Movements of a Specialist Butterfly in Relation to Mowing Management of Its Habitat Patches
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Species
2.2. Study Area
- Subotica Sandland (46.169° N; 19.713° E; Figure 1: locality A), which is a sandy, dry area with meadows regularly surrounded by lines of trees and fragmented forests. The butterfly habitats are found within wet Molinia meadows developing at the lowest elevations and supported by the high level of underground waters sustained by the nearby Kireš River. With increased intake of water for agriculture and urban development, both from Kireš River and the underground reservoirs, these habitats are facing major threats in the future.
- Ludaš Lake (46.103° N; 19.801° E; Figure 1: localities B and C), which is a mosaic of urban, agricultural and wetland areas. The butterfly habitats are composed of wet meadows dominated by Phragmites or Molinia and located close to the nearby Kireš River or Ludaš Lake. These habitat patches are more fragmented due to intensive agriculture, with populations on small locality C experiencing strong fluctuations due to changing management practices on mostly privately owned land (authors’ personal observations).
- Selevenj Heath (46.138° N; 19.907° E; Figure 1: localities D and E), which is a large grassland composed of wet and saline meadows, interspersed with agricultural fields and swamps. Suitable habitats for P. teleius are dominated by both Phragmites and Molinia. These meadows are more continuous, and their portions are mown at different seasons, providing mosaic management practice crucial for conserving butterfly population and overall rich biodiversity of the meadows.
2.3. Data Collecting
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Effects of Mowing
4.2. Effects of Habitat Spatial Structure
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stoate, C.; Báldi, A.; Beja, P.; Boatman, N.D.; Herzon, I.; van Doorn, A.; de Snoo, G.R.; Rakosy, L.; Ramwell, C. Ecological Impacts of Early 21st Century Agricultural Change in Europe—A Review. J. Environ. Manag. 2009, 91, 22–46. [Google Scholar] [CrossRef] [PubMed]
- WallisDeVries, M.F.; van Swaay, C.A.M. A Nitrogen Index to Track Changes in Butterfly Species Assemblages under Nitrogen Deposition. Biol. Conserv. 2017, 212, 448–453. [Google Scholar] [CrossRef]
- Roth, T.; Kohli, L.; Rihm, B.; Meier, R.; Amrhein, V. Negative Effects of Nitrogen Deposition on Swiss Butterflies. Conserv. Biol. J. Soc. Conserv. Biol. 2021, 35, 1766–1776. [Google Scholar] [CrossRef] [PubMed]
- Payne, R.J.; Dise, N.B.; Field, C.D.; Dore, A.J.; Caporn, S.J.; Stevens, C.J. Nitrogen Deposition and Plant Biodiversity: Past, Present, and Future. Front. Ecol. Environ. 2017, 15, 431–436. [Google Scholar] [CrossRef]
- Simons, N.K.; Gossner, M.M.; Lewinsohn, T.M.; Lange, M.; Türke, M.; Weisser, W.W. Effects of Land-Use Intensity on Arthropod Species Abundance Distributions in Grasslands. J. Anim. Ecol. 2015, 84, 143–154. [Google Scholar] [CrossRef]
