The Effect of Pollen on Coral Health
Abstract
:Simple Summary
Abstract
1. Introduction
2. Pollen Production and the Perceived Problem
3. Linking Small Particle Dispersal with Coral
4. How Would Hay Fever Manifest Itself in Coral?
5. Fighting the Onset of Hay Fever
6. The Potential Role of Pollen in Killing Corals
7. The Role of Reactive Oxygen Species and the Fight against Pathogens
8. Pollen’s Alteration of the Coral’s Immediate Environment
9. How Do Corals React to the Presence of Pollen?
10. Future Research Directions
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petrone, M.E.; Parry, R.; Mifsud, J.C.O.; Van Brussel, K.; Vorhees, I.; Richards, Z.T.; Holmes, E.C. Evidence for an Aquatic Origin of Influenza Virus and the Order Articulavirales. Proc. Natl. Acad. Sci. USA 2023, 120, e2310529120. [Google Scholar] [CrossRef] [PubMed]
- Correa, A.M.S.; Ainsworth, T.D.; Rosales, S.M.; Thurber, A.R.; Butler, C.R.; Vega Thurber, R.L. Viral Outbreak in Corals Associated with an In Situ Bleaching Event: Atypical Herpes-Like Viruses and a New Megavirus Infecting Symbiodinium. Front. Microbiol. 2016, 7, 127. [Google Scholar] [CrossRef] [PubMed]
- Buckle, J. Infection. In Clinical Aromatherapy; Elsevier: Amsterdam, The Netherlands, 2015; pp. 130–167. ISBN 978-0-7020-5440-2. [Google Scholar]
- Stabili, L.; Parisi, M.; Parrinello, D.; Cammarata, M. Cnidarian Interaction with Microbial Communities: From Aid to Animal’s Health to Rejection Responses. Mar. Drugs 2018, 16, 296. [Google Scholar] [CrossRef] [PubMed]
- Sweet, M.; Burn, D.; Croquer, A.; Leary, P. Characterisation of the Bacterial and Fungal Communities Associated with Different Lesion Sizes of Dark Spot Syndrome Occurring in the Coral Stephanocoenia Intersepta. PLoS ONE 2013, 8, e62580. [Google Scholar] [CrossRef] [PubMed]
- Pawankar, R.; Canonica, G.W.; Holgate, S.T.; Lockey, R.F. World Allergy Organization (WAO) White Book on Allergy; WAO: London, UK, 2011; ISBN 978-0-615-46182-3. [Google Scholar]
- Bousquet, J.; Khaltaev, N.; Cruz, A.A.; Denburg, J.; Fokkens, W.J.; Togias, A.; Zuberbier, T.; Baena-Cagnani, C.E.; Canonica, G.W.; Van Weel, C.; et al. Allergic Rhinitis and Its Impact on Asthma (ARIA) 2008*: ARIA: 2008 Update. Allergy 2008, 63, 8–160. [Google Scholar] [CrossRef] [PubMed]
- Pawankar, R.; Mori, S.; Ozu, C.; Kimura, S. Overview on the Pathomechanisms of Allergic Rhinitis. Asia Pac. Allergy 2011, 1, 157. [Google Scholar] [CrossRef] [PubMed]
- Behrendt, H.; Becker, W.-M. Localization, Release and Bioavailability of Pollen Allergens: The Influence of Environmental Factors. Curr. Opin. Immunol. 2001, 13, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Skoner, D.P. Allergic Rhinitis: Definition, Epidemiology, Pathophysiology, Detection, and Diagnosis. J. Allergy Clin. Immunol. 2001, 108, S2–S8. [Google Scholar] [CrossRef]
