The Impact of Urbanization on Tree Growth and Xylem Anatomical Characteristics
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Sampled Tree Species
2.3. Sampling and Chronology Development
2.4. Anatomical Characteristics Analysis
2.5. Climate Data
3. Results
3.1. Radial Growth of Trees in Urban and Rural Areas
3.2. Xylem Anatomical Characteristics of Trees in Urban and Rural Areas
3.3. PCA Dimensionality Reduction
3.4. The Relationship between Xylem Anatomical Characteristics of Trees and Climate
4. Discussion
4.1. Effect of Urban Heat Island on Anatomical Characteristics of Trunk Xylem
4.2. Effects of Air Pollution on the Anatomical Characteristics of Trunk Xylem
4.3. Uncertainty in Interpretation of Results of Urban and Rural Growth and Xylem Anatomical Differences
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Site | Species | Forest | Slope | Orientation | Altitude | |
---|---|---|---|---|---|---|
Urban | NF | F. mandshurica | Artificial pure forest | Level ground | 141 m | |
Q. mongolica | 141 m | |||||
P. sylvestris var. mongolica | 141 m | |||||
SR | P. sylvestris var. mongolica | 132–140 m | ||||
Rural | LM | F. mandshurica | Natural secondary forest | Gully | Dark slope | 383 m |
Q. mongolica | Uphill | Sunny slope | 395–420 m | |||
P. sylvestris var. mongolica | Middle and downhill | Sunny slope | 361 m |
References
- Martin, W. United Nations Human Settlements Programme (UN-HABITAT). In Max Planck Encyclopedia of Public International Law; Oxford University Press: Oxford, UK, 2022; pp. 1–13. [Google Scholar]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017; ISBN 9781139016476. [Google Scholar]
- Gregg, J.W.; Jones, C.G.; Dawson, T.E. Urban Ozone Depletion: Why a Tree Grows Better in New York City. Nature 2003, 424, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, L.; Zohner, C.M.; Crowther, T.W.; Li, M.; Shen, F.; Guo, M.; Qin, J.; Yao, L.; Zhou, C. Direct and Indirect Impacts of Urbanization on Vegetation Growth across the World’s Cities. Sci. Adv. 2022, 8, eabo0095. [Google Scholar] [CrossRef] [PubMed]
- Locosselli, G.M.; de Camargo, E.P.; Moreira, T.C.L.; Todesco, E.; Andrade, M.D.F.; de André, C.D.S.; de André, P.A.; Singer, J.M.; Ferreira, L.S.; Saldiva, P.H.N.; et al. The Role of Air Pollution and Climate on the Growth of Urban Trees. Sci. Total Environ. 2019, 666, 652–661. [Google Scholar] [CrossRef]
- Dahlhausen, J.; Rötzer, T.; Biber, P.; Uhl, E.; Pretzsch, H. Urban Climate Modifies Tree Growth in Berlin. Int. J. Biometeorol. 2018, 62, 795–808. [Google Scholar] [CrossRef]
- Locosselli, G.M.; Chacón-Madrid, K.; Zezzi Arruda, M.A.; Pereira de Camargo, E.; Lopes Moreira, T.C.; Saldiva de André, C.D.; Afonso de André, P.; Singer, J.M.; Nascimento Saldiva, P.H.; Buckeridge, M.S. Tree Rings Reveal the Reduction of Cd, Cu, Ni and Pb Pollution in the Central Region of São Paulo, Brazil. Environ. Pollut. 2018, 242, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Stratopoulos, L.M.F.; Moser-Reischl, A.; Zölch, T.; Häberle, K.H.; Rötzer, T.; Pretzsch, H.; Pauleit, S. Traits of Trees for Cooling Urban Heat Islands: A Meta-Analysis. Build. Environ. 2020, 170, 106606. [Google Scholar] [CrossRef]
- Rötzer, T.; Rahman, M.A.; Moser-Reischl, A.; Pauleit, S.; Pretzsch, H. Process Based Simulation of Tree Growth and Ecosystem Services of Urban Trees under Present and Future Climate Conditions. Sci. Total Environ. 2019, 676, 651–664. [Google Scholar] [CrossRef]