- Torma, A.; Császár, P.; Bozsó, M.; Deák, B.; Valkó, O.; Kiss, O.; Gallé, R. Species and Functional Diversity of Arthropod Assemblages (Araneae, Carabidae, Heteroptera and Orthoptera) in Grazed and Mown Salt Grasslands. Agric. Ecosyst. Environ. 2019, 273, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Proske, A.; Lokatis, S.; Rolff, J. Impact of Mowing Frequency on Arthropod Abundance and Diversity in Urban Habitats: A Meta-Analysis. Urban For. Urban Green. 2022, 76, 127714. [Google Scholar] [CrossRef]
- Buri, P.; Humbert, J.-Y.; Arlettaz, R. Promoting Pollinating Insects in Intensive Agricultural Matrices: Field-Scale Experimental Manipulation of Hay-Meadow Mowing Regimes and Its Effects on Bees. PLoS ONE 2014, 9, e85635. [Google Scholar] [CrossRef] [Green Version]
- Johansen, L.; Westin, A.; Wehn, S.; Iuga, A.; Ivascu, C.M.; Kallioniemi, E.; Lennartsson, T. Traditional Semi-Natural Grassland Management with Heterogeneous Mowing Times Enhances Flower Resources for Pollinators in Agricultural Landscapes. Glob. Ecol. Conserv. 2019, 18, e00619. [Google Scholar] [CrossRef]
- Warren, M.S.; Maes, D.; van Swaay, C.A.M.; Goffart, P.; Van Dyck, H.; Bourn, N.A.D.; Wynhoff, I.; Hoare, D.; Ellis, S. The Decline of Butterflies in Europe: Problems, Significance, and Possible Solutions. Proc. Natl. Acad. Sci. USA 2021, 118, e2002551117. [Google Scholar] [CrossRef]
- Schmitt, T.; Rákosy, L. Changes of Traditional Agrarian Landscapes and Their Conservation Implications: A Case Study of Butterflies in Romania. Divers. Distrib. 2007, 13, 855–862. [Google Scholar] [CrossRef]
- Habel, J.C.; Ulrich, W.; Biburger, N.; Seibold, S.; Schmitt, T. Agricultural Intensification Drives Butterfly Decline. Insect Conserv. Divers. 2019, 12, 289–295. [Google Scholar] [CrossRef]
- Konvicka, M.; Benes, J.; Cizek, O.; Kopecek, F.; Konvicka, O.; Vitaz, L. How Too Much Care Kills Species: Grassland Reserves, Agri-Environmental Schemes and Extinction of Colias Myrmidone (Lepidoptera: Pieridae) from Its Former Stronghold. J. Insect Conserv. 2008, 12, 519–525. [Google Scholar] [CrossRef]
- Wynhoff, I. At Home on Foreign Meadows: The Reintroduciton of Two Maculinea Butterfly Species; Wageningen University: Wageningen, The Netherlands, 2001. [Google Scholar]
- Kadlec, T.; Vrba, P.; Kepka, P.; Schmitt, T.; Konvicka, M. Tracking the Decline of the Once-Common Butterfly: Delayed Oviposition, Demography and Population Genetics in the Hermit Chazara briseis. Anim. Conserv. 2010, 13, 172–183. [Google Scholar] [CrossRef]
- Elmes, G.W.; Thomas, J.A. Complexity of Species Conservation in Managed Habitats: Interaction between Maculinea Butterflies and Their Ant Hosts. Biodivers. Conserv. 1992, 1, 155–169. [Google Scholar] [CrossRef]
- Joyce, C.B.; Simpson, M.; Casanova, M. Future Wet Grasslands: Ecological Implications of Climate Change. Ecosyst. Health Sustain. 2016, 2, e01240. [Google Scholar] [CrossRef] [Green Version]
- Settele, J.; Kudrna, O.; Harpke, A.; Kühn, I.; van Swaay, C.; Verovnik, R.; Warren, M.; Wiemers, M.; Hanspach, J.; Hickler, T.; et al. Climatic Risk Atlas of European Butterflies. BioRisk 2008, 1, 1–712. [Google Scholar] [CrossRef] [Green Version]
