Whole Genome Resequencing Revealed the Genetic Relationship and Selected Regions among Baicheng-You, Beijing-You, and European-Origin Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds
2.2. Library Construction and Sequencing
2.3. Genome Mapping, SNP Calling, and Filtering
2.4. Population Genetic Analysis
2.5. Selected Region Analysis
3. Results
3.1. Characteristics of Sequencing Data
3.2. Identification of SNPs in BCY, BJY, and BRs Chickens
3.3. Accessing the Genetic Diversity
3.4. Selected Region Analysis between BJY and BRs Chickens
3.5. Selected Region Analysis between BCY and BJY Chickens
3.6. Identification of Selected Genes in BJY Chickens
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- China National Commission of Animal Genetic Resources. Animal Genetic Resources in China Poultry; China Agriculture Press: Beijing, China, 2011. [Google Scholar]
- Chen, J.L.; Zhao, G.P.; Zheng, M.Q.; Wen, J.; Yang, N. Estimation of genetic parameters for contents of intramuscular fat and inosine-5′-monophosphate and carcass traits in Chinese Beijing-You chickens. Poult. Sci. 2008, 87, 1098–1104. [Google Scholar] [CrossRef]
- Sarsenbek, A.; Wang, T.; Zhao, J.K.; Jiang, W. Comparison of carcass yields and meat quality between Baicheng-You chickens and Arbor Acres broilers. Poult. Sci. 2013, 92, 2776–2782. [Google Scholar] [CrossRef]
- Rostamzadeh Mahdabi, E.; Esmailizadeh, A.; Ayatollahi Mehrgardi, A.; Asadi Fozi, M. A genome-wide scan to identify signatures of selection in two Iranian indigenous chicken ecotypes. Genet. Sel. Evol. 2021, 53, 72. [Google Scholar] [CrossRef]
- Qanbari, S.; Rubin, C.J.; Maqbool, K.; Weigend, S.; Weigend, A.; Geibel, J.; Kerje, S.; Wurmser, C.; Peterson, A.T.; Brisbi, I.L.; et al. Genetics of adaptation in modern chicken. PLoS Genet. 2019, 15, e1007989. [Google Scholar] [CrossRef]
- Shi, S.; Shao, D.; Yang, L.; Liang, Q.; Han, W.; Xue, Q.; Qu, L.; Leng, L.; Li, Y.; Zhao, X.; et al. Whole genome analyses reveal novel genes associated with chicken adaptation to tropical and frigid environments. J. Adv. Res. 2023, 47, 13–25. [Google Scholar] [CrossRef]
- Li, D.; Sun, G.; Zhang, M.; Cao, Y.; Zhang, C.; Fu, Y.; Li, F.; Li, G.; Jiang, R.; Han, R.; et al. Breeding history and candidate genes responsible for black skin of Xichuan black-bone chicken. BMC Genom. 2020, 21, 511. [Google Scholar] [CrossRef]
- Tan, X.; Liu, R.; Zhao, D.; He, Z.; Li, W.; Zheng, M.; Li, Q.; Wang, Q.; Liu, D.; Feng, F.; et al. Large-scale genomic and transcriptomic analyses elucidate the genetic basis of high meat yield in chickens. J. Adv. Res. 2023. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The genome analysis toolkit: A mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Wigginton, J.E.; Abecasis, G.R. PEDSTATS: Descriptive statistics, graphics and quality assessment for gene mapping data. Bioinformatics 2005, 21, 3445–3447. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Flori, L.; Fritz, S.; Jaffrezic, F.; Boussaha, M.; Gut, I.; Heath, S.; Foulley, J.L.; Gautier, M. The genome response to artificial selection: A case study in dairy cattle. PLoS ONE 2009, 4, e6595. [Google Scholar] [CrossRef]
