Dietary Canthaxanthin Supplementation Promotes the Laying Rate and Follicular Development of Huaixiang Hens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Animals and Diet
2.2. Sampling Collection
2.3. Analysis of Laying Performance
2.4. Follicular Development and Ovarian Histomorphology
2.5. Reproductive Hormones Analysis in Serum and Ovary
2.6. Antioxidant Index Analysis in Serum and Ovary
2.7. Statistical Analysis
3. Results
3.1. Laying Performance
3.2. Reproductive Hormones in Serum
3.3. Reproductive Hormones of Ovary
3.4. Follicular Development
3.5. Serum Anti-Oxidant Indexes Analysis
3.6. Ovary Antioxidant Indexes Analysis
4. Discussion
4.1. Laying Performance
4.2. Serum and Ovarian Reproductive Hormones
4.3. Follicular Development
4.4. Serum and Ovary Antioxidant Indexes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shao, D.; Hu, Y.; Wang, Q.; Tong, H.; Shi, S. Transcriptome sequencing reveals genetic mechanisms of reproduction performance stimulated by dietary daidzein in laying breeder hens. Theriogenology 2020, 142, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Liu, L.; He, Y.; Dou, T.; Jia, J.; Ge, C. Endocrine and genetic factors affecting egg laying performance in chickens: A review. Br. Poult. Sci. 2020, 61, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wan, D.; Wang, T.; Gong, H.; Tao, Y.; Zhang, S.; Lan, H.; Li, S.; Wu, M.; Zheng, X.; et al. Effects of beta-carotene supplementation in the diet of laying breeder hens on the growth performance and liver development of offspring chicks. Anim. Biotechnol. 2023, 6, 1–11. [Google Scholar] [CrossRef]
- Long, L.; Wu, S.G.; Yuan, F.; Zhang, H.J.; Wang, J.; Qi, G.H. Effects of dietary octacosanol supplementation on laying performance, egg quality, serum hormone levels, and expression of genes related to the reproductive axis in laying hens. Poult. Sci. 2017, 96, 894–903. [Google Scholar] [CrossRef]
- Yin, Z.Z.; Dong, X.Y.; Cao, H.Y.; Mao, H.G.; Ma, Y.Z. Effects of rearing systems on reproductive hormones secretion and their receptors gene expression in Xianju chickens under summer conditions. Poult. Sci. 2018, 97, 3092–3096. [Google Scholar] [CrossRef]
- Hrabia, A.; Ha, Y.; Shimada, K. Expression of estrogen receptor alpha mRNA in theca and granulosa layers of the ovary in relation to follicular growth in quail. Folia Biol. 2004, 52, 191–195. [Google Scholar] [CrossRef]
- Hrabia, A.; Wilk, M.; Rz Sa, J. Expression of alpha and beta estrogen receptors in the chicken ovary. Folia Biol. 2008, 56, 187–191. [Google Scholar] [CrossRef]
- Mohammadi, H.; Pirsaraei, Z.A. Changes in some blood parameters and production performance of old laying hens due to growth hormone and testosterone injection. J. Anim. Physiol. Anim. Nutr. 2014, 98, 483–490. [Google Scholar] [CrossRef]