- Salmond, J.A.; Tadaki, M.; Vardoulakis, S.; Arbuthnott, K.; Coutts, A.; Demuzere, M.; Dirks, K.N.; Heaviside, C.; Lim, S.; MacIntyre, H.; et al. Health and Climate Related Ecosystem Services Provided by Street Trees in the Urban Environment. Environ. Health Glob. Access Sci. Source 2016, 15, 95–111. [Google Scholar] [CrossRef]
- Islam, M.; Rahman, M.; Bräuning, A. Xylem Anatomical Responses of Diffuse Porous Chukrasia Tabularis to Climate in a South Asian Moist Tropical Forest. For. Ecol. Manag. 2018, 412, 9–20. [Google Scholar] [CrossRef]
- Iqbal, M.; Mahmooduzzafar; Aref, I.M.; Khan, P.R. Behavioral Responses of Leaves and Vascular Cambium of Prosopis cineraria (L.) Druce to Different Regimes of Coal-Smoke Pollution. J. Plant Interact. 2010, 5, 117–133. [Google Scholar] [CrossRef]
- Parker, D.E. Urban Heat Island Effects on Estimates of Observed Climate Change. WIREs Clim. Chang. 2010, 1, 123–133. [Google Scholar] [CrossRef]
- Varquez, A.C.G.; Kanda, M. Global Urban Climatology: A Meta-Analysis of Air Temperature Trends (1960–2009). NPJ Clim. Atmos. Sci. 2018, 1, 32. [Google Scholar] [CrossRef]
- Mimet, A.; Pellissier, V.; Quénol, H.; Aguejdad, R.; Dubreuil, V.; Rozé, F. Urbanisation Induces Early Flowering: Evidence from Platanus acerifolia and Prunus cerasus. Int. J. Biometeorol. 2009, 53, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Zhang, M.; Li, K.; Hao, P.; Dong, L. Spatial Heterogeneity of First Flowering Date in Beijing’s Main Urban Area and Its Response to Urban Thermal Environment. Int. J. Biometeorol. 2022, 66, 1929–1954. [Google Scholar] [CrossRef]
- Kabano, P.; Lindley, S.; Harris, A. Evidence of Urban Heat Island Impacts on the Vegetation Growing Season Length in a Tropical City. Landsc. Urban Plan. 2021, 206, 103989. [Google Scholar] [CrossRef]
- Melaas, E.K.; Wang, J.A.; Miller, D.L.; Friedl, M.A. Interactions between Urban Vegetation and Surface Urban Heat Islands: A Case Study in the Boston Metropolitan Region. Environ. Res. Lett. 2016, 11, 054020. [Google Scholar] [CrossRef]
- Cregg, B.M.; Dix, M.E. Tree Moisture Stress and Insect Damage in Urban Areas in Relation to Heat Island Effects. J. Arboric. 2001, 27, 8–17. [Google Scholar] [CrossRef]
- Zipper, S.C.; Schatz, J.; Singh, A.; Kucharik, C.J.; Townsend, P.A.; Loheide, S.P. Urban Heat Island Impacts on Plant Phenology: Intra-Urban Variability and Response to Land Cover. Environ. Res. Lett. 2016, 11, 054023. [Google Scholar] [CrossRef]
- Kumar, R.; Mishra, V.; Kumar, R.; Mishra, V. Sustainability of Smart Cities under Climate Variability and Climate Change in India. AGUFM 2015, 2015, B33E-0783. [Google Scholar]
- Huang, S.; Zhang, X.; Yang, L.; Chen, N.; Nam, W.H.; Niyogi, D. Urbanization-Induced Drought Modification: Example over the Yangtze River Basin, China. Urban Clim. 2022, 44, 101231. [Google Scholar] [CrossRef]
- Dong, L.; Mitra, C.; Greer, S.; Burt, E. The Dynamical Linkage of Atmospheric Blocking to Drought, Heatwave and Urban Heat Island in Southeastern US: A Multi-Scale Case Study. Atmosphere 2018, 9, 33. [Google Scholar] [CrossRef]
- Winguth, A.M.E.; Kelp, B. The Urban Heat Island of the North-Central Texas Region and Its Relation to the 2011 Severe Texas Drought. J. Appl. Meteorol. Climatol. 2013, 52, 2418–2433. [Google Scholar] [CrossRef]