- Nicholson, G.; Smith, A.V.; Jonsson, F.; Gustafsson, O.; Stefansson, K.; Donnelly, P. Assessing population differentiation and isolation from single-nucleotide polymorphism data. J. R. Stat. Soc. B 2002, 64, 695–715. [Google Scholar] [CrossRef]
- Browning, S.R.; Browning, B.L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 2007, 81, 1084–1097. [Google Scholar] [CrossRef]
- Szpiech, Z.A.; Hernandez, R.D. Selscan: An efficient multithreaded program to perform EHH-based scans for positive selection. Mol. Biol. Evol. 2014, 31, 2824–2827. [Google Scholar] [CrossRef]
- Chen, H.; Patterson, N.; Reich, D. Population differentiation as a test for selective sweeps. Genome Res. 2010, 20, 393–402. [Google Scholar] [CrossRef]
- Zhou, H.; Mitchell, A.D.; McMurtry, J.P.; Ashwell, C.M.; Lamont, S.J. Insulin-like growth factor-I gene polymorphism associations with growth, body composition, skeleton integrity, and metabolic traits in chickens. Poult. Sci. 2005, 84, 212–219. [Google Scholar] [CrossRef]
- Zhang, H.; Du, Z.Q.; Dong, J.Q.; Wang, H.X.; Shi, H.Y.; Wang, N.; Wang, S.Z.; Li, H. Detection of genome-wide copy number variations in two chicken lines divergently selected for abdominal fat content. Bmc Genom. 2014, 15, 517. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Ncho, C.M.; Choi, Y.H. Regulation of gene expression in chickens by heat stress. J. Anim. Sci. Biotechnol. 2021, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Hensen, S.M.; Heldens, L.; van Enckevort, C.M.; van Genesen, S.T.; Pruijn, G.J.; Lubsen, N.H. Heat shock factor 1 is inactivated by amino acid deprivation. Cell Stress Chaperones 2012, 17, 743–755. [Google Scholar] [CrossRef] [PubMed]
- Talebi, R.; Szmatola, T.; Meszaros, G.; Qanbari, S. Runs of homozygosity in modern chicken revealed by sequence data. G3-Genes Genom. Genet. 2020, 10, 4615–4623. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Bai, J.; He, S.; Villarreal, R.; Hu, D.; Zhang, C.; Yang, X.; Liang, H.; Slaga, T.J.; Yu, Y.; et al. Grb10 promotes lipolysis and thermogenesis by phosphorylation-dependent feedback inhibition of mTORC1. Cell Metab. 2014, 19, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Hartig, S.M.; He, B.; Long, W.; Buehrer, B.M.; Mancini, M.A. Homeostatic levels of SRC-2 and SRC-3 promote early human adipogenesis. J. Cell Biol. 2011, 192, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Richards, M.P.; McMurtry, J.P. Expression of proglucagon and proglucagon-derived peptide hormone receptor genes in the chicken. Gen. Comp. Endocr. 2008, 156, 323–338. [Google Scholar] [CrossRef]
- Ma, X.; Sun, J.; Zhu, S.; Du, Z.; Li, D.; Li, W.; Li, Z.; Tian, Y.; Kang, X.; Sun, G. MiRNAs and mRNAs analysis during abdominal preadipocyte differentiation in chickens. Animals 2020, 10, 468. [Google Scholar] [CrossRef]
- Li, S.; Xue, T.; He, F.; Liu, Z.; Ouyang, S.; Cao, D.; Wu, J. A time-resolved proteomic analysis of transcription factors regulating adipogenesis of human adipose derived stem cells. Biochem. Biophys. Res. Commun. 2019, 511, 855–861. [Google Scholar] [CrossRef]