- D’Amato, G.; Cecchi, L.; Bonini, S.; Nunes, C.; Annesi-Maesano, I.; Behrendt, H.; Liccardi, G.; Popov, T.; van Cauwenberge, P. Allergenic Pollen and Pollen Allergy in Europe. Allergy 2007, 62, 976–990. [Google Scholar] [CrossRef]
- Greiner, A.N.; Hellings, P.W.; Rotiroti, G.; Scadding, G.K. Allergic Rhinitis. Lancet 2011, 378, 2112–2122. [Google Scholar] [CrossRef]
- Kagami, M.; Motoki, Y.; Masclaux, H.; Bec, A. Carbon and Nutrients of Indigestible Pollen Are Transferred to Zooplankton by Chytrid Fungi. Freshw. Biol. 2017, 62, 954–964. [Google Scholar] [CrossRef]
- Rogers, C.A.; Wayne, P.M.; Macklin, E.A.; Muilenberg, M.L.; Wagner, C.J.; Epstein, P.R.; Bazzaz, F.A. Interaction of the Onset of Spring and Elevated Atmospheric CO 2 on Ragweed (Ambrosia Artemisiifolia L.) Pollen Production. Environ. Health Perspect. 2006, 114, 865–869. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.W. Pollen Overload: Seasonal Allergies in a Changing Climate. Environ. Health Perspect. 2016, 124, A70–A75. [Google Scholar] [CrossRef] [PubMed]
- Albertine, J.M.; Manning, W.J.; DaCosta, M.; Stinson, K.A.; Muilenberg, M.L.; Rogers, C.A. Projected Carbon Dioxide to Increase Grass Pollen and Allergen Exposure Despite Higher Ozone Levels. PLoS ONE 2014, 9, e111712. [Google Scholar] [CrossRef]
- Meehl, G.; Stocker, T.; Collins, W.; Friedlingstein, P.; Gaye, A.; Gregory, J.; Kitoh, A.; Murphy, J.; Noda, A.; Raper, S.; et al. Global Climate Projections; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2007. [Google Scholar]
- Shumilovskikh, L.S.; Schlütz, F.; Achterberg, I.; Kvitkina, A.; Bauerochse, A.; Leuschner, H.H. Pollen as Nutrient Source in Holocene Ombrotrophic Bogs. Rev. Palaeobot. Palynol. 2015, 221, 171–178. [Google Scholar] [CrossRef]
- Lee, E.J.; Kenkel, N.; Booth, T. Atmospheric Deposition of Macronutrients by Pollen in the Boreal Forest. Écoscience 1996, 3, 304–309. [Google Scholar] [CrossRef]
- Shinn, E.A.; Smith, G.W.; Prospero, J.M.; Betzer, P.; Hayes, M.L.; Garrison, V.; Barber, R.T. African Dust and the Demise of Caribbean Coral Reefs. Geophys. Res. Lett. 2000, 27, 3029–3032. [Google Scholar] [CrossRef]
- Garrison, V.H.; Shinn, E.A.; Foreman, W.T.; Griffin, D.W.; Holmes, C.W.; Kellogg, C.A.; Majewski, M.S.; Richardson, L.L.; Ritchie, K.B.; Smith, G.W. African and Asian Dust: From Desert Soils to Coral Reefs. BioScience 2003, 53, 469. [Google Scholar] [CrossRef]
- Weir-Brush, J.R.; Garrison, V.H.; Smith, G.W.; Shinn, E.A. The Relationship Between Gorgonian Coral (Cnidaria: Gorgonacea) Diseases and African Dust Storms. Aerobiologia 2004, 20, 119–126. [Google Scholar] [CrossRef]
- Hunter, H.; Cervone, G. Analysing the Influence of African Dust Storms on the Prevalence of Coral Disease in the Caribbean Sea Using Remote Sensing and Association Rule Data Mining. Int. J. Remote Sens. 2017, 38, 1494–1521. [Google Scholar] [CrossRef]
- Wang, K.; Liu, C. Transport of the Saharan Dust Air Plumes over the Tropical North Atlantic from FORMOSAT–3/COSMIC Observation. Atmos. Pollut. Res. 2014, 5, 539–553. [Google Scholar] [CrossRef]