- Standard, L.C. The North Central Texas Urban Heat Island Magnitude and Its Relation to Severe and Extreme Drought. Master’s Thesis, The University of Texas at Arlington, Arlington, TX, USA, 2021. [Google Scholar]
- Nimac, I.; Herceg-Bulić, I.; Žuvela-Aloise, M.; Žgela, M. Impact of North Atlantic Oscillation and Drought Conditions on Summer Urban Heat Load—A Case Study for Zagreb. Int. J. Climatol. 2022, 42, 4850–4867. [Google Scholar] [CrossRef]
- Sensuła, B.; Wilczyński, S.; Opała, M. Tree Growth and Climate Relationship: Dynamics of Scots Pine (Pinus sylvestris L.) Growing in the Near-Source Region of the Combined Heat and Power Plant During the Development of the Pro-Ecological Strategy in Poland. Water Air Soil Pollut. 2015, 226, 220. [Google Scholar] [CrossRef]
- Moser-Reischl, A.; Uhl, E.; Rötzer, T.; Biber, P.; van Con, T.; Tan, N.T.; Pretzsch, H. Effects of the Urban Heat Island and Climate Change on the Growth of Khaya senegalensis in Hanoi, Vietnam. For. Ecosyst. 2018, 5, 37. [Google Scholar] [CrossRef]
- Wilde, E.M.; Maxwell, J.T. Comparing Climate-Growth Responses of Urban and Non-Urban Forests Using L. tulipifera Tree-Rings in Southern Indiana, USA. Urban For. Urban Green. 2018, 31, 103–108. [Google Scholar] [CrossRef]
- Gillner, S.; Bräuning, A.; Roloff, A. Dendrochronological Analysis of Urban Trees: Climatic Response and Impact of Drought on Frequently Used Tree Species. Trees-Struct. Funct. 2014, 28, 1079–1093. [Google Scholar] [CrossRef]
- Ordóñez, C.; Duinker, P.N. Assessing the Vulnerability of Urban Forests to Climate Change. Environ. Rev. 2014, 22, 311–321. [Google Scholar] [CrossRef]
- Hunt, A.; Watkiss, P. Climate Change Impacts and Adaptation in Cities: A Review of the Literature. Clim. Chang. 2011, 104, 13–49. [Google Scholar] [CrossRef]
- Schneider, C.; Neuwirth, B.; Schneider, S.; Balanzategui, D.; Elsholz, S.; Fenner, D.; Meier, F.; Heinrich, I. Using the Dendro-Climatological Signal of Urban Trees as a Measure of Urbanization and Urban Heat Island. Urban Ecosyst. 2022, 25, 849–865. [Google Scholar] [CrossRef]
- Moser-Reischl, A.; Rötzer, T.; Biber, P.; Ulbricht, M.; Uhl, E.; Qu, L.; Koike, T.; Pretzsch, H. Growth of Abies sachalinensis Along an Urban Gradient Affected by Environmental Pollution in Sapporo, Japan. Forests 2019, 10, 707. [Google Scholar] [CrossRef]
- Moser, A.; Uhl, E.; Rötzer, T.; Biber, P.; Dahlhausen, J.; Lefer, B.; Pretzsch, H. Effects of Climate and the Urban Heat Island Effect on Urban Tree Growth in Houston. Open J. For. 2017, 07, 428–445. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P.; Uhl, E.; Dahlhausen, J.; Schütze, G.; Perkins, D.; Rötzer, T.; Caldentey, J.; Koike, T.; van Con, T.; et al. Climate Change Accelerates Growth of Urban Trees in Metropolises Worldwide. Sci. Rep. 2017, 7, 15403. [Google Scholar] [CrossRef]
- Kukarskih, V.V.; Devi, N.M.; Bubnov, M.O.; Komarova, A.V.; Agafonov, L.I. Urban Heat Island of Ekaterinburg: Does It Affect Radial Growth of the Scots Pine? J. Sib. Fed. Univ.-Biol. 2022, 15, 264–278. [Google Scholar] [CrossRef]
- Shumilov, O.I.; Kasatkina, E.A.; Timonen, M.; Herva, H.; Kirtsideli, I.; Kanatjev, A.G.; Shumilov, O.I.; Kasatkina, E.A.; Timonen, M.; Herva, H.; et al. “Urban Heat Island” Effect on Tree Growth at Several Cities of Northern Europe. EGUGA 2010, 12, 1422. [Google Scholar]
