A Method to Locally Irradiate Specific Organ in Model Organisms Using a Focused Heavy-Ion Microbeam
Abstract
:Simple Summary
Abstract
1. Introduction
2. Experimental Methods
2.1. Focused Heavy-Ion Microbeam Device
2.2. Development of the Control Software Component for Paint Irradiation
2.2.1. A Function to Specify Areas for Paint Irradiation
2.2.2. A Function to Determine the Number of Ions According to the Specified Absorbed Dose
2.2.3. A Function to Determine the Coordinates of Ions to Be Irradiated
2.3. Irradiation of the Solid-State Ion Track Detector (CR-39)
2.4. Sample Preparation of Caenorhabditis elegans for Irradiation
2.5. Microbeam Irradiation of Caenorhabditis elegans
3. Result and Discussion
3.1. Distribution of the Ion Hit on the Solid-State Ion Track Detector CR-39
3.2. Paint Irradiation of a Specific Organ in C. elegans
4. Future Prospects and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
QST | National Institute of Quantum Science and Technology |
TIAQ | Takasaki Institute for Advanced Quantum Science |
TIARA | Takasaki Ion Accelerators for Advanced Radiation Application |
LET | Linear energy transfer |
References
- Fang-Yen, C.; Gabel, C.V.; Samuel, A.D.; Bargmann, C.I.; Avery, L. Laser Microsurgery in Caenorhabditis elegans. In Methods in Cell Biology; Elsevier: Amsterdam, The Netherlands, 2012; pp. 177–206. [Google Scholar] [CrossRef]
- Funayama, T. Heavy-ion microbeams for biological science: Development of system and utilization for biological experiments in QST-takasaki. Quantum Beam Sci. 2019, 3, 13. [Google Scholar] [CrossRef]
- Funayama, T.; Hamada, N.; Sakashita, T.; Kobayashi, Y. Heavy-ion microbeams—Development and applications in biological studies. IEEE Trans. Plasma Sci. 2008, 36, 1432–1440. [Google Scholar] [CrossRef]
- Vogel, A.; Noack, J.; Hüttman, G.; Paltauf, G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B 2005, 81, 1015–1047. [Google Scholar] [CrossRef]
- Ghita, M.; Fernandez-Palomo, C.; Fukunaga, H.; Fredericia, P.M.; Schettino, G.; Bräuer-Krisch, E.; Butterworth, K.T.; McMahon, S.J.; Prise, K.M. Microbeam evolution: From single cell irradiation to pre-clinical studies. Int. J. Radiat. Biol. 2018, 94, 708–718. [Google Scholar] [CrossRef]
- Barberet, P.; Seznec, H. Advances in microbeam technologies and applications to radiation biology: Table 1. Radiat. Prot. Dosim. 2015, 166, 182–187. [Google Scholar] [CrossRef]
- Drexler, G.A.; Siebenwirth, C.; Drexler, S.E.; Girst, S.; Greubel, C.; Dollinger, G.; Friedl, A.A. Live cell imaging at the Munich ion microbeam SNAKE—A status report. Radiat. Oncol. 2015, 10, 42. [Google Scholar] [CrossRef]
- Merchant, M.J.; Jeynes, J.C.G.; Grime, G.W.; Palitsin, V.; Tullis, I.D.W.; Barber, P.R.; Vojnovic, B.; Webb, R.P.; Kirkby, K.J. A Focused Scanning Vertical Beam for Charged Particle Irradiation of Living Cells with Single Counted Particles. Radiat. Res. 2012, 178, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Sheng, L.; Du, G.; Guo, J.; Wu, R.; Song, M.; Yuan, Y.; Xiao, G. Focusing giga-electronvolt heavy ions to micrometers at the Institute of Modern Physics. Rev. Sci. Instrum. 2013, 84, 055113. [Google Scholar] [CrossRef] [PubMed]
- Vianna, F.; Gonon, G.; Lalanne, K.; Adam-Guillermin, C.; Bottollier-Depois, J.F.; Daudin, L.; Dugué, D.; Moretto, P.; Petit, M.; Serani, L.; et al. Characterization of MIRCOM, IRSN’s new ion microbeam dedicated to targeted irradiation of living biological samples. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2022, 515, 20–30. [Google Scholar] [CrossRef]
- Ikeda, T.; Ikekame, M.; Hikima, Y.; Mori, M.; Kawamura, S.; Minowa, T.; Jin, W.G. Profile measurements of MeV ion microbeams in atmosphere extracted from single tapered glass capillaries with an end window. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 470, 42–47. [Google Scholar] [CrossRef]
- Gerardi, S. Ionizing radiation microbeam facilities for radiobiological studies in Europe. J. Radiat. Res. 2009, 50, A13–A20. [Google Scholar] [CrossRef]