- Kallos, G.; Papadopoulos, A.; Katsafados, P.; Nickovic, S. Transatlantic Saharan Dust Transport: Model Simulation and Results. J. Geophys. Res. 2006, 111, D09204. [Google Scholar] [CrossRef]
- Goudie, A.S.; Middleton, N.J. Saharan Dust Storms: Nature and Consequences. Earth-Sci. Rev. 2001, 56, 179–204. [Google Scholar] [CrossRef]
- Herut, B.; Zohary, T.; Krom, M.D.; Mantoura, R.F.C.; Pitta, P.; Psarra, S.; Rassoulzadegan, F.; Tanaka, T.; Frede Thingstad, T. Response of East Mediterranean Surface Water to Saharan Dust: On-Board Microcosm Experiment and Field Observations. Deep Sea Res. Part II Top. Stud. Oceanogr. 2005, 52, 3024–3040. [Google Scholar] [CrossRef]
- Reche, I.; Ortega-Retuerta, E.; Romera, O.; Villena, E.P.; Baquero, R.M.; Casamayor, E.O. Effect of Saharan Dust Inputs on Bacterial Activity and Community Composition in Mediterranean Lakes and Reservoirs. Limnol. Oceanogr. 2009, 54, 869–879. [Google Scholar] [CrossRef]
- Ezzat, L.; Maguer, J.-F.; Grover, R.; Ferrier-Pagès, C. Limited Phosphorus Availability Is the Achilles Heel of Tropical Reef Corals in a Warming Ocean. Sci. Rep. 2016, 6, 31768. [Google Scholar] [CrossRef]
- Togias, A. Unique Mechanistic Features of Allergic Rhinitis. J. Allergy Clin. Immunol. 2000, 105, S599–S604. [Google Scholar] [CrossRef]
- Olmsted, S.S.; Padgett, J.L.; Yudin, A.I.; Whaley, K.J.; Moench, T.R.; Cone, R.A. Diffusion of Macromolecules and Virus-Like Particles in Human Cervical Mucus. Biophys. J. 2001, 81, 1930–1937. [Google Scholar] [CrossRef]
- Cone, R.A. Barrier Properties of Mucus. Adv. Drug Deliv. Rev. 2009, 61, 75–85. [Google Scholar] [CrossRef]
- Lai, S.K.; Wang, Y.-Y.; Wirtz, D.; Hanes, J. Micro- and Macrorheology of Mucus. Adv. Drug Deliv. Rev. 2009, 61, 86–100. [Google Scholar] [CrossRef]
- Swidsinski, A.; Sydora, B.C.; Doerffel, Y.; Loening-Baucke, V.; Vaneechoutte, M.; Lupicki, M.; Scholze, J.; Lochs, H.; Dieleman, L.A. Viscosity Gradient within the Mucus Layer Determines the Mucosal Barrier Function and the Spatial Organization of the Intestinal Microbiota. Inflamm. Bowel Dis. 2007, 13, 963–970. [Google Scholar] [CrossRef]
- Piggot, A.M.; Fouke, B.W.; Sivaguru, M.; Sanford, R.A.; Gaskins, H.R. Change in Zooxanthellae and Mucocyte Tissue Density as an Adaptive Response to Environmental Stress by the Coral, Montastraea Annularis. Mar. Biol. 2009, 156, 2379–2389. [Google Scholar] [CrossRef]
- Shnit-Orland, M.; Kushmaro, A. Coral Mucus-Associated Bacteria: A Possible First Line of Defense: Coral Mucus-Associated Bacteria. FEMS Microbiol. Ecol. 2009, 67, 371–380. [Google Scholar] [CrossRef]
- Reed, K.; Muller, E.; van Woesik, R. Coral Immunology and Resistance to Disease. Dis. Aquat. Org. 2010, 90, 85–92. [Google Scholar] [CrossRef]
- Brown, B.; Bythell, J. Perspectives on Mucus Secretion in Reef Corals. Mar. Ecol. Prog. Ser. 2005, 296, 291–309. [Google Scholar] [CrossRef]