- Habel, J.C.; Samways, M.J.; Schmitt, T. Mitigating the Precipitous Decline of Terrestrial European Insects: Requirements for a New Strategy. Biodivers. Conserv. 2019, 28, 1343–1360. [Google Scholar] [CrossRef]
- WallisDeVries, M.F.; van Swaay, C.A.M. Global Warming and Excess Nitrogen May Induce Butterfly Decline by Microclimatic Cooling. Glob. Chang. Biol. 2006, 12, 1620–1626. [Google Scholar] [CrossRef]
- Van Swaay, C.; Collins, S.; Dusej, G.; Maes, D.; Munguira, M.L.; Rakosy, L.; Ryrholm, N.; Šašić, M.; Settele, J.; Thomas, J.; et al. Do’s and Don’ts for Butterflies of the Habitat Directive; Butterfly Conservation Europe & De Vlinderstichting: Wageningen, The Netherlands, 2010. [Google Scholar]
- Johst, K.; Drechsler, M.; Thomas, J.; Settele, J. Influence of Mowing on the Persistence of Two Endangered Large Blue Butterfly Species. J. Appl. Ecol. 2006, 43, 333–342. [Google Scholar] [CrossRef]
- Kőrösi, Á.; Szentirmai, I.; Batáry, P.; Kövér, S.; Örvössy, N.; Peregovits, L. Effects of Timing and Frequency of Mowing on the Threatened Scarce Large Blue Butterfly—A Fine-Scale Experiment. Agric. Ecosyst. Environ. 2014, 196, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Stefanescu, C.; Carnicer, J.; Peñuelas, J. Determinants of Species Richness in Generalist and Specialist Mediterranean Butterflies: The Negative Synergistic Forces of Climate and Habitat Change. Ecography 2011, 34, 353–363. [Google Scholar] [CrossRef]
- Bruppacher, L.; Pellet, J.; Arlettaz, R.; Humbert, J.-Y. Simple Modifications of Mowing Regime Promote Butterflies in Extensively Managed Meadows: Evidence from Field-Scale Experiments. Biol. Conserv. 2016, 196, 196–202. [Google Scholar] [CrossRef] [Green Version]
- Jugovic, J.; Črne, M.; Pečnikar, Ž.F. The Impact of Grazing, Overgrowth and Mowing on Spring Butterfly (Lepidoptera: Rhopalocera) Assemblages on Dry Karst Meadows and Pastures. Nat. Croat. 2013, 22, 157–169. [Google Scholar]
- Dover, J.W.; Rescia, A.; Fungariño, S.; Fairburn, J.; Carey, P.; Lunt, P.; Dennis, R.L.H.; Dover, C.J. Can Hay Harvesting Detrimentally Affect Adult Butterfly Abundance? J. Insect Conserv. 2010, 14, 413–418. [Google Scholar] [CrossRef]
- Weber, P.G.; Preston, S.; Dlugos, M.J.; Nelson, A.P. The Effects of Field Mowing on Adult Butterfly Assemblages in Central New York State. Nat. Areas J. 2008, 28, 130–143. [Google Scholar] [CrossRef]
- Humbert, J.-Y.; Ghazoul, J.; Walter, T. Meadow Harvesting Techniques and Their Impacts on Field Fauna. Agric. Ecosyst. Environ. 2009, 130, 1–8. [Google Scholar] [CrossRef]
- Bubová, T.; Vrabec, V.; Kulma, M.; Nowicki, P. Land Management Impacts on European Butterflies of Conservation Concern: A Review. J. Insect Conserv. 2015, 19, 805–821. [Google Scholar] [CrossRef] [Green Version]
- Craioveanu, C.; Muntean, I.; Ruprecht, E.; Băncilă, R.-I.; Crișan, A.; Rákosy, L. Factors Affecting Butterfly and Plant Diversity in Basiphilous Dry Grasslands of Transylvania, Romania. Community Ecol. 2021, 22, 295–308. [Google Scholar] [CrossRef]