- Cui, Y.M.; Wang, J.; Hai-Jun, Z.; Feng, J.; Wu, S.G.; Qi, G.H. Effect of photoperiod on ovarian morphology, reproductive hormone secretion, and hormone receptor mRNA expression in layer ducks during the pullet phase. Poult. Sci. 2019, 98, 2439–2447. [Google Scholar] [CrossRef]
- Weihua, Z.; Saji, S.; Mäkinen, S.; Cheng, G.; Jensen, E.V.; Warner, M.; Gustafsson, J.Å. Estrogen receptor (ER) b, a modulator of ERa in the uterus. Proc. Natl. Acad. Sci. USA 2000, 97, 5936–5941. [Google Scholar] [CrossRef]
- Rahmani, M.; Golian, A.; Kermanshahi, H.; Bassami, M.R. Effects of curcumin or nanocurcumin on blood biochemical parameters, intestinal morphology and microbial population of broiler chickens reared under normal and cold stress conditions. J. Appl. Anim. Res. 2018, 46, 200–209. [Google Scholar] [CrossRef]
- Berríos-Cárcamo, P.; Quezada, M.; Quintanilla, M.E.; Morales, P.; Ezquer, F. Oxidative Stress and Neuroinflammation as a Pivot in Drug Abuse. A Focus on the Therapeutic Potential of Antioxidant and Anti-Inflammatory Agents and Biomolecules. Antioxidants 2020, 9, 830. [Google Scholar] [CrossRef] [PubMed]
- Nawab, A.; Li, G.; Liu, W.; Lan, R.; An, L. Effect of dietary curcumin on the antioxidant status of laying hens under high- temperature condition. J. Therm. Biol. 2019, 86, 102449. [Google Scholar] [CrossRef] [PubMed]
- Habashy, W.S.; Milfort, M.C.; Rekaya, R.; Aggrey, S.E. Cellular antioxidant enzyme activity and biomarkers for oxidative stress are affected by heat stress. Int. J. Biometeorol. 2019, 63, 1569–1584. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Moneim, A.E.; Shehata, A.M.; Khidr, R.E.; Paswan, V.K.; Ibrahim, N.S.; El-Ghoul, A.A.; Aldhumri, S.A.; Gabr, S.A.; Mesalam, N.M.; Elbaz, A.M.; et al. Nutritional manipulation to combat heat stress in poultry—A comprehensive review. J. Therm. Biol. 2021, 98, 102915. [Google Scholar] [CrossRef] [PubMed]
- Milani, A.; Basirnejad, M.; Shahbazi, S.; Bolhassani, A. Carotenoids: Biochemistry, pharmacology and treatment. Br. J. Pharmacol. 2017, 174, 1290–1324. [Google Scholar] [CrossRef]
- Krinsky, N.I. The antioxidant and biological properties of the carotenoids. Ann. N. Y. Acad. Sci. 1998, 854, 443–447. [Google Scholar] [CrossRef]
- Venugopalan, V.; Tripathi, S.K.; Nahar, P.; Saradhi, P.P.; Das, R.H.; Gautam, H.K. Characterization of canthaxanthin isomers isolated from a new soil Dietzia sp. and their antioxidant activities. J. Microbiol. Biotechnol. 2013, 23, 237–245. [Google Scholar] [CrossRef]