- Ritchie, K. Regulation of Microbial Populations by Coral Surface Mucus and Mucus-Associated Bacteria. Mar. Ecol. Prog. Ser. 2006, 322, 1–14. [Google Scholar] [CrossRef]
- Sharon, G.; Rosenberg, E. Bacterial Growth on Coral Mucus. Curr. Microbiol. 2008, 56, 481–488. [Google Scholar] [CrossRef]
- Caughman, A.M.; Pratte, Z.A.; Patin, N.V.; Stewart, F.J. Coral Microbiome Changes over the Day–Night Cycle. Coral Reefs 2021, 40, 921–935. [Google Scholar] [CrossRef]
- Songnuan, W. Wind-Pollination and the Roles of Pollen Allergenic Proteins. Asian Pac. J. Allergy Immunol. 2013, 31, 261–270. [Google Scholar]
- Pritchard, D.I.; Falcone, F.H.; Mitchell, P.D. The Evolution of IgE-mediated Type I Hypersensitivity and Its Immunological Value. Allergy 2021, 76, 1024–1040. [Google Scholar] [CrossRef]
- Chapman, M.D.; Pomés, A.; Breiteneder, H.; Ferreira, F. Nomenclature and Structural Biology of Allergens. J. Allergy Clin. Immunol. 2007, 119, 414–420. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell. In Molecular Biology of the Cell; Garland Science: New York, NY, USA, 2002; Chapter 24. [Google Scholar]
- Dullaers, M.; De Bruyne, R.; Ramadani, F.; Gould, H.J.; Gevaert, P.; Lambrecht, B.N. The Who, Where, and When of IgE in Allergic Airway Disease. J. Allergy Clin. Immunol. 2012, 129, 635–645. [Google Scholar] [CrossRef]
- Hosoki, K.; Boldogh, I.; Sur, S. Innate Responses to Pollen Allergens. Curr. Opin. Allergy Clin. Immunol. 2015, 15, 79–88. [Google Scholar] [CrossRef]
- Fuess, L.E.; Pinzón, C.J.H.; Weil, E.; Grinshpon, R.D.; Mydlarz, L.D. Life or Death: Disease-Tolerant Coral Species Activate Autophagy Following Immune Challenge. Proc. R. Soc. B 2017, 284, 20170771. [Google Scholar] [CrossRef]
- Turvey, S.E.; Broide, D.H. Innate Immunity. J. Allergy Clin. Immunol. 2010, 125, S24–S32. [Google Scholar] [CrossRef]
- Sun, J.C.; Lanier, L.L. Natural Killer Cells Remember: An Evolutionary Bridge between Innate and Adaptive Immunity? Eur. J. Immunol. 2009, 39, 2059–2064. [Google Scholar] [CrossRef]
- O’Leary, J.G.; Goodarzi, M.; Drayton, D.L.; von Andrian, U.H. T Cell– and B Cell–Independent Adaptive Immunity Mediated by Natural Killer Cells. Nat. Immunol. 2006, 7, 507–516. [Google Scholar] [CrossRef]
- Flajnik, M.F.; Kasahara, M. Origin and Evolution of the Adaptive Immune System: Genetic Events and Selective Pressures. Nat. Rev. Genet. 2010, 11, 47–59. [Google Scholar] [CrossRef]
- Litman, G.W.; Cannon, J.P.; Dishaw, L.J. Reconstructing Immune Phylogeny: New Perspectives. Nat. Rev. Immunol. 2005, 5, 866–879. [Google Scholar] [CrossRef]
- Morales Poole, J.R.; Paganini, J.; Pontarotti, P. Convergent Evolution of the Adaptive Immune Response in Jawed Vertebrates and Cyclostomes: An Evolutionary Biology Approach Based Study. Dev. Comp. Immunol. 2017, 75, 120–126. [Google Scholar] [CrossRef]
