Single-Cell Measurements and Modeling and Computation of Decision-Making Errors in a Molecular Signaling System with Two Output Molecules
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Using the Likelihood Ratio to Compute the Optimal Decision Thresholds and the Decision Error Probabilities for the TNF—NFκB/ATF-2 System
2.1.1. Univariate Decision Analysis
2.1.2. Bivariate Decision Analysis
2.2. Using the Discriminant Function to Compute the Decision Error Probabilities for the TNF—NFκB/ATF-2 System
3. Results and Discussion
3.1. Single Cell Data of the Two-Output TNF—NFκB/ATF-2 System
3.2. Graphical Representation of the Two-Output System Data and the Decision Thresholds
3.3. Decision Error Probabilities of the Two-Output System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kolitz, S.E.; Lauffenburger, D.A. Measurement and modeling of signaling at the single-cell level. Biochemistry 2012, 51, 7433–7443. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tay, S.; Hughey, J.J.; Lee, T.K.; Lipniacki, T.; Quake, S.R.; Covert, M.W. Single-cell NF-κB dynamics reveal digital activation and analogue information processing. Nature 2010, 466, 267–271. [Google Scholar] [CrossRef]
- Maity, A.; Wollman, R. Information transmission from NFkB signaling dynamics to gene expression. PLoS Comput. Biol. 2020, 16, e1008011. [Google Scholar] [CrossRef] [PubMed]
- Talia, S.D.; Skotheim, J.M.; Bean, J.M.; Siggia, E.D.; Cross, F.R. The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature 2007, 448, 947–951. [Google Scholar] [CrossRef] [PubMed]
- Cheong, R.; Rhee, A.; Wang, C.J.; Nemenman, I.; Levchenko, A. Information transduction capacity of noisy biochemical signaling networks. Science 2011, 334, 354–358. [Google Scholar] [CrossRef]
- Ladbury, J.E.; Arold, S.T. Noise in cellular signaling pathways: Causes and effects. Trends Biochem. Sci. 2012, 37, 173–178. [Google Scholar] [CrossRef]
- Balazsi, G.; Van Oudenaarden, A.; Collins, J.J. Cellular decision making and biological noise: From microbes to mammals. Cell 2011, 144, 910–925. [Google Scholar] [CrossRef]
- Weitz, J.S.; Mileyko, Y.; Joh, R.I.; Voit, E.O. Collective decision making in bacterial viruses. Biophys. J. 2008, 95, 2673–2680. [Google Scholar] [CrossRef]
- Zeng, L.; Skinner, S.O.; Zong, C.; Sippy, J.; Feiss, M.; Golding, I. Decision making at a subcellular level determines the outcome of bacteriophage infection. Cell 2010, 141, 682–691. [Google Scholar] [CrossRef]
- Moris, N.; Pina, C.; Arias, A.M. Transition states and cell fate decisions in epigenetic landscapes. Nat. Rev. Genet. 2016, 17, 693–703. [Google Scholar] [CrossRef]
- Matson, J.P.; Cook, J.G. Cell cycle proliferation decisions: The impact of single cell analyses. FEBS J. 2017, 284, 362–375. [Google Scholar] [CrossRef]
- Rodrigo, G. Insights about collective decision-making at the genetic level. Biophys. Rev. 2020, 12, 19–24. [Google Scholar] [CrossRef]
- Habibi, I.; Cheong, R.; Lipniacki, T.; Levchenko, A.; Emamian, E.S.; Abdi, A. Computation and measurement of cell decision making errors using single cell data. PLoS Comput. Biol. 2017, 13, e1005436. [Google Scholar] [CrossRef] [PubMed]
- Levchenko, A. Genetic diseases: How the noise fits in. Curr. Biol. 2023, 33, 228–230. [Google Scholar] [CrossRef]
- Emadi, A.; Ozen, M.; Abdi, A. A hybrid model to study how late long-term potentiation is affected by faulty molecules in an intraneuronal signaling network regulating transcription factor CREB. Integr. Biol. 2022, 14, 111–125. [Google Scholar] [CrossRef]
- Micheau, O.; Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2003, 114, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Oliver Metzig, M.; Tang, Y.; Mitchell, S.; Taylor, B.; Foreman, R.; Wollman, R.; Hoffmann, A. An incoherent feedforward loop interprets NFκB/RelA dynamics to determine TNF-induced necroptosis decisions. Mol. Syst. Biol. 2020, 16, e9677. [Google Scholar] [CrossRef] [PubMed]
- Benedict, C.A. Viruses and the TNF-related cytokines, an evolving battle. Cytokine Growth Factor Rev. 2003, 14, 349–357. [Google Scholar] [CrossRef]