- Conradie, T.A.; Pieterse, E.; Jacobs, K. Application of Paracoccus marcusii as a potential feed additive for laying hens. Poult. Sci. 2018, 97, 986–994. [Google Scholar] [CrossRef]
- Sahin, N.; Hayirli, A.; Orhan, C.; Tuzcu, M.; Akdemir, F.; Komorowski, J.R.; Sahin, K. Effects of the supplemental chromium form on performance and oxidative stress in broilers exposed to heat stress. Poult. Sci. 2017, 96, 4317–4324. [Google Scholar] [CrossRef]
- Orhan, C.; Sahin, N.; Akdemir, F.; Markiewicz-Zukowska, R.; Borawska, M.H.; Isidorov, V.A.; Hayirli, A.; Sahin, K. The effect of Cirsium arvense extract on antioxidant status in quail. Br. Poult. Sci. 2013, 54, 620–626. [Google Scholar] [CrossRef]
- Akdemir, F.; Orhan, C.; Sahin, N.; Sahin, K.; Hayirli, A. Tomato powder in laying hen diets: Effects on concentrations of yolk carotenoids and lipid peroxidation. Br. Poult. Sci. 2012, 53, 675–680. [Google Scholar] [CrossRef]
- Rengel, D.; Diez-Navajas, A.; Serna-Rico, A.; Veiga, P.; Muga, A.; Milicua, J.C. Exogenously incorporated ketocarotenoids in large unilamellar vesicles. Protective activity against peroxidation. Biochim. Biophys. Acta 2000, 1463, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Shih, C.K.; Chang, J.H.; Yang, S.H.; Chou, T.W.; Cheng, H.H. beta-Carotene and canthaxanthin alter the pro-oxidation and antioxidation balance in rats fed a high-cholesterol and high-fat diet. Br. J. Nutr. 2008, 99, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Damaziak, K.; Marzec, A.; Riedel, J.; Szeliga, J.; Koczywas, E.; Cisneros, F.; Michalczuk, M.; Lukasiewicz, M.; Gozdowski, D.; Siennicka, A.; et al. Effect of dietary canthaxanthin and iodine on the production performance and egg quality of laying hens. Poult. Sci. 2018, 97, 4008–4019. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Zhang, Z.F.; Kim, I.H. Effects of Canthaxanthin on Egg Production, Egg Quality, and Egg Yolk Color in Laying Hens. J. Agric. Sci. 2012, 5, 269–274. [Google Scholar] [CrossRef]
- Faruk, M.U.; Roos, F.F.; Cisneros-Gonzalez, F. A meta-analysis on the effect of canthaxanthin on egg production in brown egg layers. Poult. Sci. 2018, 97, 84–87. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, K.Y.; Ding, X.M.; Bai, S.P.; Hernandez, J.M.; Yao, B.; Zhu, Q. Influence of canthaxanthin on broiler breeder reproduction, chick quality, and performance. Poult. Sci. 2011, 90, 1516–1522. [Google Scholar] [CrossRef]
- Surai, A.P.; Surai, P.F.; Steinberg, W.; Wakeman, W.G.; Speake, B.K.; Sparks, N.H. Effect of canthaxanthin content of the maternal diet on the antioxidant system of the developing chick. Br. Poult. Sci. 2003, 44, 612–619. [Google Scholar] [CrossRef]