- Delmonte, O.M.; Schuetz, C.; Notarangelo, L.D. RAG Deficiency: Two Genes, Many Diseases. J. Clin. Immunol. 2018, 38, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Lanier, L.L. Shades of Grey—The Blurring View of Innate and Adaptive Immunity. Nat. Rev. Immunol. 2013, 13, 73–74. [Google Scholar] [CrossRef] [PubMed]
- Levy, S.; Elek, A.; Grau-Bové, X.; Menéndez-Bravo, S.; Iglesias, M.; Tanay, A.; Mass, T.; Sebé-Pedrós, A. A Stony Coral Cell Atlas Illuminates the Molecular and Cellular Basis of Coral Symbiosis, Calcification, and Immunity. Cell 2021, 184, 2973–2987. [Google Scholar] [CrossRef] [PubMed]
- Hildemann, W.H.; Linthicum, D.S.; Vann, D.C. Transplantation and Immunoincompatibility Reactions among Reef-Building Corals. Immunogenetics 1975, 2, 269–284. [Google Scholar] [CrossRef]
- Palmer, C.V. Immunity and the Coral Crisis. Commun. Biol. 2018, 1, 91. [Google Scholar] [CrossRef] [PubMed]
- Campos, M.G.R.; Bogdanov, S.; de Almeida-Muradian, L.B.; Szczesna, T.; Mancebo, Y.; Frigerio, C.; Ferreira, F. Pollen Composition and Standardisation of Analytical Methods. J. Apic. Res. 2008, 47, 154–161. [Google Scholar] [CrossRef]
- Lin, H.; Lizarraga, L.; Bottomley, L.A.; Carson Meredith, J. Effect of Water Absorption on Pollen Adhesion. J. Colloid Interface Sci. 2015, 442, 133–139. [Google Scholar] [CrossRef]
- Marchesi, J.R.; Ravel, J. The Vocabulary of Microbiome Research: A Proposal. Microbiome 2015, 3, 31. [Google Scholar] [CrossRef]
- Manirajan, B.A.; Maisinger, C.; Ratering, S.; Rusch, V.; Schwiertz, A.; Cardinale, M.; Schnell, S. Diversity, Specificity, Co-Occurrence and Hub Taxa of the Bacterial–Fungal Pollen Microbiome. FEMS Microbiol. Ecol. 2018, 94, 112. [Google Scholar] [CrossRef]
- Obersteiner, A.; Gilles, S.; Frank, U.; Beck, I.; Häring, F.; Ernst, D.; Rothballer, M.; Hartmann, A.; Traidl-Hoffmann, C.; Schmid, M. Pollen-Associated Microbiome Correlates with Pollution Parameters and the Allergenicity of Pollen. PLoS ONE 2016, 11, e0149545. [Google Scholar] [CrossRef]
- Ambika Manirajan, B.; Ratering, S.; Rusch, V.; Schwiertz, A.; Geissler-Plaum, R.; Cardinale, M.; Schnell, S. Bacterial Microbiota Associated with Flower Pollen Is Influenced by Pollination Type, and Shows a High Degree of Diversity and Species-Specificity: The Bacterial Microbiota of Flower Pollen. Environ. Microbiol. 2016, 18, 5161–5174. [Google Scholar] [CrossRef] [PubMed]
- Kostić, A.Ž.; Milinčić, D.D.; Barać, M.B.; Ali Shariati, M.; Tešić, Ž.L.; Pešić, M.B. The Application of Pollen as a Functional Food and Feed Ingredient—The Present and Perspectives. Biomolecules 2020, 10, 84. [Google Scholar] [CrossRef] [PubMed]
- Kalbande, D.M.; Dhadse, S.N.; Chaudhari, P.R.; Wate, S.R. Biomonitoring of Heavy Metals by Pollen in Urban Environment. Environ. Monit. Assess. 2008, 138, 233–238. [Google Scholar] [CrossRef]
- Ferrier-Pagès, C.; Boisson, F.; Allemand, D.; Tambutté, E. Kinetics of Strontium Uptake in the Scleractinian Coral Stylophora Pistillata. Mar. Ecol. Prog. Ser. 2002, 245, 93–100. [Google Scholar] [CrossRef]