- Bigelow, A.; Garty, G.; Funayama, T.; Randers-Pehrson, G.; Brenner, D.; Geard, C. Expanding the Question-answering Potential of Single-cell Microbeams at RARAF, USA. J. Radiat. Res. 2009, 50, A21–A28. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Funayama, T.; Hamada, N.; Sakashita, T.; Konishi, T.; Imaseki, H.; Yasuda, K.; Hatashita, M.; Takagi, K.; Hatori, S.; et al. Microbeam irradiation facilities for radiobiology in Japan and China. J. Radiat. Res. 2009, 50, A29–A47. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Hei, T.K. Focus small to find big—The microbeam story. Int. J. Radiat. Biol. 2017, 94, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, A.; Suzuki, M.; Funayama, T.; Moriwaki, T.; Sakashita, T.; Kobayashi, Y.; Zhang-Akiyama, Q.M. High-Dose Irradiation Inhibits Motility and Induces Autophagy in Caenorhabditis elegans. Int. J. Mol. Sci. 2021, 22, 9810. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Soh, Z.; Yamashita, H.; Tsuji, T.; Funayama, T. Targeted Central Nervous System Irradiation of Caenorhabditis elegans Induces a Limited Effect on Motility. Biology 2020, 9, 289. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Sakashita, T.; Funayama, T. Immobilization of live Caenorhabditis elegans individuals using an ultra-thin polydimethylsiloxane microfluidic chip with water retention. JoVE 2019, e59008. [Google Scholar] [CrossRef]
- Suzuki, M.; Sakashita, T.; Hattori, Y.; Yokota, Y.; Kobayashi, Y.; Funayama, T. Development of ultra-thin chips for immobilization of Caenorhabditis elegans in microfluidic channels during irradiation and selection of buffer solution to prevent dehydration. J. Neurosci. Methods 2018, 306, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Hattori, Y.; Sakashita, T.; Yokota, Y.; Kobayashi, Y.; Funayama, T. Region-specific irradiation system with heavy-ion microbeam for active individuals of Caenorhabditis elegans. J. Radiat. Res. 2017, 58, 881–886. [Google Scholar] [CrossRef]
- Sugimoto, T.; Dazai, K.; Sakashita, T.; Funayama, T.; Wada, S.; Hamada, N.; Kakizaki, T.; Kobayashi, Y.; Higashitani, A. Cell cycle arrest and apoptosis in Caenorhabditis elegans germline cells following heavy-ion microbeam irradiation. Int. J. Radiat. Biol. 2006, 82, 31–38. [Google Scholar] [CrossRef]
- Nagata, K.; Yasuda, T.; Suzuki, M.; Funayama, T.; Mitani, H.; Oda, S. Testis-ova Induction by Microbeam Irradiation in P53-Deficient Medaka Testis. Cytologia 2022, 87, 1–2. [Google Scholar] [CrossRef]
- Yasuda, T.; Funayama, T.; Nagata, K.; Li, D.; Endo, T.; Jia, Q.; Suzuki, M.; Ishikawa, Y.; Mitani, H.; Oda, S. Collimated Microbeam Reveals that the Proportion of Non-Damaged Cells in Irradiated Blastoderm Determines the Success of Development in Medaka (Oryzias latipes) Embryos. Biology 2020, 9, 447. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, T.; Kamahori, M.; Nagata, K.; Watanabe-Asaka, T.; Suzuki, M.; Funayama, T.; Mitani, H.; Oda, S. Abscopal Activation of Microglia in Embryonic Fish Brain Following Targeted Irradiation with Heavy-Ion Microbeam. Int. J. Mol. Sci. 2017, 18, 1428. [Google Scholar] [CrossRef]
- Furusawa, T.; Fukamoto, K.; Sakashita, T.; Suzuki, E.; Kakizaki, T.; Hamada, N.; Funayama, T.; Suzuki, H.; Ishioka, N.; Wada, S.; et al. Targeted heavy-ion microbeam irradiation of the embryo but not yolk in the diapause-terminated egg of the silkworm, Bombyx mori, induces the somatic mutation. J. Radiat. Res. 2009, 50, 371–375. [Google Scholar] [CrossRef]
- Fukamoto, K.; Shimura, S.; Shirai, K.; Kanekatsu, R.; Kiguchi, K.; Sakashita, T.; Funayama, T.; Kobayashi, Y. Effects of heavy-ion irradiadion on the differentiation of epidermal cells in the silkworm, Bombyx mori. J. Insect Biotechnol. Sericol. 2006, 75, 107–114. [Google Scholar] [CrossRef]