- Nippen, P.; Dolek, M.; Loos, J. Preserving Colias Myrmidone in European Cultural Landscapes: Requirements for the Successful Development from Egg to Higher Larval Stages at a Natura 2000 Site in Romania. J. Insect Conserv. 2021, 25, 643–655. [Google Scholar] [CrossRef]
- Dover, J.W.; Rescia, A.; Fungariño, S.; Fairburn, J.; Carey, P.; Lunt, P.; Arnot, C.; Dennis, R.L.H.; Dover, C.J. Land-Use, Environment, and Their Impact on Butterfly Populations in a Mountainous Pastoral Landscape: Individual Species Distribution and Abundance. J. Insect Conserv. 2011, 15, 207–220. [Google Scholar] [CrossRef]
- Humbert, J.-Y.; Pellet, J.; Buri, P.; Arlettaz, R. Does Delaying the First Mowing Date Benefit Biodiversity in Meadowland? Environ. Evid. 2012, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Grill, A.; Cleary, D.F.R.; Stettmer, C.; Bräu, M.; Settele, J. A Mowing Experiment to Evaluate the Influence of Management on the Activity of Host Ants of Maculinea Butterflies. J. Insect Conserv. 2008, 12, 617–627. [Google Scholar] [CrossRef]
- Goffart, P.; Schtickzelle, N.; Turlure, C. Conservation and Management of the Habitats of Two Relict Butterflies in the Belgian Ardenne: Proclossiana eunomia and Lycaena helle. In Relict Species; Habel, J.C., Assmann, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 357–370. ISBN 978-3-540-92159-2. [Google Scholar]
- Thomas, J.A.; Simcox, D.J.; Clarke, R.T. Successful Conservation of a Threatened Maculinea Butterfly. Science 2009, 325, 80–83. [Google Scholar] [CrossRef]
- Wynhoff, I. Lessons from the Reintroduction of Maculinea teleius and M. nausithous in the Netherlands. J. Insect Conserv. 1998, 2, 47–57. [Google Scholar] [CrossRef]
- Thomas, J. The Ecology and Conservation of Maculinea arion and Other European Species of Large Blue Butterfly. In Ecology and Conservation of Butterflies; Pullin, A.S., Ed.; Chapman & Hall: London, UK, 1995; pp. 180–197. [Google Scholar]
- Van Swaay, C.; Cuttelod, A.; Collins, S.; Maes, D.; Munguira, M.L.; Šašić, M.; Settele, J.; Verovnik, R.; Verstrael, T.; Warren, M.; et al. European Red List of Butterflies; Publications Office of the European Union: Luxembourg, 2010; ISBN 978-92-79-14151-5. [Google Scholar]
- Maes, D.; Verovnik, R.; Wiemers, M.; Brosens, D.; Beshkov, S.; Simona, B.; Jaroslaw, B.; Cantú-Salazar, L.; Louis-Francis, C.; Sue, C.; et al. Integrating National Red Lists for Prioritising Conservation Actions for European Butterflies. J. Insect Conserv. 2019, 23, 301–330. [Google Scholar] [CrossRef]
- Wynhoff, I. REVIEW: The Recent Distribution of the European Maculinea Species. J. Insect Conserv. 1998, 2, 15–27. [Google Scholar] [CrossRef]
- Tartally, A.; Thomas, J.A.; Anton, C.; Balletto, E.; Barbero, F.; Bonelli, S.; Bräu, M.; Casacci, L.P.; Csősz, S.; Czekes, Z.; et al. Patterns of Host Use by Brood Parasitic Maculinea Butterflies across Europe. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20180202. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J. The Behaviour and Habitat Requirements of Maculinea nausithous (the Dusky Large Blue Butterfly) and M. teleius (the Scarce Large Blue) in France. Biol. Conserv. 1984, 28, 325–347. [Google Scholar] [CrossRef]