- Kelly, L.W.; Barott, K.L.; Dinsdale, E.; Friedlander, A.M.; Nosrat, B.; Obura, D.; Sala, E.; Sandin, S.A.; Smith, J.E.; Vermeij, M.J.A.; et al. Black Reefs: Iron-Induced Phase Shifts on Coral Reefs. ISME J. 2012, 6, 638–649. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.; Madeira, C.; Jogee, N.; Ferreira, A.; Gouveia, R.; Cabral, H.; Diniz, M.; Vinagre, C. Oxidative Stress on Scleractinian Coral Fragments Following Exposure to High Temperature and Low Salinity. Ecol. Indic. 2019, 107, 105586. [Google Scholar] [CrossRef]
- Rushmore, M.E.; Ross, C.; Fogarty, N.D. Physiological Responses to Short-Term Sediment Exposure in Adults of the Caribbean Coral Montastraea Cavernosa and Adults and Recruits of Porites Astreoides. Coral Reefs 2021, 40, 1579–1591. [Google Scholar] [CrossRef]
- Singh, R.; Singh, S.; Parihar, P.; Mishra, R.K.; Tripathi, D.K.; Singh, V.P.; Chauhan, D.K.; Prasad, S.M. Reactive Oxygen Species (ROS): Beneficial Companions of Plants’ Developmental Processes. Front. Plant Sci. 2016, 7, 1299. [Google Scholar] [CrossRef]
- Nelson, H.R.; Altieri, A.H. Oxygen: The Universal Currency on Coral Reefs. Coral Reefs 2019, 38, 177–198. [Google Scholar] [CrossRef]
- Sankaranarayanan, S.; Ju, Y.; Kessler, S.A. Reactive Oxygen Species as Mediators of Gametophyte Development and Double Fertilization in Flowering Plants. Front. Plant Sci. 2020, 11, 1199. [Google Scholar] [CrossRef]
- Wang, X.-L.; Takai, T.; Kamijo, S.; Gunawan, H.; Ogawa, H.; Okumura, K. NADPH Oxidase Activity in Allergenic Pollen Grains of Different Plant Species. Biochem. Biophys. Res. Commun. 2009, 387, 430–434. [Google Scholar] [CrossRef]
- Taylor, P.E.; Jacobson, K.W.; House, J.M.; Glovsky, M.M. Links between Pollen, Atopy and the Asthma Epidemic. Int. Arch. Allergy Immunol. 2007, 144, 162–170. [Google Scholar] [CrossRef]
- Peixoto, R.S.; Sweet, M.; Villela, H.D.M.; Cardoso, P.; Thomas, T.; Voolstra, C.R.; Høj, L.; Bourne, D.G. Coral Probiotics: Premise, Promise, Prospects. Annu. Rev. Anim. Biosci. 2021, 9, 265–288. [Google Scholar] [CrossRef] [PubMed]
- Abdulrahman, I.; Jamal, M.T.; Pugazhendi, A.; Dhavamani, J.; Satheesh, S. Antibiofilm Activity of Secondary Metabolites from Bacterial Endophytes of Red Sea Soft Corals. Int. Biodeterior. Biodegrad. 2022, 173, 105462. [Google Scholar] [CrossRef]
- Golberg, K.; Pavlov, V.; Marks, R.S.; Kushmaro, A. Coral-Associated Bacteria, Quorum Sensing Disrupters, and the Regulation of Biofouling. Biofouling 2013, 29, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Luthfi, O.; Handayani, M.; Isdianto, A.; Asadi, M.; Atho’illah, T.; Affandi, M. Pseudomonas Community in White Syndrome Diseases of Echinopora Lamellosa Coral at Nature Reserve Pulau Sempu, Indonesia. Ecol. Environ. Conserv. 2020, 26, 1368–1371. [Google Scholar]
- Sweet, M.; Bythell, J. White Syndrome in Acropora Muricata: Nonspecific Bacterial Infection and Ciliate Histophagy. Mol. Ecol. 2015, 24, 1150–1159. [Google Scholar] [CrossRef]