- Hedjazifar, S.; Khatib Shahidi, R.; Hammarstedt, A.; Bonnet, L.; Church, C.; Boucher, J.; Bluher, M.; Smith, U. The novel adipokine gremlin 1 antagonizes insulin action and is increased in type 2 diabetes and NAFLD/NASH. Diabetes 2020, 69, 331–341. [Google Scholar] [CrossRef]
- Johmura, Y.; Watanabe, K.; Kishimoto, K.; Ueda, T.; Shimada, S.; Osada, S.; Nishizuka, M.; Imagawa, M. Fad24 causes hyperplasia in adipose tissue and improves glucose metabolism. Biol. Pharm. Bull. 2009, 32, 1656–1664. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, M.; Niyogi, S.; Bhattacharyya, M.; Adak, M.; Nayak, D.K.; Chakrabarti, S.; Chakrabarti, P. Ubiquitin ligase COP1 controls hepatic fat metabolism by targeting ATGL for degradation. Diabetes 2016, 65, 3561–3572. [Google Scholar] [CrossRef]
- Hofmann, I.; Casella, M.; Schnolzer, M.; Schlechter, T.; Spring, H.; Franke, W.W. Identification of the junctional plaque protein plakophilin 3 in cytoplasmic particles containing RNA-binding proteins and the recruitment of plakophilins 1 and 3 to stress granules. Mol. Biol. Cell 2006, 17, 1388–1398. [Google Scholar] [CrossRef]
- Guo, L.; Chao, X.; Huang, W.; Li, Z.; Luan, K.; Ye, M.; Zhang, S.; Liu, M.; Li, H.; Luo, W.; et al. Whole transcriptome analysis reveals a potential regulatory mechanism of lncRNA-FNIP2/miR-24-3p/FNIP2 axis in chicken adipogenesis. Front. Cell Dev. Biol. 2021, 9, 653798. [Google Scholar] [CrossRef]
- Bornelov, S.; Seroussi, E.; Yosefi, S.; Benjamini, S.; Miyara, S.; Ruzal, M.; Grabherr, M.; Rafati, N.; Molin, A.M.; Pendavis, K.; et al. Comparative omics and feeding manipulations in chicken indicate a shift of the endocrine role of visceral fat towards reproduction. BMC Genom. 2018, 19, 295. [Google Scholar] [CrossRef]
- Zaganjor, E.; Yoon, H.; Spinelli, J.B.; Nunn, E.R.; Laurent, G.; Keskinidis, P.; Sivaloganathan, S.; Joshi, S.; Notarangelo, G.; Mulei, S.; et al. SIRT4 is an early regulator of branched-chain amino acid catabolism that promotes adipogenesis. Cell Rep. 2021, 36, 109345. [Google Scholar] [PubMed]
- Li, J.; Lee, M.; Davis, B.W.; Lamichhaney, S.; Dorshorst, B.J.; Siegel, P.B.; Andersson, L. Mutations upstream of the TBX5 and PITX1 transcription factor genes are associated with feathered legs in the domestic chicken. Mol. Biol. Evol. 2020, 37, 2477–2486. [Google Scholar]
- Ahbara, A.; Bahbahani, H.; Almathen, F.; Al Abri, M.; Agoub, M.O.; Abeba, A.; Kebede, A.; Musa, H.H.; Mastrangelo, S.; Pilla, F.; et al. Genome-wide variation, candidate regions and genes associated with fat deposition and tail morphology in Ethiopian indigenous sheep. Front. Genet. 2018, 9, 699. [Google Scholar] [CrossRef]
- Yamamoto, M.; Suzuki, K.; Okuno, T.; Ogata, T.; Takegahara, N.; Takamatsu, H.; Mizui, M.; Taniguchi, M.; Chedotal, A.; Suto, F.; et al. Plexin-A4 negatively regulates T lymphocyte responses. Int. Immunol. 2008, 20, 413–420. [Google Scholar] [CrossRef]
- Chen, P.; Li, L.; Wang, J.; Li, H.; Li, Y.; Lv, Y.; Lu, C. BmPAH catalyzes the initial melanin biosynthetic step in Bombyx mori. PLoS ONE 2013, 8, e71984. [Google Scholar] [CrossRef]