- Miyazawa, Y.; Sakashita, T.; Funayama, T.; Hamada, N.; Negishi, H.; Kobayashi, A.; Kaneyasu, T.; Ooba, A.; Morohashi, K.; Kakizaki, T.; et al. Effects of locally targeted heavy-ion and laser microbeam on root hydrotropism in Arabidopsis thaliana. J. Radiat. Res. 2008, 49, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Franks, C.J.; Holden-Dye, L.; Bull, K.; Luedtke, S.; Walker, R.J. Anatomy, physiology and pharmacology of Caenorhabditis elegans pharynx: A model to define gene function in a simple neural system. Invertebr. Neurosci. 2006, 6, 105–122. [Google Scholar] [CrossRef]
- Hall, D.H.; Altun, Z.F. C. elegans Atlas; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2008; Chapter 3: Nervous System; pp. 57–58, 199–223. [Google Scholar]
- White, J.; Southgate, E.; Thomson, J.N.; Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1986, 314, 1–340. [Google Scholar] [CrossRef]
- Hattori, Y.; Suzuki, M.; Soh, Z.; Kobayashi, Y.; Tsuji, T. Modeling of the pharyngeal muscle in Caenorhabditis elegans based on FitzHugh-Nagumo equations. Artif. Life Robot. 2012, 17, 173–179. [Google Scholar] [CrossRef]
- Oikawa, M.; Kamiya, T.; Fukuda, M.; Okumura, S.; Inoue, H.; Masuno, S.; Umemiya, S.; Oshiyama, Y.; Taira, Y. Design of a focusing high-energy heavy ion microbeam system at the JAERI AVF cyclotron. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2003, 210, 54–58. [Google Scholar] [CrossRef]
- Oikawa, M.; Satoh, T.; Sakai, T.; Miyawaki, N.; Kashiwagi, H.; Kurashima, S.; Okumura, S.; Fukuda, M.; Yokota, W.; Kamiya, T. Focusing high-energy heavy ion microbeam system at the JAEA AVF cyclotron. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2007, 260, 85–90. [Google Scholar] [CrossRef]
- Oikawa, M.; Satoh, T.; Kamiya, T.; Kurashima, S.; Okumura, S.; Miyawaki, N.; Kashiwagi, H.; Fukuda, M.; Sakai, T.; Yokota, W. Characteristics of focusing high-energy heavy ion microbeam system at the JAEA AVF cyclotron. Appl. Radiat. Isot. 2009, 67, 484–487. [Google Scholar] [CrossRef]
- Funayama, T.; Sakashita, T.; Suzuki, M.; Yokota, Y.; Miyawaki, N.; Kashiwagi, H.; Satoh, T.; Kurashima, S. An irradiation device for biological targets using focused microbeams of cyclotron-accelerated heavy ions. Nucl. Instrum. Methods Phys. Res. B 2020, 465, 101–109. [Google Scholar] [CrossRef]
- Watt, F.; Breese, M.B.; Bettiol, A.A.; van Kan, J.A. Proton beam writing. Mater. Today 2007, 10, 20–29. [Google Scholar] [CrossRef]
- Tanaka, S.; Fukuda, M.; Nishimura, K.; Hosono, M.; Watanabe, H.; Yamano, N. The IRAC Code System to Calculate Activation and Transmutation in the TIARA Facility. J. Nucl. Sci. Technol. 2000, 37, 840–844. [Google Scholar] [CrossRef]
- Brenner, S. The genetics of Caenorhabditis elegans. Genetics 1974, 77, 71–94. [Google Scholar] [CrossRef] [PubMed]
- Sakashita, T.; Suzuki, M.; Hamada, N.; Shimozawa, Y.; Shirai-Fukamoto, K.; Yokota, Y.; Hamada-Sora, S.; Kakizaki, T.; Wada, S.; Funayama, T.; et al. Behavioral Resistance of Caenorhabditis elegans Against High-LET Radiation Exposure. Biol. Sci. Space 2012, 26, 7–11. [Google Scholar] [CrossRef]
- Sakamoto, K.; Soh, Z.; Suzuki, M.; Iino, Y.; Tsuji, T. Forward and backward locomotion patterns in C. elegans generated by a connectome-based model simulation. Sci. Rep. 2021, 11, 13737. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Funayama, T.; Suzuki, M.; Miyawaki, N.; Kashiwagi, H. A Method to Locally Irradiate Specific Organ in Model Organisms Using a Focused Heavy-Ion Microbeam. Biology 2023, 12, 1524. https://doi.org/10.3390/biology12121524
Funayama T, Suzuki M, Miyawaki N, Kashiwagi H. A Method to Locally Irradiate Specific Organ in Model Organisms Using a Focused Heavy-Ion Microbeam. Biology. 2023; 12(12):1524. https://doi.org/10.3390/biology12121524
Chicago/Turabian StyleFunayama, Tomoo, Michiyo Suzuki, Nobumasa Miyawaki, and Hirotsugu Kashiwagi. 2023. "A Method to Locally Irradiate Specific Organ in Model Organisms Using a Focused Heavy-Ion Microbeam" Biology 12, no. 12: 1524. https://doi.org/10.3390/biology12121524
APA StyleFunayama, T., Suzuki, M., Miyawaki, N., & Kashiwagi, H. (2023). A Method to Locally Irradiate Specific Organ in Model Organisms Using a Focused Heavy-Ion Microbeam. Biology, 12(12), 1524. https://doi.org/10.3390/biology12121524