- Witek, M.; Sliwinska, E.B.; Skórka, P.; Nowicki, P.; Settele, J.; Woyciechowski, M. Polymorphic Growth in Larvae of Maculinea Butterflies, as an Example of Biennialism in Myrmecophilous Insects. Oecologia 2006, 148, 729–733. [Google Scholar] [CrossRef]
- Bonelli, S.; Vrabec, V.; Witek, M.; Barbero, F.; Patricelli, D.; Nowicki, P. Selection on Dispersal in Isolated Butterfly Metapopulations. Popul. Ecol. 2013, 55, 469–478. [Google Scholar] [CrossRef] [Green Version]
- Nowicki, P.; Vrabec, V.; Binzenhöfer, B.; Feil, J.; Zakšek, B.; Hovestadt, T.; Settele, J. Butterfly Dispersal in Inhospitable Matrix: Rare, Risky, but Long-Distance. Landsc. Ecol. 2014, 29, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Nowicki, P.; Richter, A.; Glinka, U.; Holzschuh, A.; Toelke, U.; Henle, K.; Woyciechowski, M.; Settele, J. Less Input Same Output: Simplified Approach for Population Size Assessment in Lepidoptera. Popul. Ecol. 2005, 47, 203–212. [Google Scholar] [CrossRef]
- Popović, M.; Šašić, M.; Medenica, I.; Šeat, J.; Đurđević, A.; Crnobrnja-Isailović, J. Living on the Edge: Population Ecology of Phengaris teleius in Serbia. J. Insect Conserv. 2017, 21, 401–409. [Google Scholar] [CrossRef]
- Lisle, R.J. Google Earth: A New Geological Resource. Geol. Today 2006, 22, 29–32. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary Analysis of the Performance of the Landsat 8/OLI Land Surface Reflectance Product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Hanski, I.; Alho, J.; Moilanen, A. Estimating the Parameters of Survival and Migration of Individuals in Metapopulations. Ecology 2000, 81, 239–251. [Google Scholar] [CrossRef]
- Van Dyck, H.; Baguette, M. Dispersal Behaviour in Fragmented Landscapes: Routine or Special Movements? Basic Appl. Ecol. 2005, 6, 535–545. [Google Scholar] [CrossRef]
- Hovestadt, T.; Nowicki, P. Investigating Movement within Irregularly Shaped Patches: Analysis of Mark-Release-Recapture Data Using Randomization Procedures. Isr. J. Ecol. Evol. 2008, 54, 137–154. [Google Scholar] [CrossRef]
- Lebreton, J.-D.; Burnham, K.P.; Clobert, J.; Anderson, D.R. Modeling Survival and Testing Biological Hypotheses Using Marked Animals: A Unified Approach with Case Studies. Ecol. Monogr. 1992, 62, 67–118. [Google Scholar] [CrossRef] [Green Version]
- Laake, J.L.; Johnson, D.S.; Conn, P.B. Marked: An R Package for Maximum Likelihood and Markov Chain Monte Carlo Analysis of Capture-Recapture Data. Methods Ecol. Evol. 2013, 4, 885–890. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- Bivand, R.; Rundel, C. Rgeos: Interface to Geometry Engine—Open Source (‘GEOS’). 2021. Available online: https://cran.r-project.org/web/packages/rgeos/index.html (accessed on 18 February 2023).
- Bivand, R.; Keitt, T.; Rowlingson, B. Rgdal: Bindings for the “Geospatial” Data Abstraction Library. 2022. Available online: https://www.researchgate.net/publication/247474582_rgdal_Bindings_for_the_Geospatial_Data_Abstraction_Library (accessed on 18 February 2023).