- Yun, C.Y.; Hong, S.D.; Lee, Y.H.; Lee, J.; Jung, D.E.; Kim, G.H.; Kim, S.H.; Jung, J.K.; Kim, K.H.; Lee, H.; et al. Nuclear entry of CRTC1 as druggable target of acquired pigmentary disorder. Theranostics 2019, 9, 646–660. [Google Scholar] [CrossRef]
- Guo, Y.; Su, A.; Tian, H.; Zhai, M.; Li, W.; Tian, Y.; Li, K.; Sun, G.; Jiang, R.; Han, R.; et al. Transcriptomic analysis of spleen revealed mechanism of dexamethasone-induced immune suppression in chicks. Genes 2020, 11, 513. [Google Scholar] [CrossRef]
- Cao, P.; Dai, Q.; Deng, C.; Zhao, X.; Qin, S.; Yang, J.; Ju, R.; Wang, Z.; Lu, G.; Gu, X.; et al. Genome-wide signatures of mammalian skin covering evolution. Sci. China Life Sci. 2021, 64, 1765–1780. [Google Scholar] [CrossRef]
- Guo, H.; Yang, K.; Deng, F.; Ye, J.; Xing, Y.; Li, Y.; Lian, X.; Yang, T. Wnt3a promotes melanin synthesis of mouse hair follicle melanocytes. Biochem. Biophys. Res. Commun. 2012, 420, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Rawofi, L.; Edwards, M.; Krithika, S.; Le, P.; Cha, D.; Yang, Z.; Ma, Y.; Wang, J.; Su, B.; Jin, L.; et al. Genome-wide association study of pigmentary traits (skin and iris color) in individuals of east asian ancestry. PeerJ 2017, 5, e3951. [Google Scholar] [PubMed]
- Goel, S.; DeCristo, M.J.; Watt, A.C.; BrinJones, H.; Sceneay, J.; Li, B.B.; Khan, N.; Ubellacker, J.M.; Xie, S.; Metzger-Filho, O.; et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 2017, 548, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Müller, S.; Perdikari, A.; Dapito, D.H.; Sun, W.; Wollscheid, B.; Balaz, M.; Wolfrum, C. ESRRG and PERM1 govern mitochondrial conversion in brite/beige adipocyte formation. Front. Endocrinol. 2020, 11, 387. [Google Scholar] [CrossRef]
- Rubio-Tomas, T. The SMYD family proteins in immunology: An update of their obvious and non-obvious relations with the immune system. Heliyon 2021, 7, e07387. [Google Scholar] [PubMed]
- Liu, H.; Mintern, J.D.; Villadangos, J.A. MARCH ligases in immunity. Curr. Opin. Immunol. 2019, 58, 38–43. [Google Scholar] [CrossRef]
- Wu, J.; Ma, S.; Sandhoff, R.; Ming, Y.; Hotz-Wagenblatt, A.; Timmerman, V.; Bonello-Palot, N.; Schlotter-Weigel, B.; Auer-Grumbach, M.; Seeman, P.; et al. Loss of neurological disease HSAN-I-associated gene SPTLC2 impairs CD8(+) T cell responses to infection by inhibiting T cell metabolic fitness. Immunity 2019, 50, 1218–1231.e5. [Google Scholar] [CrossRef]
- Quiros, P.M.; Ramsay, A.J.; Sala, D.; Fernandez-Vizarra, E.; Rodriguez, F.; Peinado, J.R.; Fernandez-Garcia, M.S.; Vega, J.A.; Enriquez, J.A.; Zorzano, A.; et al. Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice. Embo J. 2012, 31, 2117–2133. [Google Scholar] [CrossRef] [PubMed]
- Ballanti, E.; Perricone, C.; Greco, E.; Ballanti, M.; Di Muzio, G.; Chimenti, M.S.; Perricone, R. Complement and autoimmunity. Immunol. Res. 2013, 56, 477–491. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.W.; Ran, J.S.; Yu, C.L.; Qiu, M.H.; Zhang, Z.R.; Du, H.R.; Li, Q.Y.; Xiong, X.; Song, X.Y.; Xia, B.; et al. Polymorphism in MC1R, TYR and ASIP genes in different colored feather chickens. 3 Biotech. 2019, 9, 203. [Google Scholar] [CrossRef] [PubMed]