- Sweet, M.; Burian, A.; Bulling, M. Corals as Canaries in the Coalmine: Towards the Incorporation of Marine Ecosystems into the ‘One Health’ Concept. J. Invertebr. Pathol. 2021, 186, 107538. [Google Scholar] [CrossRef]
- Roik, A.; Reverter, M.; Pogoreutz, C. A Roadmap to Understanding Diversity and Function of Coral Reef-Associated Fungi. FEMS Microbiol. Rev. 2022, 46, fuac028. [Google Scholar] [CrossRef]
- Venesky, M.D.; Raffel, T.R.; McMahon, T.A.; Rohr, J.R. Confronting Inconsistencies in the Amphibian-Chytridiomycosis System: Implications for Disease Management: Managing Chytridiomycosis and Amphibians. Biol. Rev. 2014, 89, 477–483. [Google Scholar] [CrossRef]
- Laundon, D.; Chrismas, N.; Bird, K.; Thomas, S.; Mock, T.; Cunliffe, M. A Cellular and Molecular Atlas Reveals the Basis of Chytrid Development. eLife 2022, 11, e73933. [Google Scholar] [CrossRef]
- Medina, E.M.; Buchler, N.E. Chytrid Fungi. Curr. Biol. 2020, 30, R516–R520. [Google Scholar] [CrossRef]
- Laundon, D.; Chrismas, N.; Wheeler, G.; Cunliffe, M. Chytrid Rhizoid Morphogenesis Resembles Hyphal Development in Multicellular Fungi and Is Adaptive to Resource Availability. Proc. R. Soc. B 2020, 287, 20200433. [Google Scholar] [CrossRef]
- Masclaux, H.; Perga, M.-E.; Kagami, M.; Desvilettes, C.; Bourdier, G.; Bec, A. How Pollen Organic Matter Enters Freshwater Food Webs. Limnol. Oceanogr. 2013, 58, 1185–1195. [Google Scholar] [CrossRef]
- Page, K.A.; Flannery, M.K. Chytrid Fungi Associated with Pollen Decomposition in Crater Lake, Oregon. Fine Focus 2018, 4, 83–100. [Google Scholar] [CrossRef]
- Van Rooij, P.; Martel, A.; Haesebrouck, F.; Pasmans, F. Amphibian Chytridiomycosis: A Review with Focus on Fungus-Host Interactions. Vet. Res. 2015, 46, 137. [Google Scholar] [CrossRef]
- Bensch, K.; Groenewald, J.Z.; Braun, U.; Dijksterhuis, J.; de Jesús Yáñez-Morales, M.; Crous, P.W. Common but Different: The Expanding Realm of Cladosporium. Stud. Mycol. 2015, 82, 23–74. [Google Scholar] [CrossRef]
- Mohamed, G.A.; Ibrahim, S.R.M. Untapped Potential of Marine-Associated Cladosporium Species: An Overview on Secondary Metabolites, Biotechnological Relevance, and Biological Activities. Mar. Drugs 2021, 19, 645. [Google Scholar] [CrossRef]
- Andlar, M.; Rezić, T.; Marđetko, N.; Kracher, D.; Ludwig, R.; Šantek, B. Lignocellulose Degradation: An Overview of Fungi and Fungal Enzymes Involved in Lignocellulose Degradation. Eng. Life Sci. 2018, 18, 768–778. [Google Scholar] [CrossRef]
- Baird, M.E.; Mongin, M.; Rizwi, F.; Bay, L.K.; Cantin, N.E.; Morris, L.A.; Skerratt, J. The Effect of Natural and Anthropogenic Nutrient and Sediment Loads on Coral Oxidative Stress on Runoff-Exposed Reefs. Mar. Pollut. Bull. 2021, 168, 112409. [Google Scholar] [CrossRef]
- Vega Thurber, R.L.; Burkepile, D.E.; Fuchs, C.; Shantz, A.A.; McMinds, R.; Zaneveld, J.R. Chronic Nutrient Enrichment Increases Prevalence and Severity of Coral Disease and Bleaching. Glob. Change Biol. 2014, 20, 544–554. [Google Scholar] [CrossRef]