- Hanski, I. A Practical Model of Metapopulation Dynamics. J. Anim. Ecol. 1994, 63, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Moilanen, A.; Nieminen, M. Simple Connectivity Measures in Spatial Ecology. Ecology 2002, 83, 1131–1145. [Google Scholar] [CrossRef]
- Brückmann, S.V.; Krauss, J.; Steffan-Dewenter, I. Butterfly and Plant Specialists Suffer from Reduced Connectivity in Fragmented Landscapes: Connectivity Effects on Species Richness. J. Appl. Ecol. 2010, 47, 799–809. [Google Scholar] [CrossRef]
- Popović, M. Population Ecology of the Scarce Large Blue [Phengaris teleius (Bergsträsser, 1779)] in Serbia; University of Kragujevac, Faculty of Science: Kragujevac, Serbia, 2017. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
- Legrand, D.; Larranaga, N.; Bertrand, R.; Ducatez, S.; Calvez, O.; Stevens, V.M.; Baguette, M. Evolution of a Butterfly Dispersal Syndrome. Proc. R. Soc. B Biol. Sci. 2016, 283, 20161533. [Google Scholar] [CrossRef] [Green Version]
- Hanski, I.A. Eco-Evolutionary Spatial Dynamics in the Glanville Fritillary Butterfly. Proc. Natl. Acad. Sci. USA 2011, 108, 14397–14404. [Google Scholar] [CrossRef] [Green Version]
- Baguette, M.; Clobert, J.; Schtickzelle, N. Metapopulation Dynamics of the Bog Fritillary Butterfly: Experimental Changes in Habitat Quality Induced Negative Density-Dependent Dispersal. Ecography 2011, 34, 170–176. [Google Scholar] [CrossRef]
- Konvicka, M.; Zimmermann, K.; Klimova, M.; Hula, V.; Fric, Z. Inverse Link between Density and Dispersal Distance in Butterflies: Field Evidence from Six Co-Occurring Species. Popul. Ecol. 2012, 54, 91–101. [Google Scholar] [CrossRef]
- Nowicki, P.; Vrabec, V. Evidence for Positive Density-Dependent Emigration in Butterfly Metapopulations. Oecologia 2011, 167, 657–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johst, K.; Brandl, R.; Eber, S. Metapopulation Persistence in Dynamic Landscapes: The Role of Dispersal Distance. Oikos 2002, 98, 263–270. [Google Scholar] [CrossRef]
- Skórka, P.; Nowicki, P.; Kudłek, J.; Pępkowska, A.; Śliwińska, E.; Witek, M.; Settele, J.; Woyciechowski, M. Movements and Flight Morphology in the Endangered Large Blue Butterflies. Cent. Eur. J. Biol. 2013, 8, 662–669. [Google Scholar] [CrossRef] [Green Version]
- Popović, M.; Golubović, A.; Nowicki, P. Intersexual Differences in Behaviour and Resource Use of Specialist Phengaris teleius Butterflies. Insects 2022, 13, 262. [Google Scholar] [CrossRef] [PubMed]
- Plazio, E.; Margol, T.; Nowicki, P. Intersexual Differences in Density-Dependent Dispersal and Their Evolutionary Drivers. J. Evol. Biol. 2020, 33, 1495–1506. [Google Scholar] [CrossRef]
- Wynhoff, I.; van Gestel, R.; van Swaay, C.; van Langevelde, F. Not Only the Butterflies: Managing Ants on Road Verges to Benefit Phengaris (Maculinea) Butterflies. J. Insect Conserv. 2011, 15, 189–206. [Google Scholar] [CrossRef] [Green Version]
- Maes, D.; Van Dyck, H. Butterfly Diversity Loss in Flanders (North Belgium): Europe’s Worst Case Scenario? Biol. Conserv. 2001, 99, 263–276. [Google Scholar] [CrossRef]
- Pärtel, M.; Bruun, H.H.; Sammul, M. Biodiversity in Temperate European Grasslands: Origin and Conservation. Grassl. Sci. Eur. 2005, 10, 14. [Google Scholar]