- Guo, Y.; Liao, J.H.; Liang, Z.L.; Balasubramanian, B.; Liu, W.C. Hepatic lipid metabolomics in response to heat stress in local broiler chickens breed (Huaixiang chickens). Vet. Med. Sci. 2021, 7, 1369–1378. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, H.; Wang, Z.; Li, T.; Guo, J.; Adu-Asiamah, P.; Leng, Q.; An, L.; Liu, M.; Zhang, X.; et al. Identification and characterization of circular RNAs in chicken hepatocytes. Growth Horm. IGF Res. 2019, 46–47, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; He, C.; Wang, Z.; Li, Y.; Li, S.; Tao, L.; Chen, J.; Li, D.; Yang, F.; Li, N.; et al. A novel deletion in KRT75L4 mediates the frizzle trait in a Chinese indigenous chicken. Genet. Sel. Evol. 2018, 50, 68. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, C.; Rosa, A.P.; Londero, A.; Giacomini, C.; Orso, C.; Fernandes, M.O.; Paixao, S.J.; Bonamigo, D.V. Effect of broiler breeders fed with corn or sorghum diet and canthaxanthin supplementation on production and reproductive performance. Poult. Sci. 2017, 96, 1725–1734. [Google Scholar] [CrossRef] [PubMed]
- Johnson-Dahl, M.L.; Zuidhof, M.J.; Korver, D.R. The effect of maternal canthaxanthin supplementation and hen age on breeder performance, early chick traits, and indices of innate immune function. Poult. Sci. 2017, 96, 634–646. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.H.; Nesaretnam, K.; Reimann, K.; Lai, L.C. Effect of retinoic acid and palm oil carotenoids on oestrone sulphatase and oestradiol-17beta hydroxysteroid dehydrogenase activities in MCF-7 and MDA-MB-231 breast cancer cell lines. Int. J. Cancer 2000, 88, 135–138. [Google Scholar] [CrossRef]
- Speake, B.K.; Murray, A.M.; Noble, R.C. Transport and transformations of yolk lipids during development of the avian embryo. Prog. Lipid Res. 1998, 37, 1–32. [Google Scholar] [CrossRef]
- Drummond, A.E.; Findlay, J.K. The role of estrogen in folliculogenesis. Mol. Cell Endocrinol. 1999, 151, 57–64. [Google Scholar] [CrossRef]
- Dai, X.; Zeng, G.; Hong, L.; Ye, Q.; Chen, X.; Zhang, J. Ginsenoside Rg1 and astaxanthin act on the hypothalamus to protect female mice against reproductive aging. Chin. Med. J. 2021, 135, 107–109. [Google Scholar] [CrossRef]
- Shen, M.; Sun, H.; Qu, L.; Ma, M.; Dou, T.; Lu, J.; Guo, J.; Hu, Y.; Wang, X.; Li, Y.; et al. Genetic Architecture and Candidate Genes Identified for Follicle Number in Chicken. Sci. Rep. 2017, 7, 16412. [Google Scholar] [CrossRef]
- Onagbesan, O.; Bruggeman, V.; Decuypere, E. Intra-ovarian growth factors regulating ovarian function in avian species: A review. Anim. Reprod. Sci. 2009, 111, 121–140. [Google Scholar] [CrossRef]