- Kline, D.; Kuntz, N.; Breitbart, M.; Knowlton, N.; Rohwer, F. Role of Elevated Organic Carbon Levels and Microbial Activity in Coral Mortality. Mar. Ecol. Prog. Ser. 2006, 314, 119–125. [Google Scholar] [CrossRef]
- Lapointe, B.E.; Brewton, R.A.; Herren, L.W.; Porter, J.W.; Hu, C. Nitrogen Enrichment, Altered Stoichiometry, and Coral Reef Decline at Looe Key, Florida Keys, USA: A 3-Decade Study. Mar. Biol. 2019, 166, 108. [Google Scholar] [CrossRef]
- Pernice, M.; Meibom, A.; Van Den Heuvel, A.; Kopp, C.; Domart-Coulon, I.; Hoegh-Guldberg, O.; Dove, S. A Single-Cell View of Ammonium Assimilation in Coral–Dinoflagellate Symbiosis. ISME J. 2012, 6, 1314–1324. [Google Scholar] [CrossRef]
- Wang, J.T.; Douglas, A.E. Essential Amino Acid Synthesis and Nitrogen Recycling in an Alga-Invertebrate Symbiosis. Mar. Biol. 1999, 135, 219–222. [Google Scholar] [CrossRef]
- Falkowski, P.G.; Dubinsky, Z.; Muscatine, L.; McCloskey, L. Population Control in Symbiotic Corals. BioScience 1993, 43, 606–611. [Google Scholar] [CrossRef]
- Souza Machado, A.A.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. Microplastics as an Emerging Threat to Terrestrial Ecosystems. Glob. Change Biol. 2018, 24, 1405–1416. [Google Scholar] [CrossRef]
- Martin, C.; Corona, E.; Mahadik, G.A.; Duarte, C.M. Adhesion to Coral Surface as a Potential Sink for Marine Microplastics. Environ. Pollut. 2019, 255, 113281. [Google Scholar] [CrossRef]
- Hall, N.M.; Berry, K.L.E.; Rintoul, L.; Hoogenboom, M.O. Microplastic Ingestion by Scleractinian Corals. Mar. Biol. 2015, 162, 725–732. [Google Scholar] [CrossRef]
- Palardy, J.E.; Grottoli, A.G.; Matthews, K.A. Effect of Naturally Changing Zooplankton Concentrations on Feeding Rates of Two Coral Species in the Eastern Pacific. J. Exp. Mar. Biol. Ecol. 2006, 331, 99–107. [Google Scholar] [CrossRef]
- Wright, R.J.; Erni-Cassola, G.; Zadjelovic, V.; Latva, M.; Christie-Oleza, J.A. Marine Plastic Debris: A New Surface for Microbial Colonization. Environ. Sci. Technol. 2020, 54, 11657–11672. [Google Scholar] [CrossRef] [PubMed]
- Campbell, I.D.; McDonald, K.; Flannigan, M.D.; Kringayark, J. Long-Distance Transport of Pollen into the Arctic. Nature 1999, 399, 29–30. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barker, T.; Bulling, M.; Thomas, V.; Sweet, M. The Effect of Pollen on Coral Health. Biology 2023, 12, 1469. https://doi.org/10.3390/biology12121469
Barker T, Bulling M, Thomas V, Sweet M. The Effect of Pollen on Coral Health. Biology. 2023; 12(12):1469. https://doi.org/10.3390/biology12121469
Chicago/Turabian StyleBarker, Triona, Mark Bulling, Vincent Thomas, and Michael Sweet. 2023. "The Effect of Pollen on Coral Health" Biology 12, no. 12: 1469. https://doi.org/10.3390/biology12121469
APA StyleBarker, T., Bulling, M., Thomas, V., & Sweet, M. (2023). The Effect of Pollen on Coral Health. Biology, 12(12), 1469. https://doi.org/10.3390/biology12121469