- Yadav, I.C.; Devi, N.L. Biomass Burning, Regional Air Quality, and Climate Change. In Encyclopedia of Environmental Health; Elsevier: Amsterdam, The Netherlands, 2019; pp. 386–391. ISBN 9780444639523. [Google Scholar]
- Ballikaya, P.; Marshall, J.; Cherubini, P. Can Tree-Ring Chemistry Be Used to Monitor Atmospheric Nanoparticle Contamination over Time? Atmos. Environ. 2022, 268, 118781. [Google Scholar] [CrossRef]
- Binda, G.; Di Iorio, A.; Monticelli, D. The What, How, Why, and When of Dendrochemistry: (Paleo) Environmental Information from the Chemical Analysis of Tree Rings. Sci. Total Environ. 2021, 758, 143672. [Google Scholar] [CrossRef]
- Kukarskih, V.V.; Devi, N.M.; Bubnov, M.O.; Komarova, A.V.; Agafonov, L.I. Radial Growth of Scots Pine in Urban and Rural Populations of Ekaterinburg Megalopolis. Dendrochronologia 2022, 74, 125974. [Google Scholar] [CrossRef]
- Sensuła, B.; Wilczyński, S. Climatic Signals in Tree-Ring Width and Stable Isotopes Composition of Pinus sylvestris L. Growing in the Industrialized Area Nearby Kędzierzyn-Koźle. Geochronometria 2017, 44, 240–255. [Google Scholar] [CrossRef]
- Sensuła, B.; Wilczyński, S. Records of Anthropogenic Pollution in Silesia Captured in Scots Pine Tree Rings: Analysis by Radiocarbon, Stable Isotopes, and Basal Area Increment Analysis. Water Air Soil Pollut. 2022, 233, 143. [Google Scholar] [CrossRef]
- Sensuła, B.; Wilczyński, S.; Monin, L.; Allan, M.; Pazdur, A.; Fagel, N. Variations of Tree Ring Width and Chemical Composition of Wood of Pine Growing in the Area Nearby Chemical Factories. Geochronometria 2017, 44, 226–239. [Google Scholar] [CrossRef]
- Fowler, D.; Cape, J.N.; Unsworth, M.H.; Mayer, H.; Crowther, J.M.; Jarvis, P.G.; Gardiner, B.; Shuttleworth, W.J. Deposition of Atmospheric Pollutants on Forests. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1989, 324, 247–265. [Google Scholar] [CrossRef]
- McDonald, A.G.; Bealey, W.J.; Fowler, D.; Dragosits, U.; Skiba, U.; Smith, R.I.; Donovan, R.G.; Brett, H.E.; Hewitt, C.N.; Nemitz, E. Quantifying the Effect of Urban Tree Planting on Concentrations and Depositions of PM10 in Two UK Conurbations. Atmos. Environ. 2007, 41, 8455–8467. [Google Scholar] [CrossRef]
- Prajapati, S.K. Ecological Effect of Airborne Particulate Matter on Plants. Environ. Skept. Crit. 2012, 1, 12–22. [Google Scholar]
- Grantz, D.A.; Garner, J.H.B.; Johnson, D.W. Ecological Effects of Particulate Matter. Environ. Int. 2003, 29, 213–239. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.; Wu, J.; Miao, G.; Chen, M.; Chen, S.; Wang, S.; Guo, Z.; Wang, Z.; Wang, B.; et al. Intermediate Aerosol Loading Enhances Photosynthetic Activity of Croplands. Geophys. Res. Lett. 2021, 48, e91893. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Z.; Wang, C.; Wang, X.; Li, J.; Jia, Z.; Li, P.; Wu, J.; Chen, M.; Liu, L. Field Evidence Reveals Conservative Water Use of Poplar Saplings under High Aerosol Conditions. J. Ecol. 2021, 109, 2190–2202. [Google Scholar] [CrossRef]
- Sæbø, A.; Benedikz, T.; Randrup, T.B. Selection of Trees for Urban Forestry in the Nordic Countries. Urban For. Urban Green. 2003, 2, 101–114. [Google Scholar] [CrossRef]