- Gracie, J.A.; Robertson, S.E.; McInnes, I.B. Interleukin-18. J. Leukoc. Biol. 2003, 73, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.S.; Thakur, M.; Peng, M.S.; Jiang, Y.; Frantz, L.A.F.; Li, M.; Zhang, J.J.; Wang, S.; Peters, J.; Otecko, N.O.; et al. 863 genomes reveal the origin and domestication of chicken. Cell Res. 2020, 30, 693–701. [Google Scholar] [CrossRef]
- Tomas, F.M.; Pym, R.A.; McMurtry, J.P.; Francis, G.L. Insulin-like growth factor (IGF)-I but not IGF-II promotes lean growth and feed efficiency in broiler chickens. Gen. Comp. Endocr. 1998, 110, 262–275. [Google Scholar] [CrossRef]
- Bian, L.H.; Wang, S.Z.; Wang, Q.G.; Zhang, S.; Wang, Y.X.; Li, H. Variation at the insulin-like growth factor 1 gene and its association with body weight traits in the chicken. J. Anim. Breed. Genet. 2008, 125, 265–270. [Google Scholar] [CrossRef]
- Matsumoto, H.; Shimizu, Y.; Tanaka, A.; Nogi, T.; Tabuchi, I.; Oyama, K.; Taniguchi, M.; Mannen, H.; Sasazaki, S. The SNP in the promoter region of the bovine ELOVL5 gene influences economic traits including subcutaneous fat thickness. Mol. Biol. Rep. 2013, 40, 3231–3237. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.; Zhang, C.; Wu, T.; Li, Y.; Cheng, X. A eukaryotic expression plasmid carrying chicken interleukin-18 enhances the response to newcastle disease virus vaccine. Clin. Vaccine Immunol. 2015, 22, 56–64. [Google Scholar] [CrossRef]
- Gu, J.; Liang, Q.; Liu, C.; Li, S. Genomic analyses reveal adaptation to hot arid and harsh environments in native chickens of China. Front. Genet. 2020, 11, 582355. [Google Scholar] [CrossRef]
- Tian, S.L.; Zhou, X.M.; Phuntsok, T.; Zhao, N.; Zhang, D.J.; Ning, C.Y.; Li, D.Y.; Zhao, H.B. Genomic analyses reveal genetic adaptations to tropical climates in chickens. iScience 2020, 23, 101644. [Google Scholar] [CrossRef] [PubMed]
- Krey, J.F.; Dumont, R.A.; Wilmarth, P.A.; David, L.L.; Johnson, K.R.; Barr-Gillespie, P.G. ELMOD1 stimulates ARF6-GTP hydrolysis to stabilize apical structures in developing vestibular hair cells. J. Neurosci. 2018, 38, 843–857. [Google Scholar] [CrossRef]
- Johnson, K.R.; Longo-Guess, C.M.; Gagnon, L.H. Mutations of the mouse ELMO domain containing 1 gene (Elmod1) link small GTPase signaling to actin cytoskeleton dynamics in hair cell stereocilia. PLoS ONE 2012, 7, e36074. [Google Scholar] [CrossRef]
- Nohno, T.; Kawakami, Y.; Ohuchi, H.; Fujiwara, A.; Yoshioka, H.; Noji, S. Involvement of the sonic-hedgehog gene in chick feather formation. Biochem. Biophys. Res. Commun. 1995, 206, 33–39. [Google Scholar] [CrossRef] [PubMed]
- McKinnell, I.W.; Turmaine, M.; Patel, K. Sonic hedgehog functions by localizing the region of proliferation in early developing feather buds. Dev. Biol. 2004, 272, 76–88. [Google Scholar] [CrossRef]
- Abu El-Magd, M.; Sayed-Ahmed, A.; Awad, A.; Shukry, M. Regulation of chick early B-cell factor-1 gene expression in feather development. Acta Histochem. 2014, 116, 577–582. [Google Scholar] [CrossRef] [PubMed]