- Schtickzelle, N.; Baguette, M. Behavioural Responses to Habitat Patch Boundaries Restrict Dispersal and Generate Emigration-Patch Area Relationships in Fragmented Landscapes. J. Anim. Ecol. 2003, 72, 533–545. [Google Scholar] [CrossRef]
- Kallioniemi, E.; Zannese, A.; Tinker, J.E.; Franco, A.M.A. Inter- and Intra-Specific Differences in Butterfly Behaviour at Boundaries. Insect Conserv. Divers. 2014, 7, 232–240. [Google Scholar] [CrossRef]
- Dias, P.C. Sources and Sinks in Population Biology. Trends Ecol. Evol. 1996, 11, 326–330. [Google Scholar] [CrossRef]
- Holmes, S.M.; Baden, A.L.; Brenneman, R.A.; Engberg, S.E.; Louis, E.E.; Johnson, S.E. Patch Size and Isolation Influence Genetic Patterns in Black-and-White Ruffed Lemur (Varecia variegata) Populations. Conserv. Genet. 2013, 14, 615–624. [Google Scholar] [CrossRef]
Variable Name | Estimate ± SE | Z Value | p Value |
---|---|---|---|
Intercept | −1.907 ± 0.454 | −4.200 | <0.001 |
Mowing regime (recovered) | 0.574 ± 0.172 | 3.346 | <0.001 |
Mowing regime (mown) | 0.974 ± 0.820 | 1.188 | 0.235 |
Butterfly sex (males) | −0.694 ± 0.127 | −5.485 | <0.001 |
Population size | −1.701 ± 0.229 | −7.439 | <0.001 |
Patch connectivity | 0.994 ± 0.179 | 5.556 | <0.001 |
Population size × patch connectivity | 1.569 ± 0.346 | 4.534 | <0.001 |
Population size × patch connectivity × patch area | 0.890 ± 0.137 | 6.496 | <0.001 |
Model | Variable Name | Estimate ± SE | T Value | p Value |
---|---|---|---|---|
(a) Dispersal distance | Intercept | 5.632 ± 0.362 | 15.542 | <0.001 |
Mowing regime (recovered) | −0.217 ± 0.217 | −2.563 | 0.010 | |
Mowing regime (mown) | −0.875 ± 0.308 | −2.840 | 0.004 | |
Butterfly sex (males) | −0.258 ± 0.079 | −3.287 | 0.001 | |
Patch area | 0.090 ± 0.044 | 2.025 | 0.043 | |
(b) Displacement distance | Intercept | 4.040 ± 0.133 | 30.249 | <0.001 |
Butterfly sex (males) | −0.272 ± 0.050 | −5.467 | <0.001 | |
Population size | 0.089 ± 0.028 | 3.118 | 0.002 | |
Population size × patch area | −0.301 ± 0.068 | −4.435 | <0.001 |
Variable Name | Estimate ± SE | Z Value | p Value |
---|---|---|---|
Intercept | 5.596 ± 0.480 | 11.666 | <0.001 |
Recovered | −0.712 ± 0.030 | −23.657 | <0.001 |
Mown | −0.799 ± 0.043 | −18.665 | <0.001 |
Patch connectivity | −0.117 ± 0.013 | −9.003 | <0.001 |
Patch area | 1.692 ± 0.026 | 64.666 | <0.001 |
Patch connectivity × patch area | −0.569 ± 0.012 | −47.472 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popović, M.; Nowicki, P. Movements of a Specialist Butterfly in Relation to Mowing Management of Its Habitat Patches. Biology 2023, 12, 344. https://doi.org/10.3390/biology12030344
Popović M, Nowicki P. Movements of a Specialist Butterfly in Relation to Mowing Management of Its Habitat Patches. Biology. 2023; 12(3):344. https://doi.org/10.3390/biology12030344
Chicago/Turabian StylePopović, Miloš, and Piotr Nowicki. 2023. "Movements of a Specialist Butterfly in Relation to Mowing Management of Its Habitat Patches" Biology 12, no. 3: 344. https://doi.org/10.3390/biology12030344
APA StylePopović, M., & Nowicki, P. (2023). Movements of a Specialist Butterfly in Relation to Mowing Management of Its Habitat Patches. Biology, 12(3), 344. https://doi.org/10.3390/biology12030344