- Song, S.; Xu, D.; Hu, S.; Shi, M. Ecological Network Optimization in Urban Central District Based on Complex Network Theory: A Case Study with the Urban Central District of Harbin. Int. J. Environ. Res. Public Health 2021, 18, 1427. [Google Scholar] [CrossRef]
- Li, W. Effect of Urbanization on Urban Heat Island: A Case Study in Harbin. Environ. Sci. Manag. 2020, 45, 58–62. [Google Scholar]
- Wu, H.; Liu, Y.; Liuli, L.; Liu, Y.; Liu, B.; Zheng, T.; Wang, P. Estimation method of air pollution load of straw burning in Harbin. Huanjing Kexue Xuebao/Acta Sci. Circumstantiae 2020, 40, 3803–3810. [Google Scholar] [CrossRef]
- Yu, M.; Cao, L.; Han, Z.; Han, F.; Liu, Y.; Wang, X. Study on the Influence of Urbanization Process on Air Temperature in Harbin. HEILONGJIANG Meteorol. 2021, 38, 27–29. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, S.; Gao, Y.; Zhang, M.; Xuan, L. Analysis of PM2.5 Pollution Characteristics during Heating Period in Harbin City. J. GreenSci. Technol. 2021, 23, 42–44. [Google Scholar] [CrossRef]
- Chang, J. The Study on Investigation of Soil in Urban Green Space and Effects for the Improving in Harbin. Master’s Thesis, Northeast Forestry University, Harbin, China, 2015. [Google Scholar]
- Qiu, Y.; Li, L.; Lu, H.; Li, J.; Wang, X.; Jiang, L.; Su, J. Estimation of Air Pollution Emission from Cement Plant in Beijing Based on Thermal Anomaly Detection. Res. Environ. Sci. 2020, 33, 2265–2271. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, B. Research on Population Dispersal of Quercus mongolica in the City Forestry Demonstration Base of Northeast Forestry University. Mod. Agric. Technol. 2013, 135–137. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, P.; Xu, C.; Huang, X.; Rademacher, T. Dryness Decreases Average Growth Rate and Increases Drought Sensitivity of Mongolia Oak Trees in North China. Agric. For. Meteorol. 2021, 308–309, 108611. [Google Scholar] [CrossRef]
- Moon, N.H.; Moon, G.H.; Chun, J.H.; Shin, M.Y. Dendroclimatological Analysis and Tree-Ring Growth Prediction of Quercus mongolica. For. Sci. Technol. 2020, 16, 32–40. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, L.; Liu, S.; Lei, P.; Yuan, D.; Li, Z.; Wang, X. Xylem Features Detrending Methods Matter: A Case Study on Earlywood Vessels of Fraxinus mandshurica. Ecol. Indic. 2021, 130, 108041. [Google Scholar] [CrossRef]
- Li, W.; Jiang, Y.; Dong, M.; Du, E.; Wu, F.; Zhao, S.; Xu, H. Species-Specific Growth-Climate Responses of Dahurian Larch (Larix gmelinii) and Mongolian pine (Pinus sylvestris var. mongolica) in the Greater Khingan Range, Northeast China. Dendrochronologia 2021, 65, 125803. [Google Scholar] [CrossRef]
- Stokes, M.A.; Smiley, T.L. An Introduction to Tree-Ring Dating; UAPress: Tucson, AZ, USA, 1996. [Google Scholar]
- Holmes, R.L. Computer-Assisted Quality Control in Tree-Ring Dating and Measurement. Tree-Ring Bull. 1983, 43, 69–78. [Google Scholar]
- Bunn, A.G. A Dendrochronology Program Library in R (DplR). Dendrochronologia 2008, 26, 115–124. [Google Scholar] [CrossRef]
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. J. Appl. Meteorol. Climatol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- de Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. 2021. Available online: https://cran.r-project.org/web/packages/agricolae/index.html (accessed on 27 April 2023).