- TingBerreth, S.A.; Chuong, C.M. Sonic hedgehog in feather morphogenesis: Induction of mesenchymal condensation and association with cell death. Dev. Dyn. 1996, 207, 157–170. [Google Scholar] [CrossRef]
- Schielzeth, H.; Forstmeier, W.; Kempenaers, B.; Ellegren, H. QTL linkage mapping of wing length in zebra finch using genome-wide single nucleotide polymorphisms markers. Mol. Ecol. 2012, 21, 329–339. [Google Scholar] [CrossRef]
- Chang, C.H.; Jiang, T.X.; Lin, C.M.; Burrus, L.W.; Chuong, C.M.; Widelitz, R. Distinct Wnt members regulate the hierarchical morphogenesis of skin regions (spinal tract) and individual feathers. Mech. Dev. 2004, 121, 157–171. [Google Scholar] [CrossRef]
- Yang, S.; Shi, Z.; Ou, X.; Liu, G. Whole-genome resequencing reveals genetic indels of feathered-leg traits in domestic chickens. J. Genet. 2019, 98, 47. [Google Scholar] [CrossRef]
- Anderson, E.; Devenney, P.S.; Hill, R.E.; Lettice, L.A. Mapping the Shh long-range regulatory domain. Development 2014, 141, 3934–3943. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Chen, Y.; Yang, K.; Zhai, Z.; Zhao, W.; Liu, S.; Ding, J.; Dai, R.; Yang, L.; Xu, K.; et al. Genetic pattern and gene localization of polydactyly in Beijing fatty chicken. PLoS ONE 2017, 12, e0176113. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Q.; Deng, X.M.; Du, Z.Q.; Qiu, X.; Du, X.; Chen, W.; Morisson, M.; Leroux, S.; Ponce de Leon, F.A.; Da, Y.; et al. Single nucleotide polymorphisms in the chicken Lmbr1 gene are associated with chicken polydactyly. Gene 2006, 374, 10–18. [Google Scholar] [CrossRef] [PubMed]
Chr | Position | Gene | Methods | Function | |
---|---|---|---|---|---|
1 | 55281097 | 55330373 | IGF-I | FST, XP-CLR | Fat content in chickens [21] |
1 | 65833774 | 66173568 | SOX5 | FST, XP-EHH | Abdominal fat deposition in chickens [22] |
1 | 189025780 | 189161699 | NOX4 | FST, XP-EHH | Heat stress in chickens [23] |
2 | 24662430 | 24676154 | ASNS | FST, XP-EHH | Heat shock in mice [24] |
2 | 24794127 | 24862531 | UMAD1 | FST, XP-EHH | Eggshell color in chickens [25] |
2 | 24891742 | 24943662 | GLCCI1 | FST, XP-EHH | Eggshell color in chickens [25] |
2 | 24954107 | 25024569 | ICA1 | FST, XP-EHH | Eggshell color in chickens [25] |
2 | 80852532 | 80991947 | GRB10 | FST, XP-EHH | Lipolysis and thermogenesis in mice [26] |
2 | 116504849 | 116596399 | NCOA2 | FST, XP-EHH | Preadipocyte differentiation in humans [27] |
3 | 29410438 | 29492850 | GLP1R | FST, XP-EHH | Chicken abdominal fat [28] |
3 | 88246591 | 88283573 | ELOVL5 | FST, XP-EHH | Adipocyte differentiation in chickens [29] |
4 | 82843121 | 82879154 | MXD4 | FST, XP-EHH | Novel regulators of adipogenesis in humans [30] |
5 | 30776671 | 30777369 | GREM1 | FST, XP-EHH | Novel adipokines in humans [31] |
6 | 21058455 | 21075606 | NOC3L | FST, XP-EHH | Hyperplasia in adipose tissue in mice [32] |
8 | 7250615 | 7378011 | COP1 | FST, XP-EHH | Fat metabolism in mice [33] |
9 | 17247026 | 17278252 | FXR1 | FST, XP-EHH | Environmental stress in humans [34] |