- Brenner, D.; Blaser, H.; Mak, T.W. Regulation of tumour necrosis factor signalling: Live or let die. Nat. Rev. Immunol. 2015, 15, 362–374. [Google Scholar] [CrossRef]
- Oyler-Yaniv, J.; Oyler-Yaniv, A.; Maltz, E.; Wollman, R. TNF controls a speed-accuracy tradeoff in the cell death decision to restrict viral spread. Nat. Commun. 2021, 12, 2992. [Google Scholar] [CrossRef]
- Hayden, M.S.; West, A.P.; Ghosh, S. NF-κB and the immune response. Oncogene 2006, 25, 6758–6780. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.; Natoli, G.; Gosh, G. Transcriptional regulation via the NF-κB signaling module. Oncogene 2006, 25, 6706–6716. [Google Scholar] [CrossRef]
- Hoffmann, A.; Baltimore, D. Circuitry of nuclear factor κB signaling. Immunol. Rev. 2006, 210, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.K.; Covert, M.W. High-throughput, single-cell NF-κB dynamics. Curr. Opin. Genet. Dev. 2010, 20, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Barnabei, L.; Laplantine, E.; Mbongo, W.; Rieux-Laucat, F.; Weil, R. NF-κB: At the Borders of Autoimmunity and Inflammation. Front. Immunol. 2021, 12, 716469. [Google Scholar] [CrossRef]
- Mitchell, S.; Vargas, J.; Hoffmann, A. Signaling via the NFκB system. Wiley Interdiscip. Rev. Syst. Biol. Med. 2016, 8, 227–241. [Google Scholar] [CrossRef]
- O’Dea, E.; Hoffmann, A. NF-κB signaling. Wiley Interdiscip. Rev. Syst. Biol. Med. 2009, 1, 107–115. [Google Scholar] [CrossRef]
- Hymowitz, S.G.; Wertz, I.E. A20: From ubiquitin editing to tumour suppression. Nat. Rev. Cancer 2010, 10, 332–341. [Google Scholar] [CrossRef]
- Chen, M.; Liu, Y.; Yang, Y.; Qiu, Y.; Wang, Z.; Li, X.; Zhang, W. Emerging roles of activating transcription factor (ATF) family members in tumourigenesis and immunity: Implications in cancer immunotherapy. Genes Dis. 2021, 9, 981–999. [Google Scholar] [CrossRef]
- Van Trees, H.L.; Bell, K.L.; Tian, Z. Detection, Estimation and Modulation Theory, Part I: Detection, Estimation, and Filtering Theory, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Kay, S.M. Fundamentals of Statistical Signal Processing: Detection Theory; PTR Prentice-Hall: Hoboken, NJ, USA, 1998. [Google Scholar]
- Papoulis, A. Probability, Random Variables, and Stochastic Processes, 3rd ed.; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Duda, O.R.; Hart, P.E.; Stork, D.G. Pattern Classification; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Fukunaga, K. Introduction to Statistical Pattern Recognition, 2nd ed.; Academic Press: San Diego, CA, USA, 1990. [Google Scholar]
- Ding, C.; Peng, H. Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 2005, 3, 185–205. [Google Scholar] [CrossRef]
- MathWorks, fscmrmr Documentation. Available online: https://www.mathworks.com/help/stats/fscmrmr.html (accessed on 8 August 2023).
Time | High TNF Level (ng/mL) | Importance Score | |
---|---|---|---|
NFκB | ATF-2 | ||
30 min | 0.082 | 0.18 | 0 |
3.2 | 0.49 | 0.15 | |
50 | 0.57 | 0.2 | |
4 h | 0.082 | 0.05 | 0.01 |
3.2 | 0.3 | 0.1 | |
50 | 0.24 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emadi, A.; Lipniacki, T.; Levchenko, A.; Abdi, A. Single-Cell Measurements and Modeling and Computation of Decision-Making Errors in a Molecular Signaling System with Two Output Molecules. Biology 2023, 12, 1461. https://doi.org/10.3390/biology12121461
Emadi A, Lipniacki T, Levchenko A, Abdi A. Single-Cell Measurements and Modeling and Computation of Decision-Making Errors in a Molecular Signaling System with Two Output Molecules. Biology. 2023; 12(12):1461. https://doi.org/10.3390/biology12121461
Chicago/Turabian StyleEmadi, Ali, Tomasz Lipniacki, Andre Levchenko, and Ali Abdi. 2023. "Single-Cell Measurements and Modeling and Computation of Decision-Making Errors in a Molecular Signaling System with Two Output Molecules" Biology 12, no. 12: 1461. https://doi.org/10.3390/biology12121461
APA StyleEmadi, A., Lipniacki, T., Levchenko, A., & Abdi, A. (2023). Single-Cell Measurements and Modeling and Computation of Decision-Making Errors in a Molecular Signaling System with Two Output Molecules. Biology, 12(12), 1461. https://doi.org/10.3390/biology12121461