- Huang, H. LinkET: Everything Is Linkable. 2021. Available online: https://github.com/Hy4m/linkET (accessed on 27 April 2023).
- R Core Team. R A Lang. Environ. Stat. Comput. R Found. Stat. Comput. Vienna, Austria. 2021. Available online: http://www.R-project.org/ (accessed on 27 April 2023).
- Gärtner, H.; Lucchinetti, S.; Schweingruber, F.H. New Perspectives for Wood Anatomical Analysis in Dendrosciences: The GSL1-Microtome. Dendrochronologia 2014, 32, 47–51. [Google Scholar] [CrossRef]
- Gärtner, H.; Cherubini, P.; Fonti, P.; von Arx, G.; Schneider, L.; Nievergelt, D.; Verstege, A.; Bast, A.; Schweingruber, F.H.; Büntgen, U. A Technical Perspective in Modern Tree-Ring Research—How to Overcome Dendroecological and Wood Anatomical Challenges. JoVE (J. Vis. Exp.) 2015, 2015, e52337. [Google Scholar] [CrossRef]
- von Arx, G.; Carrer, M. ROXAS—A New Tool to Build Centuries-Long Tracheid-Lumen Chronologies in Conifers. Dendrochronologia 2014, 32, 290–293. [Google Scholar] [CrossRef]
- Peters, R.L.; Balanzategui, D.; Hurley, A.G.; von Arx, G.; Prendin, A.L.; Cuny, H.E.; Björklund, J.; Frank, D.C.; Fonti, P. RAPTOR: Row and Position Tracheid Organizer in R. Dendrochronologia 2018, 47, 10–16. [Google Scholar] [CrossRef]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. 2020. Available online: https://cran.r-project.org/web/packages/factoextra/index.html (accessed on 27 April 2023).
- Beguería, S.; Vicente-Serrano, S.M. SPEI: Calculation of the Standardised Precipitation-Evapotranspiration Index. 2017. Available online: https://cran.r-project.org/web/packages/SPEI/index.html (accessed on 27 April 2023).
- Li, Z.; Chen, W.; Wei, J.; Maierdang, K.; Zhang, Y.; Zhang, S.; Wang, X. Tree-Ring Growth Responses of Liaodong Oak (Quercus wutaishanica) to Climate in the Beijing Dongling Mountain of China. Shengtai Xuebao 2021, 41, 27–37. [Google Scholar] [CrossRef]
- Islam, M.; Rahman, M.; Bräuning, A. Long-Term Hydraulic Adjustment of Three Tropical Moist Forest Tree Species to Changing Climate. Front. Plant Sci. 2018, 9, 1761. [Google Scholar] [CrossRef]
- Thomas, D.S.; Montagu, K.D.; Conroy, J.P. Temperature Effects on Wood Anatomy, Wood Density, Photosynthesis and Biomass Partitioning of Eucalyptus grandis Seedlings. Tree Physiol. 2007, 27, 251–260. [Google Scholar] [CrossRef]
- Gea-Izquierdo, G.; Fonti, P.; Cherubini, P.; Martín-Benito, D.; Chaar, H.; Cañellas, I. Xylem Hydraulic Adjustment and Growth Response of Quercus canariensis Willd. to Climatic Variability. Tree Physiol. 2012, 32, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Gorsuch, D.M.; Oberbauer, S.F. Effects of Mid-Season Frost and Elevated Growing Season Temperature on Stomatal Conductance and Specific Xylem Conductivity of the Arctic Shrub, Salix Pulchra. Tree Physiol. 2002, 22, 1027–1034. [Google Scholar] [CrossRef]