- Nelis, H.J.; Lavens, P.; Moens, L.; Sorgeloos, P.; Jonckheere, J.A.; Criel, G.R.; De Leenheer, A.P. cis-Canthaxanthins. Unusual carotenoids in the eggs and the reproductive system of female brine shrimp artemia. J. Biol. Chem. 1984, 259, 6063–6066. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.S.; Chang, C.L.; Lai, G.H. Reactive oxygen species scavenging activities in a chemiluminescence model and neuroprotection in rat pheochromocytoma cells by astaxanthin, beta-carotene, and canthaxanthin. Kaohsiung J. Med. Sci. 2013, 29, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Araujo, I.; Cafe, M.B.; Mesquita, M.A.; Caiado, B.N.; Faria, A.M.; Mello, H.; Stringhini, J.H.; Leandro, N. Effect of a commercial product containing canthaxanthin for in ovo feeding to broiler embryos on hatchability, chick quality, oxidation status, and performance. Poult. Sci. 2020, 99, 5598–5606. [Google Scholar] [CrossRef] [PubMed]
- Bohm, F.; Edge, R.; Truscott, G. Interactions of dietary carotenoids with activated (singlet) oxygen and free radicals: Potential effects for human health. Mol. Nutr. Food Res. 2012, 56, 205–216. [Google Scholar] [CrossRef]
- Ren, Z.Z.; Zeng, Q.F.; Wang, J.P.; Ding, X.M.; Bai, S.P.; Su, Z.W.; Xuan, Y.; Zhang, K.Y. Effects of maternal dietary canthaxanthin and 25-hydroxycholecalciferol supplementation on antioxidant status and calcium-phosphate metabolism of progeny ducks. Poult. Sci. 2018, 97, 1361–1367. [Google Scholar] [CrossRef]
- Palozza, P.; Calviello, G.; Emilia, D.L.M.; Serini, S.; Bartoli, G.M. Canthaxanthin supplementation alters antioxidant enzymes and iron concentration in liver of Balb/c mice. J. Nutr. 2000, 130, 1303–1308. [Google Scholar] [CrossRef]
- Lin, H.; De Vos, D.; Decuypere, E.; Buyse, J. Dynamic changes in parameters of redox balance after mild heat stress in aged laying hens (Gallus gallus domesticus). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2008, 147, 30–35. [Google Scholar] [CrossRef]
- Xiang, Q.; Wang, C.; Zhang, H.; Lai, W.; Wei, H.; Peng, J. Effects of Different Probiotics on Laying Performance, Egg Quality, Oxidative Status, and Gut Health in Laying Hens. Animals 2019, 9, 1110. [Google Scholar] [CrossRef]
group | Diet |
---|---|
NC | basal diet(BD) |
NT1 | BD + 4 mg/kg CX |
NT2 | BD + 6 mg/kg CX |
NT3 | BD + 8 mg/kg CX |
NT4 | BD + 10 mg/kg CX |
Item | Contents (%) |
---|---|
Corn | 55 |
Soybean meal | 20 |
Wheat bran | 9.5 |
Fish meal | 5.0 |
Limestone | 7.5 |
CaHPO4 | 2.5 |
NaCl | 0.1 |
Premix 1 | 0.4 |
Nutrient levels 2 | |
ME/(MJ/kg) 2 | 11.6 |
CP | 15.5 |
Ca | 2.0 |
TP | 0.63 |
Met | 0.40 |
Cys | 0.30 |
Lys | 0.80 |
p-Value | ||||||||
---|---|---|---|---|---|---|---|---|
Items | CON | NT1 | NT2 | NT3 | NT4 | SEM | Linear | Quadratic |
ADFI(g/d) | ||||||||
3W | 109.18 b | 108.62 bc | 113.55 a | 108.64 bc | 106.24 c | 0.75 | 0.033 | 0.001 |
