skeletal Metabolism in Postmenopausal Women Treated with Potassium Bicarbonate. N. Engl. J. Med. 1994, 330, 1776–1781. [Google Scholar] [CrossRef] [PubMed]
- Skalny, A.V.; Lima, T.R.R.; Ke, T.; Zhou, J.-C.; Bornhorst, J.; Alekseenko, S.I.; Aaseth, J.; Anesti, O.; Sarigiannis, D.A.; Tsatsakis, A.; et al. Toxic Metal Exposure as a Possible Risk Factor for COVID-19 and Other Respiratory Infectious Diseases. Food Chem. Toxicol. 2020, 146, 111809. [Google Scholar] [CrossRef]
- Farsalinos, K.; Niaura, R.; Le Houezec, J.; Barbouni, A.; Tsatsakis, A.; Kouretas, D.; Vantarakis, A.; Poulas, K. Editorial: Nicotine and SARS-CoV-2: COVID-19 May Be a Disease of the Nicotinic Cholinergic System. Toxicol. Rep. 2020, 7, 658–663. [Google Scholar] [CrossRef]
- Farsalinos, K.; Barbouni, A.; Poulas, K.; Polosa, R.; Caponnetto, P.; Niaura, R. Current Smoking, Former Smoking, and Adverse Outcome among Hospitalized COVID-19 Patients: A Systematic Review and Meta-Analysis. Ther. Adv. Chronic Dis. 2020, 11, 204062232093576. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, J.; Huang, F.; Cao, L. Association between Short-Term Exposure to Air Pollution and COVID-19 Infection: Evidence from China. Sci. Total Envron. 2020, 727, 138704. [Google Scholar] [CrossRef]
- Wu, X.; Nethery, R.C.; Sabath, B.M.; Braun, D.; Dominici, F. Exposure to Air Pollution and COVID-19 Mortality in the United States. MedRxiv 2020, 4502. [Google Scholar] [CrossRef]
- De Maria, L.; Caputi, A.; Tafuri, S.; Cannone, E.S.S.; Sponselli, S.; Delfino, M.C.; Pipoli, A.; Bruno, V.; Angiuli, L.; Mucci, N.; et al. Health, Transport and the Environment: The Impacts of the COVID-19 Lockdown on Air Pollution. Front. Public Health. 2021, 13, 637540. [Google Scholar] [CrossRef]
- Mendez-Espinosa, J.F.; Rojas, N.Y.; Vargas, J.; Pachón, J.E.; Belalcazar, L.C.; Ramírez, O. Air quality variations in Northern South America during the COVID-19 lockdown. Sci. Total Environ. 2020, 749, 141621. [Google Scholar] [CrossRef] [PubMed]
- Quarato, M.; De Maria, L.; Gatti, M.F.; Caputi, A.; Mansi, F.; Lorusso, P.; Birtolo, F.; Vimercati, L. Air Pollution and Public Health: A PRISMA-Compliant Systematic Review. Atmosphere 2017, 8, 183. [Google Scholar] [CrossRef] [Green Version]
- Núñez, O.; Fernández-Navarro, P.; Martín-Méndez, I.; Bel-Lan, A.; Locutura, J.F.; López-Abente, G. Arsenic and chromium topsoil levels and cancer mortality in Spain. Environ. Sci. Pollut. Res. 2016, 23, 17664–17675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, H.L.; Yang, Q.; Yuan, P.; Wang, X.; Cheng, L. Associations of essential and toxic metals/metalloids in whole blood with both disease severity and mortality in patients with COVID-19. FASEB J. 2021, 35, e21392. [Google Scholar] [CrossRef]
- Zeng, H.L.; Zhang, B.; Wang, X.; Yang, Q.; Cheng, L. Urinary trace elements in association with disease severity and outcome in patients with COVID-19. Environ. Res. 2021, 194, 110670. [Google Scholar] [CrossRef]
- Jothimani, D.; Kailasam, E.; Danielraj, S.; Nallathambi, B.; Ramachandran, H.; Sekar, P.; Manoharan, S.; Ramani, V.; Narasimhan, G.; Kaliamoorthy, I.; et al. COVID-19: Poor outcomes in patients with zinc deficiency. Int. J. Infect. Dis. 2020, 100, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Bani Younes, M.D.N.; Alshawabkeh, A.D.; Jadallah, A.R.R.; Awwad, E.F.; Tarabsheh, T.M.I. Magnesium sulfate extended infusion as an adjunctive treatment for complicated COVID-19 infected critically ill patients. EAS J. Anesthesiol. Crit. Care. 2020, 2, 97–101. [Google Scholar] [CrossRef]
- Pal, A.; Squitti, R.; Picozza, M.; Pawar, A.; Rongioletti, M.; Dutta, A.K.; Sahoo, S.; Goswami, K.; Sharma, P.; Prasad, R. Zinc and COVID-19: Basis of Current Clinical Trials. Biol. Trace Elem. Res. 2020, 199, 2882–2892. [Google Scholar] [CrossRef]
- Tang, C.-F.; Ding, H.; Jiao, R.-Q.; Wu, X.-X.; Kong, L.-D. Possibility of Magnesium Supplementation for Supportive Treatment in Patients with COVID-19. Eur. J. Pharmacol. 2020, 886, 173546. [Google Scholar] [CrossRef] [PubMed]
- Ścibior, A.; Wnuk, E. Elements and COVID-19: A Comprehensive overview of studies on their blood/urinary levels and supplementation with an update on clinical trials. Biology 2022, 11, 215. [Google Scholar] [CrossRef] [PubMed]
Metal | Assessment of the Need for Supplementation and Its Effects. |
---|---|
Iron | No supplementation needed. |
Zinc | Possible interaction with calcium in maintaining adequate bone density. Better results than in calcium supplementation alone. Further research needed. |
Calcium | Need for supplementation to prevent osteoporosis. |
Manganese | Possible interaction with calcium in maintaining adequate bone density. Better results than in supplementation with calcium alone. Further research needed. |
Copper | Possible interaction with calcium in maintaining adequate bone density. Better results than in supplementation with calcium alone. Further research needed. |
Magnesium | Further research needed. |
Chromium | No information available. |
Potassium | Possible action in reducing bone resorption and increasing the rate of bone formation. Further research needed. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Męcik-Kronenberg, T.; Kuć, A.; Kubik-Machura, D.; Kościelecka, K.; Radko, L. Interaction of Metals, Menopause and COVID-19—A Review of the Literature. Biology 2023, 12, 350. https://doi.org/10.3390/biology12030350
Męcik-Kronenberg T, Kuć A, Kubik-Machura D, Kościelecka K, Radko L. Interaction of Metals, Menopause and COVID-19—A Review of the Literature. Biology. 2023; 12(3):350. https://doi.org/10.3390/biology12030350
Chicago/Turabian StyleMęcik-Kronenberg, Tomasz, Aleksandra Kuć, Daria Kubik-Machura, Klaudia Kościelecka, and Lidia Radko. 2023. "Interaction of Metals, Menopause and COVID-19—A Review of the Literature" Biology 12, no. 3: 350. https://doi.org/10.3390/biology12030350
APA StyleMęcik-Kronenberg, T., Kuć, A., Kubik-Machura, D., Kościelecka, K., & Radko, L. (2023). Interaction of Metals, Menopause and COVID-19—A Review of the Literature. Biology, 12(3), 350. https://doi.org/10.3390/biology12030350