- Voelker, S.L.; Noirot-Cosson, P.-E.; Stambaugh, M.C.; McMurry, E.R.; Meinzer, F.C.; Lachenbruch, B.; Guyette, R.P. Spring Temperature Responses of Oaks Are Synchronous with North Atlantic Conditions during the Last Deglaciation. Ecol. Monogr. 2012, 82, 169–187. [Google Scholar] [CrossRef]
- Tumajer, J.; Treml, V. Response of Floodplain Pedunculate Oak (Quercus robur L.) Tree-Ring Width and Vessel Anatomy to Climatic Trends and Extreme Hydroclimatic Events. For. Ecol. Manag. 2016, 379, 185–194. [Google Scholar] [CrossRef]
- Maherali, H.; DeLucia, E.H. Interactive Effects of Elevated CO2 and Temperature on Water Transport Inponderosa Pine. Am. J. Bot. 2000, 87, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Rao, K.S.; Rajput, K.S.; Srinivas, T. Seasonal Cambial Anatomy and Development of Xylem in Dalbergia Sissoo Growing under the Influence of Combined Air Pollutants. J. Sustain. For. 2004, 18, 73–88. [Google Scholar] [CrossRef]
- Gupta, M.C.; Ghouse, A.K.M. Effects of Coal-Smoke Pollutants from Different Sources on the Growth, Chlorophyll Content, Stem Anatomy and Cuticular Traits of Euphorbia hirta L. Environ. Pollut. 1987, 47, 221–229. [Google Scholar] [CrossRef]
- Sukumaran, D. Effect of Air Pollution on the Anatomy Some Tropical Plants. Appl. Ecol. Environ. Sci. 2014, 2, 32–36. [Google Scholar] [CrossRef]
- Rajput, K.S.; Rao, K.S.; Kim, Y.S. Cambial Activity and Wood Anatomy in Prosopis spicigera (Mimosaceae) Affected by Combined Air Pollutants. IAWA J. 2008, 29, 209–219. [Google Scholar] [CrossRef]
- Alves, E.S. The Effects of the Pollution on Wood of Cecropia glazioui (Cecropiaceae). IAWA J. 1995, 16, 69–80. [Google Scholar] [CrossRef]
- Mahmooduzzafar; Hegazy, S.S.; Aref, I.M.; Iqbal, M. Anatomical Changes in the Wood of Syzygium Cumini Exposed to Coal-Smoke Pollution. J. Food Agric. Environ. 2010, 8, 959–964. [Google Scholar]
- Gupta, M.C.; Iqbal, M. Ontogenetic Histological Changes in the Wood of Mango (Mangifera indica L. cv Deshi) Exposed to Coal-Smoke Pollution. Environ. Exp. Bot. 2005, 54, 248–255. [Google Scholar] [CrossRef]
Site | Species | No. of Trees | No. of Cores | Mean DBH | Mean Age | |
---|---|---|---|---|---|---|
Urban | NF | F. mandshurica | 15 | 30 | 25.440 | 59 |
Q. mongolica | 14 | 29 | 23.529 | 51 | ||
P. sylvestris var. mongolica | 15 | 30 | 31.853 | 51 | ||
SR | P. sylvestris var. mongolica | 15 | 30 | 22.593 | 35 | |
Rural | LM | F. mandshurica | 15 | 30 | 35.647 | 62 |
Q. mongolica | 13 | 26 | 34.087 | 69 | ||
P. sylvestris var. mongolica | 15 | 30 | 35.040 | 43 |
Length (Year) | SD | MS | AC1 | Rbar | SNR | EPS | AGR | |
---|---|---|---|---|---|---|---|---|
NF_fm | 65 (1956–2020) | 0.276 | 0.297 | 0.580 | 0.467 | 13.121 | 0.929 | 1.690 |