6W | 101.41 b | 103.97 b | 103.91 b | 105.35 b | 112.77 a | 2.23 | 0.007 | 0.209 |
9W | 104.62 c | 106.55 bc | 109.90 bc | 114.74 b | 125.12 a | 2.72 | <0.001 | 0.101 |
LR(%) | ||||||||
3W | 65.00 b | 70.50 a | 71.76 a | 66.17 b | 66.67 b | 1.16 | 0.788 | <0.001 |
6W | 53.11 b | 57.22 b | 61.11 a | 56.67 b | 55.74 b | 1.93 | 0.447 | <0.001 |
9W | 53.05 c | 56.52 b | 60.00 a | 54.44 bc | 54.92 bc | 1.02 | 0.611 | <0.001 |
AEW(g) | ||||||||
3W | 41.57 ab | 41.23 ab | 42.03 a | 41.08 b | 40.90 b | 0.28 | 0.102 | 0.186 |
6W | 44.75 ab | 44.17 b | 45.51 a | 45.43 a | 44.13 b | 0.40 | 0.986 | 0.066 |
9W | 45.70 c | 44.13 bc | 46.15 a | 47.03 abc | 46.42 ab | 0.25 | 0.007 | 0.043 |
CER(%) | ||||||||
3W | 0.43 | 0.42 | 0.34 | 0.43 | 0.42 | 0.04 | 0.987 | 0.314 |
6W | 0.45 a | 0.36 bc | 0.35 c | 0.44 a | 0.42 a | 0.02 | 0.733 | 0.011 |
9W | 0.54 | 0.52 | 0.44 | 0.49 | 0.49 | 0.06 | 0.547 | 0.501 |
p-Value | ||||||||
---|---|---|---|---|---|---|---|---|
Items | CON | NT1 | NT2 | NT3 | NT4 | SEM | Linear | Quadratic |
FSH/(mIU/mL) | ||||||||
3W | 28.43 b | 33.18 a | 33.74 a | 30.15 b | 28.33 b | 0.57 | 0.101 | <0.001 |
6W | 22.85 c | 32.91 a | 33.43 a | 31.07 ab | 29.85 b | 0.89 | 0.002 | <0.001 |
9W | 20.35 c | 25.48 b | 26.28 b | 28.78 a | 29.04 a | 0.49 | <0.001 | 0.001 |
LH/(ng/mL) | ||||||||
3W | 176.17 c | 219.5 b | 234.45 a | 221.04 b | 217.89 b | 2.96 | <0.001 | <0.001 |
6W | 177.07 c | 221.41 ab | 228.05 a | 207.26 b | 204.96 b | 5.23 | 0.031 | 0.001 |
9W | 178.60 d | 223.16 ab | 226.48 a | 212.64 bc | 208.11 c | 3.60 | 0.002 | <0.001 |
E2/(pg/mL) | ||||||||
3W | 410.18 b | 420.36 b | 512.59 a | 423.61 b | 411.93 b | 9.81 | 0.833 | 0.001 |
6W | 402.60 b | 458.44 a | 463.61 a | 442.97 ab | 436.36 ab | 15.46 | 0.312 | 0.026 |
9W | 361.48 | 373.27 | 367.94 | 363.43 | 362.34 | 15.45 | 0.872 | 0.676 |
Prog/(ng/mL) | ||||||||
3W | 28.90 | 28.43 | 28.17 | 27.03 | 26.48 | 1.78 | 0.293 | 0.880 |
6W | 30.28 | 32.6 | 31.49 | 30.86 | 30.93 | 1.26 | 0.917 | 0.414 |
9W | 28.18 b | 32.63 a | 33.12 a | 29.67 b | 27.69 b | 0.79 | 0.143 | <0.001 |
p-Value | ||||||||
---|---|---|---|---|---|---|---|---|
Items | CON | NT1 | NT2 | NT3 | NT4 | SEM | Linear | Quadratic |
FSH/(mIU/mL) | ||||||||
3W | 21.62 b | 22.97 ab | 25.52 a | 21.98 b | 21.92 b | 1.04 | 0.912 | 0.046 |
6W | 19.44 | 22.58 | 23.08 | 19.56 | 19.24 | 2.01 | 0.603 | 0.177 |
9W | 18.62 | 21.83 | 23.76 | 19.56 | 18.65 | 1.74 | 0.698 | 0.052 |
LH/(ng/mL) | ||||||||
3W | 174.27 b | 209.05 a | 222.28 a | 211.82 a | 211.33 a | 4.58 | <0.001 | <0.001 |
6W | 163.12 b | 186.21 ab | 210.22 a | 185.58 ab | 184.70 ab | 10.28 | 0.220 | 0.031 |