9 | 17441931 | 17531426 | PEX5L | FST, XP-EHH | Chicken adipogenesis in liver [35] |
11 | 1034930 | 1041693 | LCAT | XP-EHH, XP-CLR | New adipokines in chickens [36] |
15 | 9670176 | 9678598 | SIRT4 | FST, XP-CLR | Adipose pathology in mice [37] |
15 | 12598201 | 12638563 | TBX5 | FST, XP-CLR | Feathered legs in chickens [38] |
28 | 4218437 | 4253117 | INSR | FST, XP-EHH | Fat deposition in sheep [39] |
Chr | Position | Gene | Methods | Function | |
---|---|---|---|---|---|
1 | 2887148 | 3334587 | PLXNA4 | FST, XP-EHH | Immune responses in mice [40] |
1 | 55078825 | 55114899 | PAH | FST, XP-EHH | Melanin biosynthetic in bombyx mori [41] |
1 | 77477877 | 77514773 | KPNA1 | FST, XP-EHH | Melanogenic process in guinea pigs [42] |
1 | 141624410 | 141643190 | TNFSF13B | FST, XP-CLR | Immune suppression in chickens [43] |
1 | 195484990 | 195565945 | UVRAG | FST, XP-EHH | Skin innate immunity in mammals [44] |
2 | 2551903 | 2634749 | WNT3A | FST, XP-EHH | Melanin synthesis in mice [45] |
2 | 21172333 | 21382361 | ZNF804B | FST, XP-EHH | Skin and iris color in humans [46] |
2 | 22703461 | 22836675 | CDK6 | FST, XP-EHH | Immunotherapies in humans [47] |
3 | 20068343 | 20429542 | ESRRG | FST, XP-EHH | Mitochondrial thermogenesis in mice [48] |
3 | 34048590 | 34412338 | SMYD3 | FST, XP-EHH | Immune system in humans [49] |
4 | 23437223 | 23636944 | MARCH1 | FST, XP-EHH | Immunomodulation in humans [50] |
5 | 39473855 | 39531939 | SPTLC2 | XP-EHH, XP-CLR | Protective immunity in humans [51] |
8 | 26650130 | 26666710 | OMA1 | FST, XP-EHH, XP-CLR | Mitochondrial thermogenesis in mice [52] |
16 | 2609635 | 2624278 | C4 | FST, XP-EHH | Autoimmunity in humans [53] |
20 | 1567219 | 1596889 | ASIP | XP-EHH, XP-CLR | Chicken plumage color [54] |
24 | 6169486 | 6173722 | IL18 | XP-EHH, XP-CLR | Immune regulation in humans [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Zhang, J.; Zhao, Y.; Shao, Y.; Zhai, M.; Liu, H.; Zhang, L. Whole Genome Resequencing Revealed the Genetic Relationship and Selected Regions among Baicheng-You, Beijing-You, and European-Origin Broilers. Biology 2023, 12, 1397. https://doi.org/10.3390/biology12111397
Yang K, Zhang J, Zhao Y, Shao Y, Zhai M, Liu H, Zhang L. Whole Genome Resequencing Revealed the Genetic Relationship and Selected Regions among Baicheng-You, Beijing-You, and European-Origin Broilers. Biology. 2023; 12(11):1397. https://doi.org/10.3390/biology12111397
Chicago/Turabian StyleYang, Kai, Jian Zhang, Yuelei Zhao, Yonggang Shao, Manjun Zhai, Huagui Liu, and Lifan Zhang. 2023. "Whole Genome Resequencing Revealed the Genetic Relationship and Selected Regions among Baicheng-You, Beijing-You, and European-Origin Broilers" Biology 12, no. 11: 1397. https://doi.org/10.3390/biology12111397
APA StyleYang, K., Zhang, J., Zhao, Y., Shao, Y., Zhai, M., Liu, H., & Zhang, L. (2023). Whole Genome Resequencing Revealed the Genetic Relationship and Selected Regions among Baicheng-You, Beijing-You, and European-Origin Broilers. Biology, 12(11), 1397. https://doi.org/10.3390/biology12111397