LM_fm | 77 (1944–2020) | 0.195 | 0.205 | 0.577 | 0.424 | 11.031 | 0.917 | 2.252 |
NF_qm | 57 (1964–2020) | 0.235 | 0.357 | 0.233 | 0.505 | 14.295 | 0.935 | 1.443 |
LM_qm | 76 (1945–2020) | 0.184 | 0.262 | 0.136 | 0.597 | 19.247 | 0.951 | 1.869 |
SR_ps | 39 (1982–2020) | 0.241 | 0.352 | 0.328 | 0.189 | 3.264 | 0.765 | 2.579 |
NF_ps | 58 (1963–2020) | 0.261 | 0.226 | 0.786 | 0.529 | 16.831 | 0.944 | 2.542 |
LM_ps | 47 (1974–2020) | 0.186 | 0.261 | 0.269 | 0.574 | 20.21 | 0.953 | 3.022 |
Df | Sum Sq | Mean Sq | F-Value | p-Value | ||
---|---|---|---|---|---|---|
VD | Site | 1 | 592 | 592 | 10.09 | 0.002 |
Species | 1 | 20,652 | 20,652 | 351.62 | <0.001 | |
Site × species | 1 | 291 | 291 | 4.96 | 0.029 | |
VN | Site | 1 | 8044 | 8044 | 44.61 | <0.001 |
Species | 1 | 39,138 | 39,138 | 217.06 | <0.001 | |
Site × species | 1 | 4256 | 4256 | 23.6 | <0.001 | |
CTA | Site | 1 | 0.197 | 0.197 | 163.12 | <0.001 |
Species | 1 | 0.669 | 0.669 | 554.68 | <0.001 | |
Site × species | 1 | 0.005 | 0.005 | 4.09 | 0.047 | |
Dh | Site | 1 | 7005 | 7005 | 100.14 | <0.001 |
Species | 1 | 6794 | 6794 | 97.13 | <0.001 | |
Site × species | 1 | 6819 | 6819 | 97.48 | <0.001 | |
Kh | Site | 1 | 6.88 × 10−13 | 6.88 × 10−13 | 110.09 | <0.001 |
Species | 1 | 1.46 × 10−12 | 1.46 × 10−12 | 233.83 | <0.001 | |
Site × species | 1 | 8.41 × 10−14 | 8.41× 10−14 | 13.46 | <0.001 | |
Ks | Site | 1 | 0.098 | 0.098 | 38.01 | <0.001 |
Species | 1 | 0.003 | 0.003 | 1.05 | 0.309 | |
Site × species | 1 | 0.002 | 0.002 | 0.89 | 0.349 | |
MVA | Site | 1 | 1.03 × 108 | 1.03 × 108 | 26.34 | <0.001 |
Species | 1 | 2.30 × 109 | 2.30 × 109 | 588.80 | <0.001 | |
Site × species | 1 | 3.77 × 107 | 3.77 × 107 | 9.65 | 0.003 | |
RCTA | Site | 1 | 610.7 | 610.7 | 103.96 | <0.001 |
Species | 1 | 1.5 | 1.5 | 0.26 | 0.614 | |
Site × species | 1 | 111.0 | 111.0 | 18.89 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Zhao, B.; Chen, Z.; Song, W.; Li, Z.; Wang, X. The Impact of Urbanization on Tree Growth and Xylem Anatomical Characteristics. Biology 2023, 12, 1373. https://doi.org/10.3390/biology12111373
Gao X, Zhao B, Chen Z, Song W, Li Z, Wang X. The Impact of Urbanization on Tree Growth and Xylem Anatomical Characteristics. Biology. 2023; 12(11):1373. https://doi.org/10.3390/biology12111373
Chicago/Turabian StyleGao, Xiaohui, Binqing Zhao, Zecheng Chen, Wenqi Song, Zongshan Li, and Xiaochun Wang. 2023. "The Impact of Urbanization on Tree Growth and Xylem Anatomical Characteristics" Biology 12, no. 11: 1373. https://doi.org/10.3390/biology12111373
APA StyleGao, X., Zhao, B., Chen, Z., Song, W., Li, Z., & Wang, X. (2023). The Impact of Urbanization on Tree Growth and Xylem Anatomical Characteristics. Biology, 12(11), 1373. https://doi.org/10.3390/biology12111373