9W | 161.59 | 200.52 | 189.68 | 179.30 | 166.30 | 11.60 | 0.918 | 0.117 |
E2/(pg/mL) | ||||||||
3W | 566.13 | 576.27 | 577.55 | 571.79 | 570.27 | 18.23 | 0.949 | 0.666 |
6W | 625.89 | 640.48 | 652.15 | 628.96 | 627.50 | 17.97 | 0.887 | 0.343 |
9W | 546.95 | 556.39 | 554.47 | 552.36 | 548.71 | 14.58 | 0.992 | 0.639 |
Prog/(ng/mL) | ||||||||
3W | 32.05 | 33.03 | 32.00 | 30.15 | 29.14 | 1.41 | 0.079 | 0.383 |
6W | 27.76 | 27.59 | 31.20 | 28.77 | 27.70 | 1.27 | 0.796 | 0.130 |
9W | 27.98 | 30.62 | 30.75 | 27.73 | 28.65 | 1.16 | 0.681 | 0.161 |
p-Value | ||||||||
---|---|---|---|---|---|---|---|---|
Items | CON | NT1 | NT2 | NT3 | NT4 | SEM | Linear | Quadratic |
Ovary weight/g | ||||||||
3W | 3.25 | 3.26 | 3.36 | 3.29 | 3.28 | 0.23 | 0.898 | 0.809 |
6W | 3.37 | 3.55 | 3.4 | 3.39 | 3.38 | 0.42 | 0.913 | 0.875 |
9W | 3.21 | 3.41 | 3.52 | 3.45 | 3.31 | 0.20 | 0.714 | 0.291 |
GF/fcs | ||||||||
3W | 6.33 | 5.83 | 6.17 | 5.83 | 6.17 | 0.39 | 0.789 | 0.498 |
6W | 5.67 | 6.33 | 6.50 | 6.17 | 6.00 | 0.44 | 0.722 | 0.199 |
9W | 5.00 | 5.67 | 6.17 | 5.50 | 5.50 | 0.46 | 0.568 | 0.155 |
SYF/fcs | ||||||||
3W | 12.83 | 13.67 | 13.83 | 13.50 | 13.33 | 1.27 | 0.838 | 0.605 |
6W | 14.83 ab | 17.17 a | 17.33 a | 16.33 ab | 13.83 a | 1.03 | 0.392 | 0.010 |
9W | 12.33 | 13.67 | 15.00 | 13.50 | 13.33 | 0.87 | 0.511 | 0.085 |
LYF/fcs | ||||||||
3W | 2.33 | 2.50 | 2.83 | 2.50 | 3.33 | 0.36 | 0.195 | 0.537 |
6W | 2.17 | 2.67 | 2.50 | 2.17 | 1.83 | 0.32 | 0.259 | 0.138 |
9W | 2.00 | 1.50 | 2.00 | 1.83 | 1.33 | 0.30 | 0.305 | 0.560 |
SWF/fcs | ||||||||
3W | 39.67 | 40.33 | 41.00 | 40.00 | 39.33 | 1.32 | 0.813 | 0.389 |
6W | 30.33 | 33.00 | 33.33 | 32.67 | 32.33 | 1.57 | 0.468 | 0.246 |
9W | 26.00 | 27.33 | 27.67 | 27.33 | 26.67 | 1.47 | 0.776 | 0.404 |
LWF/fcs | ||||||||
3W | 33.67 b | 38.33 b | 37.33 b | 54.00 a | 47.67 a | 3.08 | <0.001 | 0.711 |
6W | 30.33 b | 35.67 ab | 35.50 ab | 34.67 ab | 40.00 a | 1.94 | 0.006 | 0.928 |
9W | 41.67 | 44.00 | 43.67 | 54.00 | 42.67 | 2.4 | 0.136 | 0.083 |
p-Value | ||||||||
---|---|---|---|---|---|---|---|---|
Items | CON | NT1 | NT2 | NT3 | NT4 | SEM | Linear | Quadratic |
SOD/(U/mL) | ||||||||
3W | 431.55 c | 454.72 c | 556.45 a | 507.28 b | 498.92 b | 11.54 | <0.001 | <0.001 |
6W | 331.05 c | 416.86 b | 461.33 a | 474.73 a | 447.57 ab | 12.64 | <0.001 | <0.001 |
9W | 310.95 b | 444.97 a | 460.81 a | 458.55 a | 442.83 a | 14.56 | <0.001 | <0.001 |
T-AOC/(U/mL) | ||||||||
3W | 15.03 b | 16.45 ab | 17.08 a | 16.09 ab | 15.27 ab | 0.59 | 0.949 | 0.019 |
6W | 16.67 | 17.52 | 17.59 | 17.16 | 16.90 | 0.76 | 0.972 | 0.362 |
9W | 14.69 a | 16.33 b | 15.99 b | 17.33 c | 15.37 a | 0.99 | <0.001 | <0.001 |
GSH-Px/(U/mL) | ||||||||
3W | 67.91 d | 90.69 c | 111.61 a | 103.39 ab | 100.45 b | 2.89 | <0.001 | <0.001 |
6W | 69.34 c | 98.14 b | 111.32 a | 107.84 ab | 107.43 ab | 3.60 | <0.001 | <0.001 |
9W | 65.33 d | 84.24 c | 109.46 a | 93.50 b | 95.72 b | 2.73 | 0.469 | 0.164 |
MDA/(nmol/L) | ||||||||
3W | 8.09 a | 5.87 b | 4.51 c | 4.66 c | 4.65 c | 0.22 | <0.001 | <0.001 |
6W | 7.65 a | 5.14 b | 4.81 b | 4.96 b | 5.37 b | 0.20 | <0.001 | <0.001 |
9W | 8.89 a | 6.45 bc | 5.87 c | 6.92 b | 7.31 b | 0.26 | 0.009 | <0.001 |
p-Value | ||||||||
---|---|---|---|---|---|---|---|---|
Items | NC | NT1 | NT2 | NT3 | NT4 | SEM | Linear | Quadratic |
SOD/(U/mL)) | ||||||||
3W | 684.84 b | 773.51 a | 794.02 a | 787.99 a | 787.96 a | 22.64 | 0.012 | 0.037 |
6W | 635.86 b | 723.94 a | 763.15 a | 757.02 a | 759.81 a | 20.29 | 0.001 | 0.017 |
9W | 608.23 b | 724.37 a | 746.69 a | 738.25 a | 761.17 a | 15.99 | <0.001 | 0.005 |
T-AOC/(U/mL) | ||||||||
3W | 23.71 | 24.52 | 25.04 | 23.76 | 24.06 | 1.17 | 0.985 | 0.533 |
6W | 29.87 | 29.11 | 31.21 | 30.14 | 30.85 | 0.73 | 0.227 | 0.931 |
9W | 29.09 | 28.96 | 30.41 | 30.24 | 27.79 | 0.96 | 0.674 | 0.113 |
GSH-Px/(U/mL) | ||||||||
3W | 133.63 b | 153.91 a | 171.74 a | 169.15 a | 168.07 a | 5.60 | <0.001 | 0.013 |
6W | 119.22 c | 156.46 b | 160.63 ab | 165.52 a | 159.94 ab | 2.23 | <0.001 | <0.001 |
9W | 117.14 b | 154.39 a | 165.89 a | 157.26 a | 157.04 a | 4.83 | <0.001 | <0.001 |
MDA/(nmol/L) | ||||||||
3W | 6.49 a | 4.18 b | 3.97 b | 4.03 b | 4.01 b | 0.30 | <0.001 | 0.001 |
6W | 6.35 a | 3.62 b | 3.37 b | 3.42 b | 3.50 b | 0.25 | <0.001 | <0.001 |
9W | 5.80 a | 3.38 b | 3.37 b | 3.39 b | 3.51 b | 0.26 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Wu, J.; Liu, Y.; Zhuang, Y.; Yan, H.; Xiao, M.; Zhang, L.; An, L. Dietary Canthaxanthin Supplementation Promotes the Laying Rate and Follicular Development of Huaixiang Hens. Biology 2023, 12, 1375. https://doi.org/10.3390/biology12111375
Zhao Z, Wu J, Liu Y, Zhuang Y, Yan H, Xiao M, Zhang L, An L. Dietary Canthaxanthin Supplementation Promotes the Laying Rate and Follicular Development of Huaixiang Hens. Biology. 2023; 12(11):1375. https://doi.org/10.3390/biology12111375
Chicago/Turabian StyleZhao, Zhuangzhi, Jiang Wu, Yuan Liu, Yijie Zhuang, Haoguo Yan, Mei Xiao, Li Zhang, and Lilong An. 2023. "Dietary Canthaxanthin Supplementation Promotes the Laying Rate and Follicular Development of Huaixiang Hens" Biology 12, no. 11: 1375. https://doi.org/10.3390/biology12111375
APA StyleZhao, Z., Wu, J., Liu, Y., Zhuang, Y., Yan, H., Xiao, M., Zhang, L., & An, L. (2023). Dietary Canthaxanthin Supplementation Promotes the Laying Rate and Follicular Development of Huaixiang Hens. Biology, 12(11), 1375. https://doi.org/10.3390/biology12111375